Produção Didático-Pedagógica

Total Page:16

File Type:pdf, Size:1020Kb

Produção Didático-Pedagógica FICHA PARA CATÁLOGO PRODUÇÃO DIDÁTICO PEDAGÓGICA Título: O Conhecimento Estético e Artístico da Arte Fractal na sala de aula. Autor Aparecida Fatima Forte de Oliveira Escola de Atuação CEEBJA – Newton Guimarães Município da escola Paranavaí Núcleo Regional de Paranavaí Educação Orientador Marcos Cesar Danhoni Neves Instituição de Ensino Universidade Estadual de Maringá Superior Disciplina/Área (entrada no Arte PDE) Produção Didático- Sim pedagógica Relação Interdisciplinar Sim (matemática, física, biologia, informática) (indicar, caso haja, as diferentes disciplinas compreendidas no trabalho) Público Alvo Alunos (indicar o grupo com o qual o professor PDE desenvolveu o trabalho: professores, alunos, comunidade...) Localização CEEBJA Newton Guimarães (identificar nome e endereço Rua: Bahia, nº da escola de Centro implementação) Apresentação: Com o aparecimento dos meios tecnológicos ganhando (descrever a justificativa, a cada dia mais espaços, é natural que os artistas objetivos e metodologia contemporâneos buscam novas soluções e formas de utilizada. A informação expressão nesses novos sistemas, pesquisando várias deverá conter no máximo possibilidades de união entre arte e computadores. Com 1300 caracteres, ou 200 a articulação do conhecimento estético e artístico da Arte palavras, fonte Arial ou Fractal se materializa nas representações artísticas, que Times New Roman, busca recursos na tecnologia e no lúdico para se tamanho 12 e espaçamento consolidar, diferente da arte tradicional. É um ensino que simples) deve ser fundamentado, pois amplia os conhecimentos e experiências do aluno, aproximando-o das diversas representações artísticas do universo cultural historicamente constituído pela humanidade. Palavras-chave (3 a 5 Arte Fractal, Fractal, Artístico, Estético. palavras) Produção Didático-Pedagógica Imagem da autora, 2011 O conhecimento Estético e Artístico da Arte Fractal na Sala de Aula. SECRETARIA DE ESTADO DA EDUCAÇÃO – SEED SUPERINTENDENCIA DA EDUCAÇÃO – SUED DIRETORIA DE POLÍTICAS E PROGRAMAS EDUCACIONAIS - DPPE PROGRAMA DE DESENVOLVIMENTO EDUCACIONAL – PDE PARANÁ GOVERNO DO ESTADO DADOS DE IDENTIFICAÇÃO: Professor PDE: Aparecida Fatima Forte de Oliveira Área PDE: Conhecimento na Disciplina de Arte NRE: Paranavaí Professor Orientador IES: Marcos César Danhoni Neves IES vinculada: Universidade Estadual de Maringá – UEM Escola de Implementação: CEEBJA Newton Guimarães – EJA Público objeto da intervenção: Alunos FORMATO: Unidade Didática TEMA: O Conhecimento Estético e Artístico da Arte Fractal na sala de Aula. JUSTIFICATIVA: São impressionantes as transformações cada vez mais velozes que ocorrem nos movimentos e períodos artísticos, principalmente a partir do século XX. Com a revolução provocada pela informática iniciaram-se notáveis mudanças que refletiram indiscutivelmente na arte. Os processos de criação na sala de aula são articulações entre saberes historicamente construídos dentro de determinada cultura. As transformações e experiências com novas técnicas e materiais na criação artística na pintura, escultura, arquitetura, dança, teatro, música e também na produção da Arte Fractal, rompem com tradições seculares e expressam ideias inteiramente novas a cada momento. A construção do conhecimento da arte se efetiva na relação entre o estético e o artístico que se materializam nas representações artísticas. Estes conhecimentos são interdependentes entre si. O ensino da arte deve ser teoria, metodológica e instrumentalmente fundamentado, pois amplia os conhecimentos e experiências do aluno, aproximando-o das diversas representações artísticas do universo cultural historicamente constituído pela humanidade. (PARANÁ, 2008) Na produção dos fractais, objeto de estudo do presente trabalho, além da necessidade de fórmulas e cálculos matemáticos necessita-se também do computador para gerar as belas imagens dos fractais. O resultado é obtido na tela do computador, sendo mais um rico e interessante suporte usado nos meios expressivos da arte, que acompanha uma linguagem universal. A arte acolhe essas conquistas positivamente procurando encontrar significado para tudo o que está a sua volta. Atualmente a arte é considerada uma área do saber, uma disciplina com origem, história, assim como em qualquer outro ramo do conhecimento. Com o aparecimento dos meios tecnológicos ganhando a cada dia mais espaços, é natural que os artistas contemporâneos buscam novas soluções e formas de expressão nesses novos sistemas, pesquisando várias possibilidades de união entre arte e computadores. Mas antes de todo este processo no ensino da Arte Fractal, deverá buscar o conhecimento estético em outros campos do conhecimento como a matemática, ciência e tecnologia. Mas para a forma de organização e estruturação do trabalho artístico é necessário buscar referências: na produção artística de artistas como Escher, Vasarely, Pollock; na própria natureza; nas raízes históricas e sociais que subsidiam a produção, o saber ci’entifico e o nível técnico. Todos alcançados na experiência com materiais, na AF seria pelo menos o domínio básico dos recursos tecnológicos, no caso o computador. Além desses conhecimentos os artistas, ao produzirem suas obras artísticas, deverão considerar a sensibilidade no processo criativo que será de fundamental importância para a qualidade artística e estética da Arte Fractal. Assim, será produzida uma grande interferência tanto pessoal como subjetiva em suas produções, atribuindo a elas cores a partir das tonalidades presente nas gradações de cores modificando formas de suas geometrias existentes nos programas, dando um novo significado, através das emoções, sentimentos e sensibilidade, resultando em efeitos harmoniosamente belos. Ao apreciar uma imagem, o aluno interage com o contexto, que envolve a localização no tempo histórico e no espaço, o tema, o motivo, os significados, a crítica e a estética que contribuem e auxiliam na compreensão das produções artísticas. No momento da apreciação de uma obra de arte esses aspectos interagem fluidicamente, entendendo que ela foi percebida, sentida e o significado de sua forma e da produção artística é automaticamente relacionada à sua vivência e percepções. Segundo Ana Mae Barbosa, é imprescindível para que os conteúdos de arte na escola tenham sucesso no resultado, é importante esclarecer sobre a importância da história da arte, da estética e do fazer artístico como interrelação da forma e do conteúdo. (BARBOSA, 2002) Frente à disponibilidade de novas tecnologias, o professor necessita incorporar na sua prática pedagógica o uso de novas ferramentas. E o recurso de que temos acesso hoje são fontes excelentes como apoio pedagógico para o processo ensino/aprendizagem. Não que ele, o recurso tecnológico, por si só garanta ferramenta de apoio. Praticamente todas as atividades propostas, acompanham indicações de sites interessantes tanto para pesquisas teóricas, quanto para audições e vídeos. OBJETIVOS GERAIS: - Oportunizar o conhecimento estético e artístico da Arte Fractal, possibilitando com que esta arte faça parte do cotidiano do educador e, principalmente, do educando, deixando de ser uma mera atividade do fazer por fazer, tingida de incompreensível e distante da realidade; - Promover reflexões sobre o ensino da arte, que deverá estar em consonância com a contemporaneidade, utilizando-se de recursos tecnológicos e outros para o estudo e produção da Arte Fractal; - Promover a transdisciplinaridade: arte e geometria num ensino caracterizado hoje essencialmente pela divisão cartesiana do conhecimento. PROCEDIMENTOS: Conteúdo: Teorizar, conhecer e discutir a Arte Fractal, a evolução tecnológica como recursos na produção artística, relacionando características de imagens repetitivas, auto semelhanças e com dinamismos nas obras de artistas como Pollock, Escher e Vasarely, fazendo uma relação com os respectivos movimentos e períodos de cada artista, possibilitando ao aluno um diálogo com o mundo em determinada época. Objetivos específicos: - Realizar estudos teóricos sobre os fractais, com um olhar especial sobre os conhecimentos estético e artístico de cada produção; - Sentir e perceber as formas, cores, texturas e outros elementos da Arte Fractal; - Utilizar da tecnologia e outros recursos, para gerar a produção da Arte Fractal; - Construir vários objetos como p.ex. o caleidoscópio para apreciar diferentes e múltiplos efeitos; - Destacar obras de artistas de diferentes épocas, que desenvolveram trabalhos com estilos e características da Arte Fractal; - Realizar reflexões as novas práticas em mídias digitais através dos novos conceitos estéticos; - Explorar possibilidades de criação por meio do uso destas novas ferramentas digitais. Encaminhamento metodológico: Na DCE de Arte no encaminhamento metodológico são essenciais três momentos da organização pedagógica: - Teorizar, fundamenta e possibilita ao aluno que perceba e aproprie a obra artística, bem como, desenvolva um trabalho artístico para formar conceitos artísticos. - Sentir e perceber, são as formas de apreciação, fruição e leitura e acesso à obra de arte. - Trabalho Artístico, é a prática criativa o exercício com os elementos que compõe uma obra de arte. (PARANÁ, 2008) Ao trabalhar com o aluno o conceito de Arte Fractal dentro da área das artes visuais, como uma forma artística que aprofunda e transforma sua visão de mundo, podemos fazer uma vivência do conteúdo através dos seguintes questionamentos: a) Você sabe o que é Fractal? b) Onde podemos encontrar os fractais? c) Você já tinha visto algumas imagens da Arte Fractal?
Recommended publications
  • Object Oriented Programming
    No. 52 March-A pril'1990 $3.95 T H E M TEe H CAL J 0 URN A L COPIA Object Oriented Programming First it was BASIC, then it was structures, now it's objects. C++ afi<;ionados feel, of course, that objects are so powerful, so encompassing that anything could be so defined. I hope they're not placing bets, because if they are, money's no object. C++ 2.0 page 8 An objective view of the newest C++. Training A Neural Network Now that you have a neural network what do you do with it? Part two of a fascinating series. Debugging C page 21 Pointers Using MEM Keep C fro111 (C)rashing your system. An AT Keyboard Interface Use an AT keyboard with your latest project. And More ... Understanding Logic Families EPROM Programming Speeding Up Your AT Keyboard ((CHAOS MADE TO ORDER~ Explore the Magnificent and Infinite World of Fractals with FRAC LS™ AN ELECTRONIC KALEIDOSCOPE OF NATURES GEOMETRYTM With FracTools, you can modify and play with any of the included images, or easily create new ones by marking a region in an existing image or entering the coordinates directly. Filter out areas of the display, change colors in any area, and animate the fractal to create gorgeous and mesmerizing images. Special effects include Strobe, Kaleidoscope, Stained Glass, Horizontal, Vertical and Diagonal Panning, and Mouse Movies. The most spectacular application is the creation of self-running Slide Shows. Include any PCX file from any of the popular "paint" programs. FracTools also includes a Slide Show Programming Language, to bring a higher degree of control to your shows.
    [Show full text]
  • Fractal 3D Magic Free
    FREE FRACTAL 3D MAGIC PDF Clifford A. Pickover | 160 pages | 07 Sep 2014 | Sterling Publishing Co Inc | 9781454912637 | English | New York, United States Fractal 3D Magic | Banyen Books & Sound Option 1 Usually ships in business days. Option 2 - Most Popular! This groundbreaking 3D showcase offers a rare glimpse into the dazzling world of computer-generated fractal art. Prolific polymath Clifford Pickover introduces the collection, which provides background on everything from Fractal 3D Magic classic Mandelbrot set, to the infinitely porous Menger Sponge, to ethereal fractal flames. The following eye-popping gallery displays mathematical formulas transformed into stunning computer-generated 3D anaglyphs. More than intricate designs, visible in three dimensions thanks to Fractal 3D Magic enclosed 3D glasses, will engross math and optical illusions enthusiasts alike. If an item you have purchased from us is not working as expected, please visit one of our in-store Knowledge Experts for free help, where they can solve your problem or even exchange the item for a product that better suits your needs. If you need to return an item, simply bring it back to any Micro Center store for Fractal 3D Magic full refund or exchange. All other products may be returned within 30 days of purchase. Using the software may require the use of a computer or other device that must meet minimum system requirements. It is recommended that you familiarize Fractal 3D Magic with the system requirements before making your purchase. Software system requirements are typically found on the Product information specification page. Aerial Drones Micro Center is happy to honor its customary day return policy for Aerial Drone returns due to product defect or customer dissatisfaction.
    [Show full text]
  • Rendering Hypercomplex Fractals Anthony Atella [email protected]
    Rhode Island College Digital Commons @ RIC Honors Projects Overview Honors Projects 2018 Rendering Hypercomplex Fractals Anthony Atella [email protected] Follow this and additional works at: https://digitalcommons.ric.edu/honors_projects Part of the Computer Sciences Commons, and the Other Mathematics Commons Recommended Citation Atella, Anthony, "Rendering Hypercomplex Fractals" (2018). Honors Projects Overview. 136. https://digitalcommons.ric.edu/honors_projects/136 This Honors is brought to you for free and open access by the Honors Projects at Digital Commons @ RIC. It has been accepted for inclusion in Honors Projects Overview by an authorized administrator of Digital Commons @ RIC. For more information, please contact [email protected]. Rendering Hypercomplex Fractals by Anthony Atella An Honors Project Submitted in Partial Fulfillment of the Requirements for Honors in The Department of Mathematics and Computer Science The School of Arts and Sciences Rhode Island College 2018 Abstract Fractal mathematics and geometry are useful for applications in science, engineering, and art, but acquiring the tools to explore and graph fractals can be frustrating. Tools available online have limited fractals, rendering methods, and shaders. They often fail to abstract these concepts in a reusable way. This means that multiple programs and interfaces must be learned and used to fully explore the topic. Chaos is an abstract fractal geometry rendering program created to solve this problem. This application builds off previous work done by myself and others [1] to create an extensible, abstract solution to rendering fractals. This paper covers what fractals are, how they are rendered and colored, implementation, issues that were encountered, and finally planned future improvements.
    [Show full text]
  • THIAGO JOSÉ CÓSER Possibilidades Da Produção Artística Via
    THIAGO JOSÉ CÓSER Possibilidades da produção artística via prototipagem rápida: processos CAD/CAM na elaboração e confecção de obras de arte e o vislumbre de um percurso poético individualizado neste ensaio. Dissertação apresentada ao Instituto de Artes da Universidade Estadual de Campinas, para a obtenção do título de mestre em Artes. Área de concentração: Artes Visuais Orientador: Prof. Dr. Marco Antonio Alves do Valle Campinas 2010 3 FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DO INSTITUTO DE ARTES DA UNICAMP Cóser, Thiago José. C89p Possibilidades da produção artística via Prototipagem Rápida: Processos CAD/CAM na elaboração e confecção de obras de arte e o vislumbre de um percurso poético individualizado neste ensaio. : Thiago José Cóser. – Campinas, SP: [s.n.], 2010. Orientador: Prof. Dr. Marco Antonio Alves do Valle. Dissertação(mestrado) - Universidade Estadual de Campinas, Instituto de Artes. 1. Prototipagem rápida. 2. Arte. 3. Sistema CAD/CAM. 4. Modelagem 3D. 5. escultura. I. Valle, Marco Antonio Alves do. II. Universidade Estadual de Campinas. Instituto de Artes. III. Título. (em/ia) Título em inglês: “Possibilities of Art via Rapid Prototyping: using CAD / CAM systems to create art works and a glimpse of a poetic route individualized essay.” Palavras-chave em inglês (Keywords): Rapid prototyping ; Art ; CAD/CAM systems. ; 3D modelling ; Sculpture. Titulação: Mestre em Artes. Banca examinadora: Prof. Dr. Marco Antonio Alves do Valle. Profª. Drª. Sylvia Helena Furegatti. Prof. Dr. Francisco Borges Filho. Prof. Dr. Carlos Roberto Fernandes. (suplente) Prof. Dr. José Mario De Martino. (suplente) Data da Defesa: 26-02-2010 Programa de Pós-Graduação: Artes. 4 5 Agradecimentos Ao meu orientador, profº Dr.
    [Show full text]
  • Cao Flyer.Pdf
    Chaos and Order - A Mathematic Symphony Journey into the Language of the Universe! “The Universe is made of math.” — Max Tegmark, MIT Physicist Does mathematics have a color? Does it have a sound? Media artist Rocco Helmchen and composer Johannes Kraas try to answer these questions in their latest educational/entertainment full- dome show Chaos and Order - A Mathematic Symphony. The show captivates audiences by taking them on a journey into a fascinating world of sensuous, ever-evolving images and symphonic electronic music. Structured into four movements — from geometric forms, algo- rithms, simulations to chaos theory — the show explores breath- taking animated visuals of unprecedented beauty. Experience the fundamental connection between reality and mathematics, as science and art are fused together in this immer- sive celebration of the one language of our universe. Visualizations in Chaos and Order - A Mathematic Symphony Running time: 29, 40, or 51 minutes Year of production: 2012 Suitable for: General public 1st Movement - 2nd Movement - 3rd Movement - 4th Movement - Information about: Mathematical visualizations, fractals, music Form Simulation Algorithm Fractal Mesh cube N-body simulation Belousov- Mandelbrot set Public performance of this show requires the signing of a License Agreement. Static cube-array Simulated galaxy- Zhabotinsky cellular Secant Fractal Symmetry: superstructures automata Escape Fractal Kaleidoscope Rigid-body dynamics Evolutionary genetic Iterated function Chaos and Order - A Mathematic Symphony Voronoi
    [Show full text]
  • How Math Makes Movies Like Doctor Strange So Otherworldly | Science News for Students
    3/13/2020 How math makes movies like Doctor Strange so otherworldly | Science News for Students MATH How math makes movies like Doctor Strange so otherworldly Patterns called fractals are inspiring filmmakers with ideas for mind-bending worlds Kaecilius, on the right, is a villain and sorcerer in Doctor Strange. He can twist and manipulate the fabric of reality. The film’s visual-effects artists used mathematical patterns, called fractals, illustrate Kaecilius’s abilities on the big screen. MARVEL STUDIOS By Stephen Ornes January 9, 2020 at 6:45 am For wild chase scenes, it’s hard to beat Doctor Strange. In this 2016 film, the fictional doctor-turned-sorcerer has to stop villains who want to destroy reality. To further complicate matters, the evildoers have unusual powers of their own. “The bad guys in the film have the power to reshape the world around them,” explains Alexis Wajsbrot. He’s a film director who lives in Paris, France. But for Doctor Strange, Wajsbrot instead served as the film’s visual-effects artist. Those bad guys make ordinary objects move and change forms. Bringing this to the big screen makes for chases that are spectacular to watch. City blocks and streets appear and disappear around the fighting foes. Adversaries clash in what’s called the “mirror dimension” — a place where the laws of nature don’t apply. Forget gravity: Skyscrapers twist and then split. Waves ripple across walls, knocking people sideways and up. At times, multiple copies of the entire city seem to appear at once, but at different sizes.
    [Show full text]
  • On Bounding Boxes of Iterated Function System Attractors Hsueh-Ting Chu, Chaur-Chin Chen*
    Computers & Graphics 27 (2003) 407–414 Technical section On bounding boxes of iterated function system attractors Hsueh-Ting Chu, Chaur-Chin Chen* Department of Computer Science, National Tsing Hua University, Hsinchu 300, Taiwan, ROC Abstract Before rendering 2D or 3D fractals with iterated function systems, it is necessary to calculate the bounding extent of fractals. We develop a new algorithm to compute the bounding boxwhich closely contains the entire attractor of an iterated function system. r 2003 Elsevier Science Ltd. All rights reserved. Keywords: Fractals; Iterated function system; IFS; Bounding box 1. Introduction 1.1. Iterated function systems Barnsley [1] uses iterated function systems (IFS) to Definition 1. A transform f : X-X on a metric space provide a framework for the generation of fractals. ðX; dÞ is called a contractive mapping if there is a Fractals are seen as the attractors of iterated function constant 0pso1 such that systems. Based on the framework, there are many A algorithms to generate fractal pictures [1–4]. However, dðf ðxÞ; f ðyÞÞps Á dðx; yÞ8x; y X; ð1Þ in order to generate fractals, all of these algorithms have where s is called a contractivity factor for f : to estimate the bounding boxes of fractals in advance. For instance, in the program Fractint (http://spanky. Definition 2. In a complete metric space ðX; dÞ; an triumf.ca/www/fractint/fractint.html), we have to guess iterated function system (IFS) [1] consists of a finite set the parameters of ‘‘image corners’’ before the beginning of contractive mappings w ; for i ¼ 1; 2; y; n; which is of drawing, which may not be practical.
    [Show full text]
  • Current Practices in Quantitative Literacy © 2006 by the Mathematical Association of America (Incorporated)
    Current Practices in Quantitative Literacy © 2006 by The Mathematical Association of America (Incorporated) Library of Congress Catalog Card Number 2005937262 Print edition ISBN: 978-0-88385-180-7 Electronic edition ISBN: 978-0-88385-978-0 Printed in the United States of America Current Printing (last digit): 10 9 8 7 6 5 4 3 2 1 Current Practices in Quantitative Literacy edited by Rick Gillman Valparaiso University Published and Distributed by The Mathematical Association of America The MAA Notes Series, started in 1982, addresses a broad range of topics and themes of interest to all who are in- volved with undergraduate mathematics. The volumes in this series are readable, informative, and useful, and help the mathematical community keep up with developments of importance to mathematics. Council on Publications Roger Nelsen, Chair Notes Editorial Board Sr. Barbara E. Reynolds, Editor Stephen B Maurer, Editor-Elect Paul E. Fishback, Associate Editor Jack Bookman Annalisa Crannell Rosalie Dance William E. Fenton Michael K. May Mark Parker Susan F. Pustejovsky Sharon C. Ross David J. Sprows Andrius Tamulis MAA Notes 14. Mathematical Writing, by Donald E. Knuth, Tracy Larrabee, and Paul M. Roberts. 16. Using Writing to Teach Mathematics, Andrew Sterrett, Editor. 17. Priming the Calculus Pump: Innovations and Resources, Committee on Calculus Reform and the First Two Years, a subcomit- tee of the Committee on the Undergraduate Program in Mathematics, Thomas W. Tucker, Editor. 18. Models for Undergraduate Research in Mathematics, Lester Senechal, Editor. 19. Visualization in Teaching and Learning Mathematics, Committee on Computers in Mathematics Education, Steve Cunningham and Walter S.
    [Show full text]
  • Math Morphing Proximate and Evolutionary Mechanisms
    Curriculum Units by Fellows of the Yale-New Haven Teachers Institute 2009 Volume V: Evolutionary Medicine Math Morphing Proximate and Evolutionary Mechanisms Curriculum Unit 09.05.09 by Kenneth William Spinka Introduction Background Essential Questions Lesson Plans Website Student Resources Glossary Of Terms Bibliography Appendix Introduction An important theoretical development was Nikolaas Tinbergen's distinction made originally in ethology between evolutionary and proximate mechanisms; Randolph M. Nesse and George C. Williams summarize its relevance to medicine: All biological traits need two kinds of explanation: proximate and evolutionary. The proximate explanation for a disease describes what is wrong in the bodily mechanism of individuals affected Curriculum Unit 09.05.09 1 of 27 by it. An evolutionary explanation is completely different. Instead of explaining why people are different, it explains why we are all the same in ways that leave us vulnerable to disease. Why do we all have wisdom teeth, an appendix, and cells that if triggered can rampantly multiply out of control? [1] A fractal is generally "a rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole," a property called self-similarity. The term was coined by Beno?t Mandelbrot in 1975 and was derived from the Latin fractus meaning "broken" or "fractured." A mathematical fractal is based on an equation that undergoes iteration, a form of feedback based on recursion. http://www.kwsi.com/ynhti2009/image01.html A fractal often has the following features: 1. It has a fine structure at arbitrarily small scales.
    [Show full text]
  • Fast Visualisation and Interactive Design of Deterministic Fractals
    Computational Aesthetics in Graphics, Visualization, and Imaging (2008) P. Brown, D. W. Cunningham, V. Interrante, and J. McCormack (Editors) Fast Visualisation and Interactive Design of Deterministic Fractals Sven Banisch1 & Mateu Sbert2 1Faculty of Media, Bauhaus–University Weimar, D-99421 Weimar (GERMANY) 2Department of Informàtica i Matemàtica Aplicada, University of Girona, 17071 Girona (SPAIN) Abstract This paper describes an interactive software tool for the visualisation and the design of artistic fractal images. The software (called AttractOrAnalyst) implements a fast algorithm for the visualisation of basins of attraction of iterated function systems, many of which show fractal properties. It also presents an intuitive technique for fractal shape exploration. Interactive visualisation of fractals allows that parameter changes can be applied at run time. This enables real-time fractal animation. Moreover, an extended analysis of the discrete dynamical systems used to generate the fractal is possible. For a fast exploration of different fractal shapes, a procedure for the automatic generation of bifurcation sets, the generalizations of the Mandelbrot set, is implemented. This technique helps greatly in the design of fractal images. A number of application examples proves the usefulness of the approach, and the paper shows that, put into an interactive context, new applications of these fascinating objects become possible. The images presented show that the developed tool can be very useful for artistic work. 1. Introduction an interactive application was not really feasible till the ex- ploitation of the capabilities of new, fast graphics hardware. The developments in the research of dynamical systems and its attractors, chaos and fractals has already led some peo- The development of an interactive fractal visualisation ple to declare that god was a mathematician, because mathe- method, is the main objective of this paper.
    [Show full text]
  • Furniture Design Inspired from Fractals
    169 Rania Mosaad Saad Furniture design inspired from fractals. Dr. Rania Mosaad Saad Assistant Professor, Interior Design and Furniture Department, Faculty of Applied Arts, Helwan University, Cairo, Egypt Abstract: Keywords: Fractals are a new branch of mathematics and art. But what are they really?, How Fractals can they affect on Furniture design?, How to benefit from the formation values and Mandelbrot Set properties of fractals in Furniture Design?, these were the research problem . Julia Sets This research consists of two axis .The first axe describes the most famous fractals IFS fractals were created, studies the Fractals structure, explains the most important fractal L-system fractals properties and their reflections on furniture design. The second axe applying Fractal flame functional and aesthetic values of deferent Fractals formations in furniture design Newton fractals inspired from them to achieve the research objectives. Furniture Design The research follows the descriptive methodology to describe the fractals kinds and properties, and applied methodology in furniture design inspired from fractals. Paper received 12th July 2016, Accepted 22th September 2016 , Published 15st of October 2016 nearly identical starting positions, and have real Introduction: world applications in nature and human creations. Nature is the artist's inspiring since the beginning Some architectures and interior designers turn to of creation. Despite the different artistic trends draw inspiration from the decorative formations, across different eras- ancient and modern- and the geometric and dynamic properties of fractals in artists perception of reality, but that all of these their designs which enriched the field of trends were united in the basic inspiration (the architecture and interior design, and benefited nature).
    [Show full text]
  • Open Source Resources for Teaching and Research in Mathematics
    Open Source Resources for Teaching and Research in Mathematics Dr. Russell Herman Dr. Gabriel Lugo University of North Carolina Wilmington Open Source Resources, ICTCM 2008, San Antonio 1 Outline History Definition General Applications Open Source Mathematics Applications Environments Comments Open Source Resources, ICTCM 2008, San Antonio 2 In the Beginning ... then there were Unix, GNU, and Linux 1969 UNIX was born, Portable OS (PDP-7 to PDP-11) – in new “C” Ken Thompson, Dennis Ritchie, and J.F. Ossanna Mailed OS => Unix hackers Berkeley Unix - BSD (Berkeley Systems Distribution) 1970-80's MIT Hackers Public Domain projects => commercial RMS – Richard M. Stallman EMACS, GNU - GNU's Not Unix, GPL Open Source Resources, ICTCM 2008, San Antonio 3 History Free Software Movement – 1983 RMS - GNU Project – 1983 GNU GPL – GNU General Public License Free Software Foundation (FSF) – 1985 Free = “free speech not free beer” Open Source Software (OSS) – 1998 Netscape released Mozilla source code Open Source Initiative (OSI) – 1998 Eric S. Raymond and Bruce Perens The Cathedral and the Bazaar 1997 - Raymond Open Source Resources, ICTCM 2008, San Antonio 4 The Cathedral and the Bazaar The Cathedral model, source code is available with each software release, code developed between releases is restricted to an exclusive group of software developers. GNU Emacs and GCC are examples. The Bazaar model, code is developed over the Internet in public view Raymond credits Linus Torvalds, Linux leader, as the inventor of this process. http://en.wikipedia.org/wiki/The_Cathedral_and_the_Bazaar Open Source Resources, ICTCM 2008, San Antonio 5 Given Enough Eyeballs ... central thesis is that "given enough eyeballs, all bugs are shallow" the more widely available the source code is for public testing, scrutiny, and experimentation, the more rapidly all forms of bugs will be discovered.
    [Show full text]