Hainan Jingliang Holdings Co., Ltd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Modeling the Hourly Distribution of Population at a High Spatiotemporal Resolution Using Subway Smart Card Data: a Case Study in the Central Area of Beijing
International Journal of Geo-Information Article Modeling the Hourly Distribution of Population at a High Spatiotemporal Resolution Using Subway Smart Card Data: A Case Study in the Central Area of Beijing Yunjia Ma 1,2,3, Wei Xu 1,2,3,*, Xiujuan Zhao 1,2,3 and Ying Li 1,2,3 1 Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education, Beijing Normal University, Beijing 100875, China; [email protected] (Y.M.); [email protected] (X.Z.); [email protected] (Y.L.) 2 Academy of Disaster Reduction and Emergency Management, Ministry of Civil Affairs & Ministry of Education, Beijing Normal University, Beijing 100875, China 3 Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China * Correspondence: [email protected]; Tel.: +86-010-5880-6695 Academic Editors: Norbert Bartelme and Wolfgang Kainz Received: 22 February 2017; Accepted: 24 April 2017; Published: 26 April 2017 Abstract: The accurate estimation of the dynamic changes in population is a key component in effective urban planning and emergency management. We developed a model to estimate hourly dynamic changes in population at the community level based on subway smart card data. The hourly population of each community in six central districts of Beijing was calculated, followed by a study of the spatiotemporal patterns and diurnal dynamic changes of population and an exploration of the main sources and sinks of the observed human mobility. The maximum daytime population of the six central districts of Beijing was approximately 0.7 million larger than the night-time population. The administrative and commercial districts of Dongcheng and Xicheng had high values of population ratio of day to night of 1.35 and 1.22, respectively, whereas Shijingshan, a residential district, had the lowest value of 0.84. -
The Analysis of Transforming Heavy Industrial District to Tourism Destination
Baohui Zhai et al./Transform heavy industrial to tourism, 41st ISoCaRP Congress, 2005 The Analysis of Transforming Heavy Industrial District to Tourism Destination: A Case Study Baohui Zhai1, Dongmei Wang2, and Rusong Wang1 1 Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 P R China Tel/fax: +86-10-62338487 Email: [email protected] 2 School of Soil and Water Conservation, Beijing Forestry University 35 Qinghua Dong Rd., Beijing, 100083 P R China Tel/fax: +86-10-62337777, Email: [email protected] 1. Introduction In the framework of sustainable development, how does a formerly manufacturing dominated city restructure its industry and towards what direction? This question is often asked in China. The practice is extremely different across the country due to geographical and unbalanced development. This study focuses on the district of Shijingshan, a big contributor to both air pollution and industrial GDP of Beijing. When talking about Shijingshan, people often think of the large steel plant and the Babaoshan cemetery. The former is a complex of steel plant, power plant, machinery, and construction materials and stretches up to 5 km long and two 2 km wide. The latter is a selected cemetery for the central government to condole veterans of former revolutionary battles. The main so-called tourists to the district are peoples who offer sacrifices at and come to the ancestral tomb on the day of Pure Brightness, the 5th of 24 solar terms per year, the traditionally observed Chinese festival for worshipping the ancestral grave. The Shijngshan Recreation Center’s completion attracted some kids and their accompanying parents to spend some time there. -
Spatial Recognition of the Urban-Rural Fringe of Beijing Using DMSP/OLS Nighttime Light Data
Article Spatial Recognition of the Urban-Rural Fringe of Beijing Using DMSP/OLS Nighttime Light Data Yuli Yang 1,2,3, Mingguo Ma 4,*, Chao Tan 4 and Wangping Li 2 1 Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou 730000, China; [email protected] 2 School of civil engineering, Lanzhou University of Technology, Lanzhou 730050, China; [email protected] 3 University of Chinese Academy of Sciences, Beijing 100049, China 4 Chongqing Engineering Research Center for Remote Sensing Big Data Application, Southwest University, Chongqing 400715, China * Correspondence: [email protected]; Tel.: +86-23-6825-3912 Received: 20 August 2017; Accepted: 31 October 2017; Published: 7 November 2017 Abstract: Spatial identification of the urban-rural fringes is very significant for deeply understanding the development processes and regulations of urban space and guiding urban spatial development in the future. Traditionally, urban-rural fringe areas are identified using statistical analysis methods that consider indexes from single or multiple factors, such as population densities, the ratio of building land, the proportion of the non-agricultural population, and economic levels. However, these methods have limitations, for example, the statistical data are not continuous, the statistical standards are not uniform, the data is seldom available in real time, and it is difficult to avoid issues on the statistical effects from edges of administrative regions or express the internal differences of these areas. This paper proposes a convenient approach to identify the urban-rural fringe using nighttime light data of DMSP/OLS images. First, a light characteristics–combined value model was built in ArcGIS 10.3, and the combined characteristics of light intensity and the degree of light intensity fluctuation are analyzed in the urban, urban-rural fringe, and rural areas. -
Applying Ant Colony Algorithm to Identify Ecological Security Patterns
Applying ant colony algorithm to identify ecological security patterns in megacities Jian Peng a, b,*, Shiquan Zhao b, Jianquan Dong a, Yanxu Liu c, Jeroen Meersmans d, Huilei Li a, Jiansheng Wu b a Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China b Key Laboratory for Environmental and Urban Sciences, School of Urban Planning & Design, Shenzhen Graduate School, Peking University, Shenzhen 518055, China c State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China d School of Water, Energy and Environment, Cranfield University, Bedford MK43 0AL, United Kingdom Abstract: Ecological security patterns composed of ecological sources and corridors provide an effective approach to conserving natural ecosystems. Although the direction of ecological corridors have been identified in previous studies, the precise range remains unknown. To address this crucial gap, ant colony algorithm and kernel density estimation were applied to identify the range and restoration points of ecological corridors, which is important for natural conservation and ecological restoration. In this case study of Beijing City, ecological sources were identified based on habitat importance and landscape connectivity. The results showed that, in total 3119.65 km2 of ecological land had been extracted as ecological sources, which were mainly located in the northern, northwestern and northeastern mountainous areas. The identified key ecological corridor covered an area of 198.86 km2, with 567.30 km2 for potential ecological corridors, both connecting the ecological sources. 34 key points were also identified with priority in restoring ecological corridors. -
Beijing's Suburbs
BEIJING MUNICIPAL COmmISSION OF TOURISM DEVELOPMENT BEIJING’S SUBURBS & SMALL TOWNS TO VISIT Getaway from China’s Capital —— 1 Discovering the Unique Charm and Vibes of Beijing’s Suburbs and Small Towns 1 Beijing’s Suburban Charm and Small-Town Vibes In the long-standing imperial Beijing, the red walls and yellow tiles exude the majestic imperial glamour, and the sedate country scene easily comes into your peripheral vision. A visit in Beijing guarantees you a walk of imperial solemnity in downtown Beijing, and a lot more country fun in the suburbs. You will see the many faces of the suburbs in the four seasons, walk through all the peaceful folk villages and exotic small towns, and make the most of your Beijing trips. This feature will highlight attractions of Beijing’s suburbs in the four seasons and open up year-round opportunities for visitors to soak up the best of the country life. A variety of small towns will also be featured, making for the best short trips to relax. 2 TRAVEL IN BEIJING’S SUBURBS AND SMALL TOWNS Highlights A Travel Guide to Beijing’s Suburbs Spring Explore the Nature | Feast on the Wild Summer Make a Splash | Go on Leisurely Outings Autumn Hike for Foliage | Foraging for Autumn Fruits Winter Ski down the Slopes | Bathe in Hot Springs 3 Best Small Towns to Visit “Chinese national” Small Towns 2 Gubei Water Town the Ultimate Retreat | Xiaotangshan the Hot Spring Resort “Western style” Small Towns 2 Spring Legend Town in Huairou | Huanghou Town Leisure Holiday Village Themed Small Towns 3 CTSHK RV Park of MYNS | Chateau Changyu AFIP Global Beijing | Qianjiadian Town in Yanqing Unique Cultural Villages 3 Cuandixia Village | Lingshui Village in Mentougou | Kangling Village For more information, please see the details below. -
Física Do Solo Quantitative Assessment of Soil
Comissão 2.2 - Física do solo QUANTITATIVE ASSESSMENT OF SOIL PHYSICAL QUALITY IN NORTHERN CHINA BASED ON S-THEORY Dejun Yang(1)*, Zhengfu Bian(1), Kefeng Zhang(2), Jibing Xiong(1) and Shaogang Lei(1) (1) China University of Mining and Technology, School of Environment Science and Spatial Informatics, Xuzhou, China. (2) Zhejiang University, Ningbo Institute of Technology, Ningbo, China. * Corresponding author. E-mail: [email protected] ABSTRACT Quantitative assessment of soil physical quality is of great importance for eco-environmental pollution and soil quality studies. In this paper, based on the S-theory, data from 16 collection sites in the Haihe River Basin in northern China were used, and the effects of soil particle size distribution and bulk density on three important indices of the S-theory were investigated on a regional scale. The relationships between unsaturated hydraulic conductivity Ki at the inflection point and S values (S/hi) were also studied using two different types of fitting equations. The results showed that the polynomial equation was better than the linear equation for describing the relationships between -log Ki and -log 2 S, and -log Ki and -log (S/hi) ; and clay content was the most important factor affecting the soil physical quality index (S). The variation in the S index according to soil clay content was able to be fitted using a double-linear-line approach, with decrease in theS index being much faster for clay content less than 20 %. In contrast, the bulk density index was found to be less important than clay content. The average S index was 0.077, indicating that soil physical quality in the Haihe River Basin was good. -
Laboratory Measurement of Vibration and Secondary Noise Transmission Loss for Rubber Elastomer Mats
12th ICBEN Congress on Noise as a Public Health Problem Laboratory measurement of vibration and secondary noise transmission loss for rubber elastomer mats Hui Li1, Xiang Yan1, Jianghua Wang1 1 Acoustical Lab of Architecture School, Tsinghua University Corresponding author's e-mail address: [email protected] ABSTRACT Beijing Subway Line 6 West Extension and Beijing Shijingshan District Performance Center are both under construction. Line 6 will go through beneath the performance center. In order to lower the impact from the train to the performance center, it has been decided that the subway will conduct steel spring floating slab as its vibration control method, and the performance center will add a layer of rubber elastomer mats under the raft foundation of the building. For the purpose of predicting the vibration and secondary noise transmission loss of the rubber elastomer mats, Acoustic lab of Tsinghua University conducted a measurement according to the real load of this project with the standard tapping machine as the sound and vibration source on a vibration isolation platform. By comparing the environmental vibration deviation on the platform with and without the rubber elastomer mats, the vibration and secondary noise transmission loss for each octave band can be easily calculated. BACKGROUND Beijing Shijingshan District Performance Center will be one of the landmark buildings for the district standing in the west of Beijing down town, which started construction in 2016 and about to finish construction in 2019. There are one cinema, one theater and several recording rooms in the performance center, which makes it a noise and vibration sensitive building. -
Beijing Office of the Government of the Hong Kong Special Administrative Region
Practical guide for Hong Kong people living in the Mainland – Beijing For Hong Kong people who are working, living and doing business in the Mainland 1 Contents Introduction of the Beijing Office of the Government of the Hong Kong Special Administrative Region ........................................................... 3 Preface ................................................................................................................. 5 I. An overview of Beijing ........................................................................... 6 II. Housing and living in Beijing .............................................................. 11 Living in Beijing .......................................................................................... 12 Transportation in Beijing ........................................................................... 21 Eating in Beijing ........................................................................................ 26 Visiting in Beijing ...................................................................................... 26 Shopping in Beijing ................................................................................... 27 III. Working in Beijing ................................................................................29 IV. Studying in Beijing ................................................................................ 32 V. Doing business in Beijing .................................................................... 41 Investment environment in Beijing.......................................................... -
Evaluation Analysis of Economic Development on Beijing's Districts
2012 International Conference on System Modeling and Optimization (ICSMO 2012) IPCSIT vol. 23 (2012) © (2012) IACSIT Press, Singapore Index Evaluation Analysis of Economic Development on Beijing’s Districts and Counties + Yao Cui-you1 Ping Yan-ru2 and Niu Hua3 1 School of Information, Capital University of Economics and Business, Beijing, China 2 College of Sciences, Beijing University of Technology, Beijing, China 3School of Information, Capital University of Economics and Business, Beijing, China Abstract. This paper takes Beijing’s districts and counties as the research object and establishes economic development index of Beijing’s districts and counties. The development status of Beijing’s districts and counties was evaluated and their difference on economic development was analyzed. The research conclusions can provide some reference for comprehensively grasping economic development of Beijing’s districts and counties, scientifically planning and guiding economic development strategy during the Twelfth Five-Year Plan Keywords: Index system, Regional economy, Development index. 1. Introduction The economy of Beijing has maintained sustainable, rapid and healthy development since 2006. The economic development of each district and each county maintain a certain growth, but the development speed of each district and each county are not the same, for example the highest average annual growth rate of per capital GDP is Shunyi District and reached 32.08% from 2006 to 2009 and the lowest is Shijingshan District and reached 1.78%. Therefore there are certain differences among districts and counties in Beijing. This paper establishes economic development evaluation index system about Beijing’s districts and counties. It takes 14 districts and 2 counties adjusted in 2010 as research objects. -
中国(家きんの加熱処理肉等) 2016/9/21 更新 No. NAME ADDRESS 1100/03015 BEIJING DAFA CHIA TAI CO.,LTD YANGZHEN D
中国(家きんの加熱処理肉等) 2016/9/21 更新 No. NAME ADDRESS YANGZHEN DUZHUANG, SHUNYI DISTRICT, 1100/03015 BEIJING DAFA CHIA TAI CO.,LTD BEIJING CITY, CHINA BEIJING DAFA CHIA TAI CO.,LTD. FURTHER YANGZHEN DUZHUANG, SHUNYI DISTRICT, 1100/03025 PROCESSING PLANT BEIJING CITY, CHINA XIAOTANGSHAN TOWN, CHANGPING DISTRICT, 1100/03039 BEIJING JIAYI FOOD JOINT FACTORY BEIJING BEIJING ER SHANG MOQI ZHONGHONG NO.233, NANGAO VILLAGE CUIGEZHUANG 1100/15006 FOODS CO.,LTD. TOWNSHIP CHAOYANG DISTRICT BEIJING, CHINA TIANJIN DONGTIAN FOODS PROCESSING NO.8 XINWANG ROAD, SHUANGQIAOHE TOWN, 1200/03009 CO.,LTD. JINNAN DISTRICT, TIANJIN, CHINA TIANJIN TEDA TIANQUAN QUICK FROZEN 1200/29002 NO.11, JINGU ROAD, TANGGU DISTRICT, TIANJIN FOODSTUFFS CO.,LTD. TIANJIN GREATWALL QUICK FROZEN FOOD 1200/29009 LIUDAOKOU, WUQING COUNTY, TIANJIN CO.,LTD. 1200/29012 TIANJIN SHIYOU FOODSTUFFS CO.,LTD. SICUNDIAN, WUQING COUNTY, TIANJIN NO.319 SHENGLINAN STREET, SHIJIAZHUANG 1300/03036 SHIJIAZHUANG DEYUAN FOOD CO., LTD. CITY, HEBEI NO.171, MUSLIM BUSINESS TRADE STREET, 1300/03105 HUSI FOOD COMPANY LTD. XIADIAN TOWN, DACHANG HUI AUTONOMY COUNTY, HEBEI PROVINCE, CHINA QINHUANGDAO CHIA TAI CO.,LTD. FOOD NO.30, GUANCHENGDONG ROAD,SHANHAIGUAN 1300/03133 PLANT (THE SECOND COOKED FOOD DISTRICT, QINHUANGDAO, HEBEI PLANT) KANGBAO BAILU MEAT CO., LTD. THE NO.134,GONGYE STREET, KANGBAO COUNTY, 1300/03152 SECOND FACTORY HEBEI LUANPING HUADU JIAYI FOOD JOINT NO.9 HEBIN ROAD, LUANPING TOWN, LUANPING 1300/03158 FACTORY COUNTY, CHENGDE CITY, HEBEI PROVINCE AIRPLANE SOUTH ROAD, ZHENGDING, 1300/08040 SHIJIAZHUANG HUIKANG FOOD CO.,LTD. SHIJIAZHUANG, HEBEI HEBEI FOODSTUFFS I/E (GROUP) 1300/29002 HENGSHUI TIANYANG COLD STORAGE NO.8, JINGDA ROAD, HENGSHUI, HEBEI PLANT SHIJIAZHUANG ECONOMICS & TECHNICAL 1300/29020 DEVELOPMENT ZONE GREATWALL NO.1, YANGZI ROAD, SHIJIAZHUANG ETDZ, HEBEI FOODSTUFFS CO., LTD. -
Spatiotemporal Patterns and Cause Analysis of PM 2.5 Concentrations
Hindawi Advances in Meteorology Volume 2018, Article ID 1724872, 8 pages https://doi.org/10.1155/2018/1724872 Research Article Spatiotemporal Patterns and Cause Analysis of PM2.5 Concentrations in Beijing, China Guangjin Tian ,1 Xiaojuan Liu,2 and Lingqiang Kong2 1 School of Government, Beijing Normal University, Xinjie Kouwai Street, Beijing 100875, China 2State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Xinjie Kouwai Street, Beijing 100875, China Correspondence should be addressed to Guangjin Tian; [email protected] Received 5 October 2017; Revised 28 November 2017; Accepted 30 November 2017; Published 15 February 2018 Academic Editor: Julio Diaz Copyright © 2018 Guangjin Tian et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. According to the monthly comprehensive air index ranking in China in 2016, Beijing ranked in the bottom tenth three times, indicating that the air pollution situation is very serious compared to other cities in China. In this study, we chose 23 urban environmental assessment points, which covered all districts and counties in Beijing. We used ArcGIS sofware to analyze atmospheric concentrations of particulate matter with a diameter < 2.5 �m(PM2.5)foreachmonthof2016ineachdistrict/countyof Beijing. Our results showed that PM2.5 concentrations in winter and spring were generally higher than those in summer and autumn. Te higher monthly average PM2.5 concentrations were primarily in the southwest and southeast areas. Te higher annual average values were distributed in Fangshan, Daxing, and Tongzhou, which were closely related to the high terrain in the northwest and the low-lying terrain in the southeast, the “Beijing Bay” terrain, and local climatic conditions. -
36496 Federal Register / Vol
36496 Federal Register / Vol. 86, No. 130 / Monday, July 12, 2021 / Rules and Regulations compensation is provided solely for the under forty-three entries to the Entity Committee (ERC) to be ‘military end flight training and not the use of the List. These thirty-four entities have been users’ pursuant to § 744.21 of the EAR. aircraft. determined by the U.S. Government to That section imposes additional license The FAA notes that any operator of a be acting contrary to the foreign policy requirements on, and limits the limited category aircraft that holds an interests of the United States and will be availability of, most license exceptions exemption to conduct Living History of listed on the Entity List under the for, exports, reexports, and transfers (in- Flight (LHFE) operations already holds destinations of Canada; People’s country) to listed entities on the MEU the necessary exemption relief to Republic of China (China); Iran; List, as specified in supplement no. 7 to conduct flight training for its flightcrew Lebanon; Netherlands (The part 744 and § 744.21 of the EAR. members. LHFE exemptions grant relief Netherlands); Pakistan; Russia; Entities may be listed on the MEU List Singapore; South Korea; Taiwan; to the extent necessary to allow the under the destinations of Burma, China, exemption holder to operate certain Turkey; the United Arab Emirates Russia, or Venezuela. The license aircraft for the purpose of carrying (UAE); and the United Kingdom. This review policy for each listed entity is persons for compensation or hire for final rule also revises one entry on the identified in the introductory text of living history flight experiences.