Normalization Exercises
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Foreign(Key(Constraints(
Foreign(Key(Constraints( ! Foreign(key:(a(rule(that(a(value(appearing(in(one(rela3on(must( appear(in(the(key(component(of(another(rela3on.( – aka(values(for(certain(a9ributes(must("make(sense."( – Po9er(example:(Every(professor(who(is(listed(as(teaching(a(course(in(the( Courses(rela3on(must(have(an(entry(in(the(Profs(rela3on.( ! How(do(we(express(such(constraints(in(rela3onal(algebra?( ! Consider(the(rela3ons(Courses(crn,(year,(name,(proflast,(…)(and( Profs(last,(first).( ! We(want(to(require(that(every(nonLNULL(value(of(proflast(in( Courses(must(be(a(valid(professor(last(name(in(Profs.( ! RA((πProfLast(Courses)((((((((⊆ π"last(Profs)( 23( Foreign(Key(Constraints(in(SQL( ! We(want(to(require(that(every(nonLNULL(value(of(proflast(in( Courses(must(be(a(valid(professor(last(name(in(Profs.( ! In(Courses,(declare(proflast(to(be(a(foreign(key.( ! CREATE&TABLE&Courses&(& &&&proflast&VARCHAR(8)&REFERENCES&Profs(last),...);& ! CREATE&TABLE&Courses&(& &&&proflast&VARCHAR(8),&...,&& &&&FOREIGN&KEY&proflast&REFERENCES&Profs(last));& 24( Requirements(for(FOREIGN(KEYs( ! If(a(rela3on(R(declares(that(some(of(its(a9ributes(refer( to(foreign(keys(in(another(rela3on(S,(then(these( a9ributes(must(be(declared(UNIQUE(or(PRIMARY(KEY(in( S.( ! Values(of(the(foreign(key(in(R(must(appear(in(the( referenced(a9ributes(of(some(tuple(in(S.( 25( Enforcing(Referen>al(Integrity( ! Three(policies(for(maintaining(referen3al(integrity.( ! Default(policy:(reject(viola3ng(modifica3ons.( ! Cascade(policy:(mimic(changes(to(the(referenced( a9ributes(at(the(foreign(key.( ! SetLNULL(policy:(set(appropriate(a9ributes(to(NULL.( -
Normalized Form Snowflake Schema
Normalized Form Snowflake Schema Half-pound and unascertainable Wood never rhubarbs confoundedly when Filbert snore his sloop. Vertebrate or leewardtongue-in-cheek, after Hazel Lennie compartmentalized never shreddings transcendentally, any misreckonings! quite Crystalloiddiverted. Euclid grabbles no yorks adhered The star schemas in this does not have all revenue for this When done use When doing table contains less sensible of rows Snowflake Normalizationde-normalization Dimension tables are in normalized form the fact. Difference between Star Schema & Snow Flake Schema. The major difference between the snowflake and star schema models is slot the dimension tables of the snowflake model may want kept in normalized form to. Typically most of carbon fact tables in this star schema are in the third normal form while dimensional tables are de-normalized second normal. A relation is danger to pause in First Normal Form should each attribute increase the. The model is lazy in single third normal form 1141 Options to Normalize Assume that too are 500000 product dimension rows These products fall under 500. Hottest 'snowflake-schema' Answers Stack Overflow. Learn together is Star Schema Snowflake Schema And the Difference. For step three within the warehouses we tested Redshift Snowflake and Bigquery. On whose other hand snowflake schema is in normalized form. The CWM repository schema is a standalone product that other products can shareeach product owns only. The main difference between in two is normalization. Families of normalized form snowflake schema snowflake. Star and Snowflake Schema in Data line with Examples. Is spread the dimension tables in the snowflake schema are normalized. Like price weight speed and quantitiesie data execute a numerical format. -
Boyce-Codd Normal Forms Lecture 10 Sections 15.1 - 15.4
Boyce-Codd Normal Forms Lecture 10 Sections 15.1 - 15.4 Robb T. Koether Hampden-Sydney College Wed, Feb 6, 2013 Robb T. Koether (Hampden-Sydney College) Boyce-Codd Normal Forms Wed, Feb 6, 2013 1 / 15 1 Third Normal Form 2 Boyce-Codd Normal Form 3 Assignment Robb T. Koether (Hampden-Sydney College) Boyce-Codd Normal Forms Wed, Feb 6, 2013 2 / 15 Outline 1 Third Normal Form 2 Boyce-Codd Normal Form 3 Assignment Robb T. Koether (Hampden-Sydney College) Boyce-Codd Normal Forms Wed, Feb 6, 2013 3 / 15 Third Normal Form Definition (Transitive Dependence) A set of attributes Z is transitively dependent on a set of attributes X if there exists a set of attributes Y such that X ! Y and Y ! Z. Definition (Third Normal Form) A relation R is in third normal form (3NF) if it is in 2NF and there is no nonprime attribute of R that is transitively dependent on any key of R. 3NF is violated if there is a nonprime attribute A that depends on something less than a key. Robb T. Koether (Hampden-Sydney College) Boyce-Codd Normal Forms Wed, Feb 6, 2013 4 / 15 Example Example order_no cust_no cust_name 222-1 3333 Joe Smith 444-2 4444 Sue Taylor 555-1 3333 Joe Smith 777-2 7777 Bob Sponge 888-3 4444 Sue Taylor Table 3 Table 3 is in 2NF, but it is not in 3NF because [order_no] ! [cust_no] ! [cust_name]: Robb T. Koether (Hampden-Sydney College) Boyce-Codd Normal Forms Wed, Feb 6, 2013 5 / 15 3NF Normalization To put a relation into 3NF, for each set of transitive function dependencies X ! Y ! Z , make two tables, one for X ! Y and another for Y ! Z . -
Fundamentals of Database Systems [Normalization – II]
Outline First Normal Form Second Normal Form Third Normal Form Boyce-Codd Normal Form Fundamentals of Database Systems [Normalization { II] Malay Bhattacharyya Assistant Professor Machine Intelligence Unit Indian Statistical Institute, Kolkata October, 2019 Outline First Normal Form Second Normal Form Third Normal Form Boyce-Codd Normal Form 1 First Normal Form 2 Second Normal Form 3 Third Normal Form 4 Boyce-Codd Normal Form Outline First Normal Form Second Normal Form Third Normal Form Boyce-Codd Normal Form First normal form The domain (or value set) of an attribute defines the set of values it might contain. A domain is atomic if elements of the domain are considered to be indivisible units. Company Make Company Make Maruti WagonR, Ertiga Maruti WagonR, Ertiga Honda City Honda City Tesla RAV4 Tesla, Toyota RAV4 Toyota RAV4 BMW X1 BMW X1 Only Company has atomic domain None of the attributes have atomic domains Outline First Normal Form Second Normal Form Third Normal Form Boyce-Codd Normal Form First normal form Definition (First normal form (1NF)) A relational schema R is in 1NF iff the domains of all attributes in R are atomic. The advantages of 1NF are as follows: It eliminates redundancy It eliminates repeating groups. Note: In practice, 1NF includes a few more practical constraints like each attribute must be unique, no tuples are duplicated, and no columns are duplicated. Outline First Normal Form Second Normal Form Third Normal Form Boyce-Codd Normal Form First normal form The following relation is not in 1NF because the attribute Model is not atomic. Company Country Make Model Distributor Maruti India WagonR LXI, VXI Carwala Maruti India WagonR LXI Bhalla Maruti India Ertiga VXI Bhalla Honda Japan City SV Bhalla Tesla USA RAV4 EV CarTrade Toyota Japan RAV4 EV CarTrade BMW Germany X1 Expedition CarTrade We can convert this relation into 1NF in two ways!!! Outline First Normal Form Second Normal Form Third Normal Form Boyce-Codd Normal Form First normal form Approach 1: Break the tuples containing non-atomic values into multiple tuples. -
Aslmple GUIDE to FIVE NORMAL FORMS in RELATIONAL DATABASE THEORY
COMPUTING PRACTICES ASlMPLE GUIDE TO FIVE NORMAL FORMS IN RELATIONAL DATABASE THEORY W|LL|AM KErr International Business Machines Corporation 1. INTRODUCTION The normal forms defined in relational database theory represent guidelines for record design. The guidelines cor- responding to first through fifth normal forms are pre- sented, in terms that do not require an understanding of SUMMARY: The concepts behind relational theory. The design guidelines are meaningful the five principal normal forms even if a relational database system is not used. We pres- in relational database theory are ent the guidelines without referring to the concepts of the presented in simple terms. relational model in order to emphasize their generality and to make them easier to understand. Our presentation conveys an intuitive sense of the intended constraints on record design, although in its informality it may be impre- cise in some technical details. A comprehensive treatment of the subject is provided by Date [4]. The normalization rules are designed to prevent up- date anomalies and data inconsistencies. With respect to performance trade-offs, these guidelines are biased to- ward the assumption that all nonkey fields will be up- dated frequently. They tend to penalize retrieval, since Author's Present Address: data which may have been retrievable from one record in William Kent, International Business Machines an unnormalized design may have to be retrieved from Corporation, General several records in the normalized form. There is no obli- Products Division, Santa gation to fully normalize all records when actual perform- Teresa Laboratory, ance requirements are taken into account. San Jose, CA Permission to copy without fee all or part of this 2. -
A Simple Database Supporting an Online Book Seller Tables About Books and Authors CREATE TABLE Book ( Isbn INTEGER, Title
1 A simple database supporting an online book seller Tables about Books and Authors CREATE TABLE Book ( Isbn INTEGER, Title CHAR[120] NOT NULL, Synopsis CHAR[500], ListPrice CURRENCY NOT NULL, AmazonPrice CURRENCY NOT NULL, SavingsInPrice CURRENCY NOT NULL, /* redundant AveShipLag INTEGER, AveCustRating REAL, SalesRank INTEGER, CoverArt FILE, Format CHAR[4] NOT NULL, CopiesInStock INTEGER, PublisherName CHAR[120] NOT NULL, /*Remove NOT NULL if you want 0 or 1 PublicationDate DATE NOT NULL, PublisherComment CHAR[500], PublicationCommentDate DATE, PRIMARY KEY (Isbn), FOREIGN KEY (PublisherName) REFERENCES Publisher, ON DELETE NO ACTION, ON UPDATE CASCADE, CHECK (Format = ‘hard’ OR Format = ‘soft’ OR Format = ‘audi’ OR Format = ‘cd’ OR Format = ‘digital’) /* alternatively, CHECK (Format IN (‘hard’, ‘soft’, ‘audi’, ‘cd’, ‘digital’)) CHECK (AmazonPrice + SavingsInPrice = ListPrice) ) CREATE TABLE Author ( AuthorName CHAR[120], AuthorBirthDate DATE, AuthorAddress ADDRESS, AuthorBiography FILE, PRIMARY KEY (AuthorName, AuthorBirthDate) ) CREATE TABLE WrittenBy (/*Books are written by authors Isbn INTEGER, AuthorName CHAR[120], AuthorBirthDate DATE, OrderOfAuthorship INTEGER NOT NULL, AuthorComment FILE, AuthorCommentDate DATE, PRIMARY KEY (Isbn, AuthorName, AuthorBirthDate), FOREIGN KEY (Isbn) REFERENCES Book, ON DELETE CASCADE, ON UPDATE CASCADE, FOREIGN KEY (AuthorName, AuthorBirthDate) REFERENCES Author, ON DELETE CASCADE, ON UPDATE CASCADE) 1 2 CREATE TABLE Publisher ( PublisherName CHAR[120], PublisherAddress ADDRESS, PRIMARY KEY (PublisherName) -
Data Vault Data Modeling Specification V 2.0.2 Focused on the Data Model Components
Data Vault Data Modeling Specification v2.0.2 Data Vault Data Modeling Specification v 2.0.2 Focused on the Data Model Components © Copyright Dan Linstedt, 2018 all rights reserved. Abstract New specifications for Data Vault 2.0 Methodology, Architecture, and Implementation are coming soon... For now, I've updated the modeling specification only to meet the needs of Data Vault 2.0. This document is a definitional document, and does not cover the implementation details or “how-to” best practices – for those, please refer to Data Vault Implementation Standards. Please note: ALL of these definitions are taught in our Certified Data Vault 2.0 Practitioner course. They are also defined in the book: Building a Scalable Data Warehouse with Data Vault 2.0 available on Amazon.com These standards are FREE to the general public, and these standards are up-to-date, and current. All standards published here should be considered the correct and current standards for Data Vault Data Modeling. NOTE: tooling vendors: if you *CLAIM* to support Data Vault 2.0, then you must support all standards as defined here. Otherwise, you are not allowed to claim support of Data Vault 2.0 in any way. In order to make the public statement “certified/Authorized to meet Data Vault 2.0 Standards” or “endorsed by Dan Linstedt” you must make prior arrangements directly with me. © Copyright Dan Linstedt 2018, all Rights Reserved Page 1 of 17 Data Vault Data Modeling Specification v2.0.2 Table of Contents Abstract .........................................................................................................................................1 1.0 Entity Type Definitions .............................................................................................................4 1.1 Hub Entity ...................................................................................................................................................... -
Database Normalization
Outline Data Redundancy Normalization and Denormalization Normal Forms Database Management Systems Database Normalization Malay Bhattacharyya Assistant Professor Machine Intelligence Unit and Centre for Artificial Intelligence and Machine Learning Indian Statistical Institute, Kolkata February, 2020 Malay Bhattacharyya Database Management Systems Outline Data Redundancy Normalization and Denormalization Normal Forms 1 Data Redundancy 2 Normalization and Denormalization 3 Normal Forms First Normal Form Second Normal Form Third Normal Form Boyce-Codd Normal Form Elementary Key Normal Form Fourth Normal Form Fifth Normal Form Domain Key Normal Form Sixth Normal Form Malay Bhattacharyya Database Management Systems These issues can be addressed by decomposing the database { normalization forces this!!! Outline Data Redundancy Normalization and Denormalization Normal Forms Redundancy in databases Redundancy in a database denotes the repetition of stored data Redundancy might cause various anomalies and problems pertaining to storage requirements: Insertion anomalies: It may be impossible to store certain information without storing some other, unrelated information. Deletion anomalies: It may be impossible to delete certain information without losing some other, unrelated information. Update anomalies: If one copy of such repeated data is updated, all copies need to be updated to prevent inconsistency. Increasing storage requirements: The storage requirements may increase over time. Malay Bhattacharyya Database Management Systems Outline Data Redundancy Normalization and Denormalization Normal Forms Redundancy in databases Redundancy in a database denotes the repetition of stored data Redundancy might cause various anomalies and problems pertaining to storage requirements: Insertion anomalies: It may be impossible to store certain information without storing some other, unrelated information. Deletion anomalies: It may be impossible to delete certain information without losing some other, unrelated information. -
3 Data Definition Language (DDL)
Database Foundations 6-3 Data Definition Language (DDL) Copyright © 2015, Oracle and/or its affiliates. All rights reserved. Roadmap You are here Data Transaction Introduction to Structured Data Definition Manipulation Control Oracle Query Language Language Language (TCL) Application Language (DDL) (DML) Express (SQL) Restricting Sorting Data Joining Tables Retrieving Data Using Using ORDER Using JOIN Data Using WHERE BY SELECT DFo 6-3 Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 3 Data Definition Language (DDL) Objectives This lesson covers the following objectives: • Identify the steps needed to create database tables • Describe the purpose of the data definition language (DDL) • List the DDL operations needed to build and maintain a database's tables DFo 6-3 Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 4 Data Definition Language (DDL) Database Objects Object Description Table Is the basic unit of storage; consists of rows View Logically represents subsets of data from one or more tables Sequence Generates numeric values Index Improves the performance of some queries Synonym Gives an alternative name to an object DFo 6-3 Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 5 Data Definition Language (DDL) Naming Rules for Tables and Columns Table names and column names must: • Begin with a letter • Be 1–30 characters long • Contain only A–Z, a–z, 0–9, _, $, and # • Not duplicate the name of another object owned by the same user • Not be an Oracle server–reserved word DFo 6-3 Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 6 Data Definition Language (DDL) CREATE TABLE Statement • To issue a CREATE TABLE statement, you must have: – The CREATE TABLE privilege – A storage area CREATE TABLE [schema.]table (column datatype [DEFAULT expr][, ...]); • Specify in the statement: – Table name – Column name, column data type, column size – Integrity constraints (optional) – Default values (optional) DFo 6-3 Copyright © 2015, Oracle and/or its affiliates. -
Fast Foreign-Key Detection in Microsoft SQL
Fast Foreign-Key Detection in Microsoft SQL Server PowerPivot for Excel Zhimin Chen Vivek Narasayya Surajit Chaudhuri Microsoft Research Microsoft Research Microsoft Research [email protected] [email protected] [email protected] ABSTRACT stored in a relational database, which they can import into Excel. Microsoft SQL Server PowerPivot for Excel, or PowerPivot for Other sources of data are text files, web data feeds or in general any short, is an in-memory business intelligence (BI) engine that tabular data range imported into Excel. enables Excel users to interactively create pivot tables over large data sets imported from sources such as relational databases, text files and web data feeds. Unlike traditional pivot tables in Excel that are defined on a single table, PowerPivot allows analysis over multiple tables connected via foreign-key joins. In many cases however, these foreign-key relationships are not known a priori, and information workers are often not be sophisticated enough to define these relationships. Therefore, the ability to automatically discover foreign-key relationships in PowerPivot is valuable, if not essential. The key challenge is to perform this detection interactively and with high precision even when data sets scale to hundreds of millions of rows and the schema contains tens of tables and hundreds of columns. In this paper, we describe techniques for fast foreign-key detection in PowerPivot and experimentally evaluate its accuracy, performance and scale on both synthetic benchmarks and real-world data sets. These techniques have been incorporated into PowerPivot for Excel. Figure 1. Example of pivot table in Excel. It enables multi- dimensional analysis over a single table. -
Databases : Lecture 1 1: Beyond ACID/Relational Databases Timothy G
Databases : Lecture 1 1: Beyond ACID/Relational databases Timothy G. Griffin Lent Term 2015 • Rise of Web and cluster-based computing • “NoSQL” Movement • Relationships vs. Aggregates • Key-value store • XML or JSON as a data exchange language • Not all applications require ACID • CAP = Consistency, Availability, and Partition tolerance • The CAP theorem (pick any two?) • Eventual consistency Apologies to Martin Fowler (“NoSQL Distilled”) Application-specific databases have always been with us . Two that I am familiar with: Daytona (AT&T): “Daytona is a data management system, not a database”. Built on top of the unix file system, this toolkit is for building application-specific But these systems and highly scalable data stores. Is used at AT&T are proprietary. for analysis of 100s of terabytes of call records. http://www2.research.att.com/~daytona/ Open source is a hallmark of NoSQL DataBlitz (Bell Labs, 1995) : Main-memory database system designed for embedded systems such as telecommunication switches. Optimized for simple key-driven queries. What’s new? Internet scale, cluster computing, open source . Something big is happening in the land of databases The Internet + cluster computing + open source systems many more points in the database design space are being explored and deployed Broader context helps clarify the strengths and weaknesses of the standard relational/ACID approach. http://nosql-database.org/ Eric Brewer’s PODC Keynote (July 2000) ACID vs. BASE (Basically Available, Soft-state, Eventually consistent) ACID BASE • Strong consistency Weak consistency • Isolation Availability first • Focus on “commit” Best effort • Nested transactions Approximate answers OK • Availability? Aggressive (optimistic) • Conservative (pessimistic) Simpler! • Difficult evolution (e.g. -
Normalization for Relational Databases
Chapter 10 Functional Dependencies and Normalization for Relational Databases Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Chapter Outline 1 Informal Design Guidelines for Relational Databases 1.1Semantics of the Relation Attributes 1.2 Redundant Information in Tuples and Update Anomalies 1.3 Null Values in Tuples 1.4 Spurious Tuples 2. Functional Dependencies (skip) Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 10- 2 Chapter Outline 3. Normal Forms Based on Primary Keys 3.1 Normalization of Relations 3.2 Practical Use of Normal Forms 3.3 Definitions of Keys and Attributes Participating in Keys 3.4 First Normal Form 3.5 Second Normal Form 3.6 Third Normal Form 4. General Normal Form Definitions (For Multiple Keys) 5. BCNF (Boyce-Codd Normal Form) Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 10- 3 Informal Design Guidelines for Relational Databases (2) We first discuss informal guidelines for good relational design Then we discuss formal concepts of functional dependencies and normal forms - 1NF (First Normal Form) - 2NF (Second Normal Form) - 3NF (Third Normal Form) - BCNF (Boyce-Codd Normal Form) Additional types of dependencies, further normal forms, relational design algorithms by synthesis are discussed in Chapter 11 Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 10- 4 1 Informal Design Guidelines for Relational Databases (1) What is relational database design? The grouping of attributes to form "good" relation schemas Two levels of relation schemas The logical "user view" level The storage "base relation" level Design is concerned mainly with base relations What are the criteria for "good" base relations? Copyright © 2007 Ramez Elmasri and Shamkant B.