CEEP-BIT WORKING PAPER SERIES Beijing Storm of July 21, 2012
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FINANCIAL STREET PROPERTY CO., LIMITED 金融街物業股份有限公司 (A Joint Stock Company Incorporated in the People’S Republic of China with Limited Liability) (Stock Code: 1502)
Hong Kong Exchanges and Clearing Limited and The Stock Exchange of Hong Kong Limited take no responsibility for the contents of this announcement, make no representation as to its accuracy or completeness and expressly disclaim any liability whatsoever for any loss howsoever arising from or in reliance upon the whole or any part of the contents of this announcement. FINANCIAL STREET PROPERTY CO., LIMITED 金融街物業股份有限公司 (A joint stock company incorporated in the People’s Republic of China with limited liability) (Stock Code: 1502) VOLUNTARY ANNOUNCEMENT ESTABLISHMENT OF A JOINT VENTURE This announcement is made by Financial Street Property Co., Limited (the “Company”) on a voluntary basis. The board (the “Board”) of directors (the “Directors”) of the Company is pleased to announce that on 8 February 2021, the Company and Beijing Fangshan New City Real Estate Co., Ltd. (北京市房山新城置業有限責任公司) established a joint venture, named “Beijing Financial Street New City Property Management Co., Ltd. ( 北京金融街新城物業管理有限責任公司)”, whereby both parties of the joint venture will cooperate in the field of property management and carry out further in-depth expansion in the local market. The details are set out as follows: Beijing Financial Street New City Property Management Co., Ltd. Shareholders Financial Street Property Co., Beijing Fangshan New City of the joint Limited Real Estate Co., Ltd. venture Proportion of 51% 49% equity interest Date of 8 February 2021 establishment Registered capital RMB1 million – 1 – Business The joint venture will be engaged in a variety of property operation management services in Southwest Beijing surrounding Fangshan District to provide all-encompassing professional, standardized and high-quality property management and scenario services to satisfy customers’ business and lifestyle needs, thereby creating a benchmark for brands in the region, which will enable the joint venture to achieve its long-term, stable and sustainable development and create sound social and economic benefits. -
Modeling the Hourly Distribution of Population at a High Spatiotemporal Resolution Using Subway Smart Card Data: a Case Study in the Central Area of Beijing
International Journal of Geo-Information Article Modeling the Hourly Distribution of Population at a High Spatiotemporal Resolution Using Subway Smart Card Data: A Case Study in the Central Area of Beijing Yunjia Ma 1,2,3, Wei Xu 1,2,3,*, Xiujuan Zhao 1,2,3 and Ying Li 1,2,3 1 Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education, Beijing Normal University, Beijing 100875, China; [email protected] (Y.M.); [email protected] (X.Z.); [email protected] (Y.L.) 2 Academy of Disaster Reduction and Emergency Management, Ministry of Civil Affairs & Ministry of Education, Beijing Normal University, Beijing 100875, China 3 Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China * Correspondence: [email protected]; Tel.: +86-010-5880-6695 Academic Editors: Norbert Bartelme and Wolfgang Kainz Received: 22 February 2017; Accepted: 24 April 2017; Published: 26 April 2017 Abstract: The accurate estimation of the dynamic changes in population is a key component in effective urban planning and emergency management. We developed a model to estimate hourly dynamic changes in population at the community level based on subway smart card data. The hourly population of each community in six central districts of Beijing was calculated, followed by a study of the spatiotemporal patterns and diurnal dynamic changes of population and an exploration of the main sources and sinks of the observed human mobility. The maximum daytime population of the six central districts of Beijing was approximately 0.7 million larger than the night-time population. The administrative and commercial districts of Dongcheng and Xicheng had high values of population ratio of day to night of 1.35 and 1.22, respectively, whereas Shijingshan, a residential district, had the lowest value of 0.84. -
The Analysis of Transforming Heavy Industrial District to Tourism Destination
Baohui Zhai et al./Transform heavy industrial to tourism, 41st ISoCaRP Congress, 2005 The Analysis of Transforming Heavy Industrial District to Tourism Destination: A Case Study Baohui Zhai1, Dongmei Wang2, and Rusong Wang1 1 Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 P R China Tel/fax: +86-10-62338487 Email: [email protected] 2 School of Soil and Water Conservation, Beijing Forestry University 35 Qinghua Dong Rd., Beijing, 100083 P R China Tel/fax: +86-10-62337777, Email: [email protected] 1. Introduction In the framework of sustainable development, how does a formerly manufacturing dominated city restructure its industry and towards what direction? This question is often asked in China. The practice is extremely different across the country due to geographical and unbalanced development. This study focuses on the district of Shijingshan, a big contributor to both air pollution and industrial GDP of Beijing. When talking about Shijingshan, people often think of the large steel plant and the Babaoshan cemetery. The former is a complex of steel plant, power plant, machinery, and construction materials and stretches up to 5 km long and two 2 km wide. The latter is a selected cemetery for the central government to condole veterans of former revolutionary battles. The main so-called tourists to the district are peoples who offer sacrifices at and come to the ancestral tomb on the day of Pure Brightness, the 5th of 24 solar terms per year, the traditionally observed Chinese festival for worshipping the ancestral grave. The Shijngshan Recreation Center’s completion attracted some kids and their accompanying parents to spend some time there. -
Spatial Recognition of the Urban-Rural Fringe of Beijing Using DMSP/OLS Nighttime Light Data
Article Spatial Recognition of the Urban-Rural Fringe of Beijing Using DMSP/OLS Nighttime Light Data Yuli Yang 1,2,3, Mingguo Ma 4,*, Chao Tan 4 and Wangping Li 2 1 Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou 730000, China; [email protected] 2 School of civil engineering, Lanzhou University of Technology, Lanzhou 730050, China; [email protected] 3 University of Chinese Academy of Sciences, Beijing 100049, China 4 Chongqing Engineering Research Center for Remote Sensing Big Data Application, Southwest University, Chongqing 400715, China * Correspondence: [email protected]; Tel.: +86-23-6825-3912 Received: 20 August 2017; Accepted: 31 October 2017; Published: 7 November 2017 Abstract: Spatial identification of the urban-rural fringes is very significant for deeply understanding the development processes and regulations of urban space and guiding urban spatial development in the future. Traditionally, urban-rural fringe areas are identified using statistical analysis methods that consider indexes from single or multiple factors, such as population densities, the ratio of building land, the proportion of the non-agricultural population, and economic levels. However, these methods have limitations, for example, the statistical data are not continuous, the statistical standards are not uniform, the data is seldom available in real time, and it is difficult to avoid issues on the statistical effects from edges of administrative regions or express the internal differences of these areas. This paper proposes a convenient approach to identify the urban-rural fringe using nighttime light data of DMSP/OLS images. First, a light characteristics–combined value model was built in ArcGIS 10.3, and the combined characteristics of light intensity and the degree of light intensity fluctuation are analyzed in the urban, urban-rural fringe, and rural areas. -
Job-Worker Spatial Dynamics in Beijing: Insights from Smart Card Data
Published as: Huang, Jie, Levinson, D., Wang, Jiaoe, Jin, Haitao (2019) Job-worker spatial dynamics in Beijing: Insights from Smart Card Data. Cities 86, 89-93 https://doi.org/10.1016/j.cities.2018.11.021 1 Job-worker spatial dynamics in Beijing: insights from Smart 2 Card Data 3 Abstract: 4 As a megacity, Beijing has experienced traffic congestion, unaffordable housing 5 issues and jobs-housing imbalance. Recent decades have seen policies and projects 6 aiming at decentralizing urban structure and job-worker patterns, such as subway 7 network expansion, the suburbanization of housing and firms. But it is unclear 8 whether these changes produced a more balanced spatial configuration of jobs and 9 workers. To answer this question, this paper evaluated the ratio of jobs to workers 10 from Smart Card Data at the transit station level and offered a longitudinal study for 11 regular transit commuters. The method identifies the most preferred station around 12 each commuter’s workpalce and home location from individual smart datasets 13 according to their travel regularity, then the amounts of jobs and workers around each 14 station are estimated. A year-to-year evolution of job to worker ratios at the station 15 level is conducted. We classify general cases of steepening and flattening job-worker 16 dynamics, and they can be used in the study of other cities. The paper finds that (1) 17 only temporary balance appears around a few stations; (2) job-worker ratios tend to be 18 steepening rather than flattening, influencing commute patterns; (3) the polycentric 19 configuration of Beijing can be seen from the spatial pattern of job centers identified. -
The Airbus A380 Aircraft
Global Aviation M A G A Z I N E Issue 83 / July 2017 Page 1 - Introduction Welcome on board this Global Aircraft. In this issue of the Global Aviation Magazine, we will take a look at two more Global Lines cities New Orleans, Louisiana, and Beijing, China. We also take another look at a featured aircraft in the Global Fleet. This month’s featured aircraft is the Airbus A380 aircraft. We wish you a pleasant flight. 2. New Orleans, Louisiana – The Big Easy 5. Beijing, China – The Celestial City 8. Pilot Information 9. Introducing the Airbus A380 – Worlds Largest 11. In-Flight Movies/Featured Music Page 2 – New Orleans, Louisiana – The Big Easy New Orleans is a major United States port and the largest city and metropolitan area in the state of Louisiana. The population of the city proper was 343,829 as of the 2010 U.S. Census. The New Orleans metropolitan area (New Orleans–Metairie–Kenner Metropolitan Statistical Area) had a population of 1,167,764 in 2010 and was the 46th largest in the United States. The New Orleans–Metairie–Bogalusa Combined Statistical Area, a larger trading area, had a 2010 population of 1,214,932. The city is named after Philippe d'Orléans, Duke of Orléans, Regent of France, and is well known for its distinct French Creole architecture, as well as its cross-cultural and multilingual heritage. New Orleans is also famous for its cuisine, music (particularly as the birthplace of jazz), and its annual celebrations and festivals, most notably Mardi Gras. The city is often referred to as the "most unique" in America. -
Analysis and Evaluation of the Beijing Metro Project Financing Reforms
Advances in Social Science, Education and Humanities Research, volume 291 International Conference on Management, Economics, Education, Arts and Humanities (MEEAH 2018) Analysis and Evaluation of the Beijing Metro Project Financing Reforms Haibin Zhao1,a, Bingjie Ren2,b, Ting Wang3,c 1Ministry of Transport Research Institute, Chaoyang, Beijing, China,100029; 2Beijing Urban Construction Design & Development Group Co., Limited, Xicheng, Beijing, China,100037; 3School of Civil Engineering, Beijing Jiaotong University, Haidian, Beijing, China, 100044. [email protected], [email protected], [email protected] Keywords: metro; financing; marketisation; reform Abstract. The construction and operation of a metro system are costly, and the sustainable development of a metro system is difficult using government funding alone, particularly for developing countries. The main source for metro system financing in China is, currently, government budget and bank debt. Many cities have begun to seek new ways to attract funds from finance markets, which is increasing the need for the evaluation of metro financing. This study uses Beijing as a case study that utilises various financing modes with impressive results. As participants of the financing reform, the authors collected all the relative government documents and interviewed stakeholders to accomplish this work. This article reviews the development of financing modes for the Beijing Metro system during the last four decades and analyses the role of the government in the reformed financing system within the Chinese social political environment. The study addresses the advantages and challenges of the reforms in this context. To further analyses the technical processes of typical financing modes, the public-private partnership mode of Line 4, the BT mode of Olympic Branch Line, the insurance claim mode of Line 10 and the failure of the market oriented financing for Capital Airport Line are analysed and evaluated in detail. -
Design and Implementation of a Dynamic Simulation System for Air Pollutant Diffusion
S Journal of O p s e s n Acce Geology and Geoscience RESEARCH ARTICLE Design and Implementation of a Dynamic Simulation System for Air Pollutant Diffusion - A Case Study of the Fangshan District, Beijing, China Zhenxv Lan1, Fengyuan Zhang1, Jia Wang1, Min Chen4* 1School of Geography, Nanjing Normal University, China 2College of Forestry, Beijing Forestry University, China Abstract With the rapid development of China’s industrialization and urbanization, urban air pollution has become an urgent problem to be solved. Industrial air pollutants in local areas of cities and towns directly harm the health of residents. Under the UNEP initiative, research on urban air pollution has become a main aspect of air pollution research. This paper focuses on the study of atmospheric pollution in small urban areas using GIS spatial analysis and simulation as the methods and the improved Gaussian plume diffusion model as the mathematical principle, based on ArcGIS Engine components and C#.Net. A simulation system platform for the diffusion process of atmospheric pollutants is designed and implemented, which has various functions including dynamic simulation display expression, GIS spatial analysis, spatial data processing, attribute information extraction and simulation result thematic mapping and export. Based on the Fangshan District in Beijing as an example, the dynamic simulation and spatial analysis of pollutant diffusion were conducted using the system platform based on industrial air pollution resource data in the region. The results show that the system provides significant decision-making guidance for effective urban air pollution warnings and the improvement of urban air quality. Keywords: Air Pollution, Simulation, Gaussian Plume Models, Arc Engine Introduction Fuzhou to carry out a GIS simulation analysis of urban air pollution diffusion and obtained relevant conclusions [11]. -
(Presentation): Improving Railway Technologies and Efficiency
RegionalConfidential EST Training CourseCustomizedat for UnitedLorem Ipsum Nations LLC University-Urban Railways Shanshan Li, Vice Country Director, ITDP China FebVersion 27, 2018 1.0 Improving Railway Technologies and Efficiency -Case of China China has been ramping up investment in inner-city mass transit project to alleviate congestion. Since the mid 2000s, the growth of rapid transit systems in Chinese cities has rapidly accelerated, with most of the world's new subway mileage in the past decade opening in China. The length of light rail and metro will be extended by 40 percent in the next two years, and Rapid Growth tripled by 2020 From 2009 to 2015, China built 87 mass transit rail lines, totaling 3100 km, in 25 cities at the cost of ¥988.6 billion. In 2017, some 43 smaller third-tier cities in China, have received approval to develop subway lines. By 2018, China will carry out 103 projects and build 2,000 km of new urban rail lines. Source: US funds Policy Support Policy 1 2 3 State Council’s 13th Five The Ministry of NRDC’s Subway Year Plan Transport’s 3-year Plan Development Plan Pilot In the plan, a transport white This plan for major The approval processes for paper titled "Development of transportation infrastructure cities to apply for building China's Transport" envisions a construction projects (2016- urban rail transit projects more sustainable transport 18) was launched in May 2016. were relaxed twice in 2013 system with priority focused The plan included a investment and in 2015, respectively. In on high-capacity public transit of 1.6 trillion yuan for urban 2016, the minimum particularly urban rail rail transit projects. -
Laboratory Measurement of Vibration and Secondary Noise Transmission Loss for Rubber Elastomer Mats
12th ICBEN Congress on Noise as a Public Health Problem Laboratory measurement of vibration and secondary noise transmission loss for rubber elastomer mats Hui Li1, Xiang Yan1, Jianghua Wang1 1 Acoustical Lab of Architecture School, Tsinghua University Corresponding author's e-mail address: [email protected] ABSTRACT Beijing Subway Line 6 West Extension and Beijing Shijingshan District Performance Center are both under construction. Line 6 will go through beneath the performance center. In order to lower the impact from the train to the performance center, it has been decided that the subway will conduct steel spring floating slab as its vibration control method, and the performance center will add a layer of rubber elastomer mats under the raft foundation of the building. For the purpose of predicting the vibration and secondary noise transmission loss of the rubber elastomer mats, Acoustic lab of Tsinghua University conducted a measurement according to the real load of this project with the standard tapping machine as the sound and vibration source on a vibration isolation platform. By comparing the environmental vibration deviation on the platform with and without the rubber elastomer mats, the vibration and secondary noise transmission loss for each octave band can be easily calculated. BACKGROUND Beijing Shijingshan District Performance Center will be one of the landmark buildings for the district standing in the west of Beijing down town, which started construction in 2016 and about to finish construction in 2019. There are one cinema, one theater and several recording rooms in the performance center, which makes it a noise and vibration sensitive building. -
Beijing Office of the Government of the Hong Kong Special Administrative Region
Practical guide for Hong Kong people living in the Mainland – Beijing For Hong Kong people who are working, living and doing business in the Mainland 1 Contents Introduction of the Beijing Office of the Government of the Hong Kong Special Administrative Region ........................................................... 3 Preface ................................................................................................................. 5 I. An overview of Beijing ........................................................................... 6 II. Housing and living in Beijing .............................................................. 11 Living in Beijing .......................................................................................... 12 Transportation in Beijing ........................................................................... 21 Eating in Beijing ........................................................................................ 26 Visiting in Beijing ...................................................................................... 26 Shopping in Beijing ................................................................................... 27 III. Working in Beijing ................................................................................29 IV. Studying in Beijing ................................................................................ 32 V. Doing business in Beijing .................................................................... 41 Investment environment in Beijing.......................................................... -
Memorandum of Understanding Between
Memorandum of Understanding between Food and Drug Administration Department of Health and Human Services of the United States of America and Certification and Accreditation Administration of the People's Republic of China Regarding Registration of U.S. Food Manufacturers Exporting to China PREAMBLE The Participants in this Memorandum ofUnderstanding (MOU), the Food and Drug Administration (FDA), Department of Health and Human Services (HHS) ofthe United States of America, and the Certification and Accreditation Administration of the People' s Republic of China (CNCA), hereinafter referred to as the "Participants," Recognizing that the Food Safety Law ofthe People's Republic of China and Decree 145 of the General Administration ofQuality Supervision, Inspection and Quarantine ofthe People's Republic ofChina (AQSIQ) require overseas manufacturers ofcertain food products offered for entry into China to be under the effective control and supervision offoreign competent authorities; Recognizing that under Decree 145 overseas manufacturers of certain food products offered for entry into China are to be certified by the foreign competent authority exercising control and supervision over such manufacturers to be in compliance with the relevant laws and regulations of China, with respect to the food product categories identified in AQSIQ-related notices; Recognizing that FDA is charged with the enforcement ofthe Federal Food, Drug, and Cosmetic Act (FD&C Act) and, pursuant to the FD&C Act, is charged with protecting public health by ensuring that foods are safe, wholesome, sanitary, and properly labeled, Recognizing that U.S. based food manufacturers ofcertain food products offered for entry into China must be certified to be in compliance with the laws and regulations of China for food product categories identified in AQSIQ-related notices, and such certification is available only from third parties; and Recognizing that the differences between the U.S.