Complete Dissertation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
"National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment. -
Apiaceae) - Beds, Old Cambs, Hunts, Northants and Peterborough
CHECKLIST OF UMBELLIFERS (APIACEAE) - BEDS, OLD CAMBS, HUNTS, NORTHANTS AND PETERBOROUGH Scientific name Common Name Beds old Cambs Hunts Northants and P'boro Aegopodium podagraria Ground-elder common common common common Aethusa cynapium Fool's Parsley common common common common Ammi majus Bullwort very rare rare very rare very rare Ammi visnaga Toothpick-plant very rare very rare Anethum graveolens Dill very rare rare very rare Angelica archangelica Garden Angelica very rare very rare Angelica sylvestris Wild Angelica common frequent frequent common Anthriscus caucalis Bur Chervil occasional frequent occasional occasional Anthriscus cerefolium Garden Chervil extinct extinct extinct very rare Anthriscus sylvestris Cow Parsley common common common common Apium graveolens Wild Celery rare occasional very rare native ssp. Apium inundatum Lesser Marshwort very rare or extinct very rare extinct very rare Apium nodiflorum Fool's Water-cress common common common common Astrantia major Astrantia extinct very rare Berula erecta Lesser Water-parsnip occasional frequent occasional occasional x Beruladium procurrens Fool's Water-cress x Lesser very rare Water-parsnip Bunium bulbocastanum Great Pignut occasional very rare Bupleurum rotundifolium Thorow-wax extinct extinct extinct extinct Bupleurum subovatum False Thorow-wax very rare very rare very rare Bupleurum tenuissimum Slender Hare's-ear very rare extinct very rare or extinct Carum carvi Caraway very rare very rare very rare extinct Chaerophyllum temulum Rough Chervil common common common common Cicuta virosa Cowbane extinct extinct Conium maculatum Hemlock common common common common Conopodium majus Pignut frequent occasional occasional frequent Coriandrum sativum Coriander rare occasional very rare very rare Daucus carota Wild Carrot common common common common Eryngium campestre Field Eryngo very rare, prob. -
Micro-Moth Grading Guidelines (Scotland) Abhnumber Code
Micro-moth Grading Guidelines (Scotland) Scottish Adult Mine Case ABHNumber Code Species Vernacular List Grade Grade Grade Comment 1.001 1 Micropterix tunbergella 1 1.002 2 Micropterix mansuetella Yes 1 1.003 3 Micropterix aureatella Yes 1 1.004 4 Micropterix aruncella Yes 2 1.005 5 Micropterix calthella Yes 2 2.001 6 Dyseriocrania subpurpurella Yes 2 A Confusion with fly mines 2.002 7 Paracrania chrysolepidella 3 A 2.003 8 Eriocrania unimaculella Yes 2 R Easier if larva present 2.004 9 Eriocrania sparrmannella Yes 2 A 2.005 10 Eriocrania salopiella Yes 2 R Easier if larva present 2.006 11 Eriocrania cicatricella Yes 4 R Easier if larva present 2.007 13 Eriocrania semipurpurella Yes 4 R Easier if larva present 2.008 12 Eriocrania sangii Yes 4 R Easier if larva present 4.001 118 Enteucha acetosae 0 A 4.002 116 Stigmella lapponica 0 L 4.003 117 Stigmella confusella 0 L 4.004 90 Stigmella tiliae 0 A 4.005 110 Stigmella betulicola 0 L 4.006 113 Stigmella sakhalinella 0 L 4.007 112 Stigmella luteella 0 L 4.008 114 Stigmella glutinosae 0 L Examination of larva essential 4.009 115 Stigmella alnetella 0 L Examination of larva essential 4.010 111 Stigmella microtheriella Yes 0 L 4.011 109 Stigmella prunetorum 0 L 4.012 102 Stigmella aceris 0 A 4.013 97 Stigmella malella Apple Pigmy 0 L 4.014 98 Stigmella catharticella 0 A 4.015 92 Stigmella anomalella Rose Leaf Miner 0 L 4.016 94 Stigmella spinosissimae 0 R 4.017 93 Stigmella centifoliella 0 R 4.018 80 Stigmella ulmivora 0 L Exit-hole must be shown or larval colour 4.019 95 Stigmella viscerella -
2013, XLVIII: 27-37 Grădina Botanică “Alexandru Borza” Cluj-Napoca
Contribuţii Botanice – 2013, XLVIII: 27-37 Grădina Botanică “Alexandru Borza” Cluj-Napoca THE PRESENCE OF VERONICA SPECIES IN DIFFERENT NATURA 2000 HABITAT TYPES IN ROMANIA Silvia OROIAN,1 Mihaela SĂMĂRGHIŢAN2 1 University of Medicine and Pharmacy, Târgu-Mureş, Faculty of Pharmacy, Pharmaceutical Botany and Cell Biology Department, 38 Gh. Marinescu Street, RO-540139 Târgu-Mureş, Romania 2 Mureş County Museum, Natural Science Department, 24 Horea Street, RO-540036 Târgu-Mureş, Romania e-mail: [email protected] Abstract: A principal objective of this study was to summarise the distribution of Veronica species in Romania, where such an inventory has not existed before. Taxa of Veronica genus were identified in 311 plant associations and 36 subassociations framed in 132 alliances. Of the 311 plant associations, 138 are included in various types of NATURA 2000 Habitats. The review of phytosociological data reveals the presence of Veronica taxa in 42 types of Natura 2000 habitats with scientific significance. Some of these Veronica taxa are characteristic species for alliances (i.e. Veronicion baumgartenii Coldea 1991, Veronico officinalis-Quercion Pop 1971) or differential species at plant association level (Veronico baumgartenii-Saxifragetum bryoidis Boşcaiu et al. 1977). Keywords: Veronica genus, Natura 2000 habitats, plant associations Introduction Veronica is considered among the richest genera of the vascular flora of Romania as well as of other European countries. As regards their systematic position, Veronica species were included until recently in the Scrophularioideae (Antirrhinoideae) subfamily, Scrophulariaceae family, Scrophulariales order, Asterideae subclass, Magnoliopsida class [7]. Because there are several classification systems for this genus, here we mention three of them, which we consider most recent. -
Atlas of Rare Endemic Vascular Plants of the Arctic
Atlas of Rare Endemic Vascular Plants of the Arctic Technical Report No. 3 About CAFF Theprogram for the Conservation of Arctic Flora and Fauna (CAFF) of the Arctic Council was established lo address the special needs of Arctic ecosystems, species and thcir habitats in the rapid ly developing Arctic region. Itwas initiated as one of'four programs of the Arctic Environmental Protcction Strategy (AEPS) which was adopted by Canada, Denmark/Greenland, Finland, lceland, Norway, Russia, Swcdcn and the United States through a Ministeria! Declaration at Rovaniemi, Finland in 1991. Other programs initi ated under the AEPS and overlaken hy the Are.tie Council are the ArcticMonitoring and assessment Programme (AMAP), the program for Emergency Prevention, Preparcd ness and Response (EPPR) and the program for Protection of the Arctic Marine Envi ronment (PAME). Sinceits inaugural mccti.ng in Ottawa, Canada in 1992, the CAFF program has provided scientists, conscrvation managers and groups, and indigenous people of the north with a distinct forum in which lo tackle a wide range of Arctic conservation issues at the cir cumpolar level. CAFF's main goals, which are achieved in keeping with the concepts of sustainable developrnertt and utilisation, are: • to conserve Arctic Jlora and fauna, thcir diversity and thcir habitats; • to protect the Arctic ecosystems from threats; • to improve conservation management laws, reg ulations and practices for the Arclic; • to integrale Arctic interests into global conservation fora. CAFF operates rhrough a system of Designated Agencies and National Representatives responsible for CAFF in thcir rcspcctivc countries. CAFF also has an International Work ing Group wh.ith has met annually to assess progrcss and to develop Annual WorkPlans. -
Comparative Anatomy of Ovules in Galinsoga, Solidago and Ratibida (Asteraceae)
ACTA BIOLOGICA CRACOVIENSIA Series Botanica 56/2: 115–125, 2014 DOI: 10.2478/abcsb-2014-0024 COMPARATIVE ANATOMY OF OVULES IN GALINSOGA, SOLIDAGO AND RATIBIDA (ASTERACEAE) JOLANTA KOLCZYK1, PIOTR STOLARCZYK2, AND BARTOSZ J. PŁACHNO1* 1Department of Plant Cytology and Embryology, Jagiellonian University, Gronostajowa 9, 30-387 Cracow, Poland 2Unit of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, University of Agriculture in Cracow, Al. 29 Listopada 54, 31-425 Cracow, Poland Manuscript submitted September 9, 2014; revision accepted October 22, 2014 Many Asteraceae species have been introduced into horticulture as ornamental or interesting exotic plants. Some of them, including Solidago and Galinsoga, are now aggressive weeds; others such as Ratibida are not. Special modifications of the ovule tissue and the occurrence of nutritive tissue have been described in several Asteraceae species, including invasive Taraxacum species. This study examined whether such modifications might also occur in other genera. We found that the three genera examined – Galinsoga (G. quadriradiata), Solidago (S. canadensis, S. rigida, S. gigantea) and Ratibida (R. pinnata) – differed in their nutritive tissue structure. According to changes in the integument, we identified three types of ovules in Asteraceae: “Taraxacum” type (recorded in Taraxacum, Bellis, Solidago, Chondrilla), with well-developed nutritive tissue having very swollen cell walls of spongy structure; “Galinsoga” type (in Galinsoga), in which the nutritive tissue cells have more cyto- plasm and thicker cell walls than the other integument parenchyma cells, and in which the most prominent character of the nutritive tissue cells is well-developed rough ER; and “Ratibida” type (in Ratibida), in which the nutritive tissue is only slightly developed and consists of large highly vacuolated cells. -
Chapter 10 • Principles of Conserving the Arctic's Biodiversity
Chapter 10 Principles of Conserving the Arctic’s Biodiversity Lead Author Michael B. Usher Contributing Authors Terry V.Callaghan, Grant Gilchrist, Bill Heal, Glenn P.Juday, Harald Loeng, Magdalena A. K. Muir, Pål Prestrud Contents Summary . .540 10.1. Introduction . .540 10.2. Conservation of arctic ecosystems and species . .543 10.2.1. Marine environments . .544 10.2.2. Freshwater environments . .546 10.2.3. Environments north of the treeline . .548 10.2.4. Boreal forest environments . .551 10.2.5. Human-modified habitats . .554 10.2.6. Conservation of arctic species . .556 10.2.7. Incorporating traditional knowledge . .558 10.2.8. Implications for biodiversity conservation . .559 10.3. Human impacts on the biodiversity of the Arctic . .560 10.3.1. Exploitation of populations . .560 10.3.2. Management of land and water . .562 10.3.3. Pollution . .564 10.3.4. Development pressures . .566 10.4. Effects of climate change on the biodiversity of the Arctic . .567 10.4.1. Changes in distribution ranges . .568 10.4.2. Changes in the extent of arctic habitats . .570 10.4.3. Changes in the abundance of arctic species . .571 10.4.4. Changes in genetic diversity . .572 10.4.5. Effects on migratory species and their management . .574 10.4.6. Effects caused by non-native species and their management .575 10.4.7. Effects on the management of protected areas . .577 10.4.8. Conserving the Arctic’s changing biodiversity . .579 10.5. Managing biodiversity conservation in a changing environment . .579 10.5.1. Documenting the current biodiversity . .580 10.5.2. -
Vegetation at the Taiga Forest–Steppe Borderline in the Western Khentey Mountains, Northern Mongolia
Ann. Bot. Fennici 42: 411–426 ISSN 0003-3847 Helsinki 19 December 2005 © Finnish Zoological and Botanical Publishing Board 2005 Vegetation at the taiga forest–steppe borderline in the western Khentey Mountains, northern Mongolia Choimaa Dulamsuren1, Markus Hauck2 & Michael Mühlenberg1 1) Center of Nature Conservation, University of Göttingen, Von-Siebold-Straße 2, D-37075 Göttingen, Germany (e-mail: [email protected]) 2) Albrecht von Haller Institute of Plant Sciences, University of Göttingen, Untere Karspüle 2, D-37073 Göttingen, Germany (e-mail: [email protected]) Received 31 Aug. 2004, revised version received 11 Nov. 2004, accepted 7 Jan. 2005 Dulamsuren, C., Hauck, M. & Mühlenberg, M. 2005: Vegetation at the taiga forest–steppe border- line in the western Khentey Mountains, northern Mongolia. — Ann. Bot. Fennici 42: 411–426. Vegetation of an area of 500 km2 in the western Khentey Mountains, northern Mon- golia is phytosociologically classified with the help of 254 relevés. Twenty-one main vegetation units are described. The study area is situated at the interface between the western Siberian dark taiga, the eastern Siberian light taiga and the Mongolian-Daurian forest steppe. A small-scale pattern of these three major vegetation types was found depending on site characteristics. Dark taiga forests of Pinus sibirica, Abies sibirica, Picea obovata, and Larix sibirica grow at the most humid sites. Light taiga forests dominated by Larix sibirica and Betula platyphylla occur on relatively dry northern slopes of the lower montane belt. Sun-exposed, southern slopes of the lower montane belt are covered by montane meadow and mountain steppe. DCA ordination suggests that the distribution of vegetation types depends on water supply and altitude. -
Number 3, Spring 1998 Director’S Letter
Planning and planting for a better world Friends of the JC Raulston Arboretum Newsletter Number 3, Spring 1998 Director’s Letter Spring greetings from the JC Raulston Arboretum! This garden- ing season is in full swing, and the Arboretum is the place to be. Emergence is the word! Flowers and foliage are emerging every- where. We had a magnificent late winter and early spring. The Cornus mas ‘Spring Glow’ located in the paradise garden was exquisite this year. The bright yellow flowers are bright and persistent, and the Students from a Wake Tech Community College Photography Class find exfoliating bark and attractive habit plenty to photograph on a February day in the Arboretum. make it a winner. It’s no wonder that JC was so excited about this done soon. Make sure you check of themselves than is expected to seedling selection from the field out many of the special gardens in keep things moving forward. I, for nursery. We are looking to propa- the Arboretum. Our volunteer one, am thankful for each and every gate numerous plants this spring in curators are busy planting and one of them. hopes of getting it into the trade. preparing those gardens for The magnolias were looking another season. Many thanks to all Lastly, when you visit the garden I fantastic until we had three days in our volunteers who work so very would challenge you to find the a row of temperatures in the low hard in the garden. It shows! Euscaphis japonicus. We had a twenties. There was plenty of Another reminder — from April to beautiful seven-foot specimen tree damage to open flowers, but the October, on Sunday’s at 2:00 p.m. -
Morphological Evolution and Systematics of Synthyris and Besseya (Veronicaceae): a Phylogenetic Analysis
Systematic Botany (2004), 29(3): pp. 716±736 q Copyright 2004 by the American Society of Plant Taxonomists Morphological Evolution and Systematics of Synthyris and Besseya (Veronicaceae): A Phylogenetic Analysis LARRY HUFFORD2 and MICHELLE MCMAHON1 School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236 1Present address: Section of Ecology and Evolutionary Biology, Division of Biological Sciences, University of California, Davis, California 95616 2Author for correspondence ([email protected]) Communicating Editor: Wendy B. Zomlefer ABSTRACT. Phylogenetic analyses are used to examine the morphological diversity and systematics of Synthyris and Besseya. The placement of Synthyris and Besseya in Veronicaceae is strongly supported in parsimony analyses of nuclear ribosomal ITS DNA sequences. Parsimony and maximum likelihood (ML) criteria provide consistent hypotheses of clades of Synthyris and Besseya based on the ITS data. The combination of morphological characters and ITS data resolve additional clades of Synthyris and Besseya. The results show that Synthyris is paraphyletic to Besseya. In the monophyletic Synthyris clade, Besseya forms part of a Northwest clade that also includes the alpine S. canbyi, S. dissecta,andS. lanuginosa and mesic forest S. cordata, S. reniformis, S. platycarpa,andS. schizantha. The Northwest clade is the sister of S. borealis. An Intermountain clade, comprising S. ranunculina, S. laciniata, S. pinnati®da,andS. missurica, is the sister to the rest of the Synthyris clade. Constraint topologies are used to test prior hypotheses of relationships and morphological similarities. Parametric bootstrapping is used to compare the likelihood values of the best trees obtained in searches under constraints to that of the best tree found without constraints. -
This Article Appeared in a Journal Published by Elsevier. the Attached Copy Is Furnished to the Author for Internal Non-Commerci
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Review of Palaeobotany and Palynology 160 (2010) 163–171 Contents lists available at ScienceDirect Review of Palaeobotany and Palynology journal homepage: www.elsevier.com/locate/revpalbo Pollen morphology, ultrastructure and taphonomy of the Neuradaceae with special reference to Neurada procumbens L. and Grielum humifusum E.Mey. ex Harv. et Sond. S. Polevova a, M. Tekleva b,⁎, F.H. Neumann c,d, L. Scott e, J.C. Stager f a Moscow State University, Moscow, Russia b Borissyak Paleontological Institute RAS, Moscow, Russia c Bernard Price Institute for Palaeontology, University of the Witwatersrand, Johannesburg, South Africa d Steinmann Institute for Geology, Mineralogy and Palaeontology, University of Bonn, Germany e Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa f Paul Smiths College, New York, USA article info abstract Article history: Pollen morphology and sporoderm ultrastructure of modern Neurada procumbens L. and Grielum humifusum Received 5 November 2009 E.Mey. ex Harv. -
Ground Ice Melt in the High Arctic Leads to Greater Ecological Heterogeneity
Journal of Ecology 2016, 104, 114–124 doi: 10.1111/1365-2745.12491 Ground ice melt in the high Arctic leads to greater ecological heterogeneity Michael S. Becker1,2*, T. Jonathan Davies3,4 and Wayne H. Pollard1 1Department of Geography, McGill University, 805 Sherbrooke Street W, Montreal, QC H3A 0B9, Canada; 2Center for Macroecology, Evolution and Climate, The Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, Copenhagen DK-2100, Denmark; 3Department of Biology, McGill University, 1205 Doctor Penfield Avenue, Montreal, QC H3A 1B3, Canada; and 4African Centre for DNA Barcoding, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa Summary 1. The polar desert biome of the Canadian high Arctic Archipelago is currently experiencing some of the great- est mean annual air temperature increases on the planet, threatening the stability of ecosystems residing above temperature-sensitive permafrost. 2. Ice wedges are the most widespread form of ground ice, occurring in up to 25% of the world’s terrestrial near-surface, and their melting (thermokarst) may catalyse a suite of biotic and ecological changes, facilitating major ecosystem shifts. 3. These unknown ecosystem shifts raise serious questions as to how permafrost stability, vegetation diversity and edaphic conditions will change with a warming high Arctic. Ecosystem and thermokarst processes tend to be examined independently, limiting our understanding of a coupled system whereby the effect of climate change on one will affect the outcome of the other. 4. Using in-depth, comprehensive field observations and a space-for-time approach, we investigate the highly structured landscape that has emerged due to the thermokarst-induced partitioning of microhabitats.