Technical Report: Results of Forest Carbon Assessment and Monitoring

Total Page:16

File Type:pdf, Size:1020Kb

Technical Report: Results of Forest Carbon Assessment and Monitoring Table of Contents List of acronyms ................................................................................................................................. iv Participants......................................................................................................................................... v List of tables ..................................................................................................................................... vii List of figures ................................................................................................................................... viii Acknowledgements ........................................................................................................................... ix Summary ............................................................................................................................................ x 1 Introduction ................................................................................................................................1 2 Study area ...................................................................................................................................2 2.1 General information ............................................................................................................2 2.2 Description of the transect locations ...................................................................................2 2.3 Description of the measurement plots .................................................................................3 2.4 Tree species botanical and vernacular names ......................................................................3 3 Methodology ..............................................................................................................................5 3.1 Sampling design...................................................................................................................5 3.1.1 Permanent sample plot: shape and size .......................................................................5 3.1.2 3m x 3m-quadrats for destructive sampling .................................................................6 3.1.3 Slope correction ...........................................................................................................7 3.2 Measurements ....................................................................................................................8 3.2.1 Aboveground Biomass (AGB) .......................................................................................8 3.2.2 Belowground Biomass (BGB) ...................................................................................... 10 3.2.3 Dead Organic Matter (DOM) ...................................................................................... 10 3.2.4 Soil Organic Carbon (S0C) ........................................................................................... 11 3.2.5 Vegetation height ...................................................................................................... 11 3.3 Biomass calculations .......................................................................................................... 12 3.3.1 Data quality ............................................................................................................... 12 3.3.2 Aboveground tree biomass ........................................................................................ 12 3.3.3 Belowground tree biomass ........................................................................................ 12 3.3.4 Woody palm biomass ................................................................................................. 12 3.3.5 Liana biomass ............................................................................................................ 13 3.3.6 Standing dead wood .................................................................................................. 13 3.3.7 Understory vegetation and litter ................................................................................ 13 3.3.8 Carbon content .......................................................................................................... 13 3.3.9 Soil Organic Carbon (SOC) .......................................................................................... 13 i 4 Results ...................................................................................................................................... 15 4.1 Biomass ............................................................................................................................. 15 4.1.1 Trees.......................................................................................................................... 15 4.1.2 Woody palms ............................................................................................................. 19 4.1.3 Lianas ........................................................................................................................ 19 4.1.4 Understory vegetation ............................................................................................... 20 4.1.5 Contribution of the different components to the AGB ................................................ 21 4.2 Dead Organic Matter (DOM) .............................................................................................. 22 4.2.1 Standing Dead Wood (DW) ........................................................................................ 22 4.2.2 Coarse Litter (CL) ....................................................................................................... 22 4.2.3 Fine Litter (FL) ............................................................................................................ 23 4.3 Soil Organic Carbon (SOC) .................................................................................................. 23 4.4 Total Carbon Stock (TCS) .................................................................................................... 25 4.5 General remarks about the efficiency of the plot design .................................................... 26 5 Discussion and recommendations ............................................................................................. 28 5.1 Recommendation on efficient inventory design ................................................................. 28 5.1.1 Towards a national biomass monitoring system ......................................................... 28 5.1.2 Sampling design ......................................................................................................... 28 5.1.3 Sampling scheme ....................................................................................................... 30 5.2 Identification of “key”-components ................................................................................... 30 5.3 Measurement protocol ...................................................................................................... 31 5.4 Allometry and tree species identification ........................................................................... 31 6 Conclusion ................................................................................................................................ 34 7 References ................................................................................................................................ 35 Annex 1: Description of the measurement plots................................................................................ 38 Annex 2: Stand variables per measurement plot ............................................................................... 40 Annex 3: Dominant species per measurement plot ........................................................................... 41 Annex 4: Biomass for trees with dbh [5,20cm[ per measurement plot............................................... 43 Annex 5: Biomass for trees with dbh ≥20cm per measurement plot .................................................. 44 Annex 6: C stored in woody palms per measurement plot................................................................. 45 Annex 7: C stored in lianas per measurement plot ............................................................................ 46 Annex 8: C stored in the understory per measurement plot .............................................................. 47 Annex 9: Dry weight and C stored in standing DW dbh ≥ 5cm per measurement plot ........................ 48 Annex 10: Dry weight and C stored in CL per measurement plot ....................................................... 49 Annex 11: Dry weight and C stored in FL per measurement plot ....................................................... 50 Annex 12: Average SOC per measurement plot (depth 0-30cm) ........................................................ 51 Annex 13: Tree species list ................................................................................................................ 52 Annex 14: Measurement protocol for the permanent plots .............................................................. 68 Annex 15: Measurement protocol for the 3mx3m quadrats .............................................................. 77 List of acronyms AGB Aboveground Biomass BBS National Herbarium in Suriname BGB Belowground Biomass C Carbon CBN Capacity Building Fund for Forest and Nature Sector CL Coarse Litter CO2 Carbon dioxide CELOS Center for Agricultural Research
Recommended publications
  • Frutos Y Semillas De Annonaceae Más Comunes Del Perú 1
    Guía Práctica Frutos y semillas de Annonaceae más comunes del Perú 1 Edward Jimmy Alarcón Mozombite1 1 Universidad Nacional de la Amazonía Peruana (UNAP) Fotos de Edward Jimmy Alarcón Mozombite (JA). Producido por: Edward Jimmy Alarcón Mozombite © Edward Jimmy Alarcón Mozombite [[email protected]] [fieldguides.fieldmuseum.org] [1083] versión 1 10/2018 Introducción La familia Annonaceae está muy bien representada en el Perú, especialmente en la Amazonía peruana, con especies silvestres y cultivadas. En el Perú existen alrededor de 238 especies de Annonaceae (Vásquez & Rojas, 2016), de las cuales 217 especies más 1 variedad son considerados árboles hasta el momento (Vásquez et al., 2018), pero este número irá ascendiendo por el descubrimiento de nuevas especies. Esta familia es ampliamente aprovechada por sus frutos, corteza, fuste y fácilmente reconocida por los “materos” y población que tiene cercanía a los bosques. Una forma de estudiar a esta familia es a través de la revisión de muestras depositadas en Herbarios, donde se registra datos de fenología, distribución, hábitat, usos y nombres vernaculares. Los frutos y semillas son estructuras que presentan ventajas que, al encontrarse secas, se hacen evidentes los surcos, formas, matices, fibras y porosidades que les permite diferenciarse entre especies. El presente trabajo aborda 91 especies, 2 variedades y 2 especímenes identificados a nivel de género para el Perú y 1 especie de Brasil, que equivale a casi el 40% de las especies de Annonaceas en el Perú, es una guía de reconocimiento por medio de las descripciones y fotografías que hacen más fácil su uso para el público en general y profesionales dedicados a la botánica, ciencias forestales, silvicultura, así como para la enseñanza e identificación en campo.
    [Show full text]
  • Livro-Inpp.Pdf
    GOVERNMENT OF BRAZIL President of Republic Michel Miguel Elias Temer Lulia Minister for Science, Technology, Innovation and Communications Gilberto Kassab MUSEU PARAENSE EMÍLIO GOELDI Director Nilson Gabas Júnior Research and Postgraduate Coordinator Ana Vilacy Moreira Galucio Communication and Extension Coordinator Maria Emilia Cruz Sales Coordinator of the National Research Institute of the Pantanal Maria de Lourdes Pinheiro Ruivo EDITORIAL BOARD Adriano Costa Quaresma (Instituto Nacional de Pesquisas da Amazônia) Carlos Ernesto G.Reynaud Schaefer (Universidade Federal de Viçosa) Fernando Zagury Vaz-de-Mello (Universidade Federal de Mato Grosso) Gilvan Ferreira da Silva (Embrapa Amazônia Ocidental) Spartaco Astolfi Filho (Universidade Federal do Amazonas) Victor Hugo Pereira Moutinho (Universidade Federal do Oeste Paraense) Wolfgang Johannes Junk (Max Planck Institutes) Coleção Adolpho Ducke Museu Paraense Emílio Goeldi Natural resources in wetlands: from Pantanal to Amazonia Marcos Antônio Soares Mário Augusto Gonçalves Jardim Editors Belém 2017 Editorial Project Iraneide Silva Editorial Production Iraneide Silva Angela Botelho Graphic Design and Electronic Publishing Andréa Pinheiro Photos Marcos Antônio Soares Review Iraneide Silva Marcos Antônio Soares Mário Augusto G.Jardim Print Graphic Santa Marta Dados Internacionais de Catalogação na Publicação (CIP) Natural resources in wetlands: from Pantanal to Amazonia / Marcos Antonio Soares, Mário Augusto Gonçalves Jardim. organizers. Belém : MPEG, 2017. 288 p.: il. (Coleção Adolpho Ducke) ISBN 978-85-61377-93-9 1. Natural resources – Brazil - Pantanal. 2. Amazonia. I. Soares, Marcos Antonio. II. Jardim, Mário Augusto Gonçalves. CDD 333.72098115 © Copyright por/by Museu Paraense Emílio Goeldi, 2017. Todos os direitos reservados. A reprodução não autorizada desta publicação, no todo ou em parte, constitui violação dos direitos autorais (Lei nº 9.610).
    [Show full text]
  • Alkaloids and Volatile Constituents from the Stem of Fusaea Longifolia (Aubl.) Saff
    Revista Brasileira de Farmacognosia Brazilian Journal of Pharmacognosy Received 11/27/04. Accepted 03/31/05 15(2): 115-118, Abr./Jun. 2005 Alkaloids and volatile constituents from the stem of Fusaea longifolia (Aubl.) Saff. (Annonaceae) J.F. Tavares1, J.M. Barbosa-Filho1, M.S. da Silva*1, J.G.S. Maia2, E.V.L. da-Cunha1,3 Artigo 1Laboratório de Tecnologia Farmacêutica “Delby Fernandes de Medeiros”, Universidade Federal da Paraíba, Caixa Postal 5009, 58051-970, João Pessoa, PB, Brasil. 2 Departamento de Engenharia Química e de Alimentos, Universidade Federal do Pará, Campus Universitário do Guamá, 66075-900 Belém, PA, Brasil. 3 Departamento de Farmácia, Universidade Estadual da Paraíba, CCBS, 58100-000, Campina Grande, PB, Brasil. ABSTRACT: A phytochemical study of the ethanol extract and an extraction of the volatile compounds, performed by means of Clevenger apparatus were carried out with the stem of Fusaea longifolia (Aubl.) Saff. (Annonaceae). The ethanol extract yielded O-methylmoschatoline, isolated for the fi rst time in this species, and stepholidine, reported for the fi rst time in genus Fusaea. The structural identifi cation of the alkaloids was made based on the analysis of their NMR spectra. Through the use of GC and GC-MS, two sesquiterpenoids, α-cadinol (12.5%) and spatulenol (12.0%) were identifi ed as the major constituents of the essential oil. Keywords: Fusaea longifolia, Annonaceae, alkaloids, volatile constituents. INTRODUCTION MATERIAL AND METHODS The family Annonaceae, created by Jussieu in Plant material 1789 (Hutchinson, 1973), is comprised by 2.300 species distributed in approximately 130 pantropical genera The botanic material was collected in the (Maas et al., 2001).
    [Show full text]
  • Angiosperms of Rondônia State, Brazil
    Check List 10(1): 33–45, 2014 © 2014 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution What survived from the PLANAFLORO Project: PECIES S Angiosperms of Rondônia State, Brazil OF 1* 2 ISTS L Samuel1 UniCarleialversity of Konstanz, and Narcísio Department C.of Biology, Bigio M842, PLZ 78457, Konstanz, Germany. [email protected] 2 Universidade Federal de Rondônia, Campus José Ribeiro Filho, BR 364, Km 9.5, CEP 76801-059. Porto Velho, RO, Brasil. * Corresponding author. E-mail: Abstract: The Rondônia Natural Resources Management Project (PLANAFLORO) was a strategic program developed in partnership between the Brazilian Government and The World Bank in 1992, with the purpose of stimulating the sustainable development and protection of the Amazon in the state of Rondônia. More than a decade after the PLANAFORO program concluded, the aim of the present work is to recover and share the information from the long-abandoned plant collections made during the project’s ecological-economic zoning phase. Most of the material analyzed was sterile, but the fertile voucher specimens recovered are listed here. The material examined represents 378 species in 234 genera and 76 families of angiosperms. Some 8 genera, 68 species, 3 subspecies and 1 variety are new records for Rondônia State. It is our intention that this information will stimulate future studies and contribute to a better understanding and more effective conservation of the plant diversity in the southwestern Amazon of Brazil. Introduction The PLANAFLORO Project funded botanical expeditions In early 1990, Brazilian Amazon was facing remarkably in different areas of the state to inventory arboreal plants high rates of forest conversion (Laurance et al.
    [Show full text]
  • Character Evolution in Anaxagorea (Annonaceae)
    QUT Digital Repository: http://eprints.qut.edu.au/ Scharaschkin, Tanya and Doyle, James A. (2006) Character evolution in Anaxagorea (Annonaceae). American Journal of Botany 93(1):pp. 36-54. © Copyright 2006 Botanical Society of America American Journal of Botany 93(1): 36±54. 2006. CHARACTER EVOLUTION IN ANAXAGOREA (ANNONACEAE)1 TANYA SCHARASCHKIN2,3 AND JAMES A. DOYLE2 2Section of Evolution and Ecology, University of California, Davis, California 95616 USA Anaxagorea is a critical genus for understanding morphological evolution in Annonaceae because it shares a variety of features with other Magnoliales that have been interpreted as primitive relative to other Annonaceae. We present a detailed discussion of morphological characters used in a combined morphological and molecular phylogenetic analysis of Anaxagorea, along with impli- cations of the analysis for character evolution in the genus. In spite of a high level of homoplasy in stamen and leaf venation characters, their removal results in loss of resolution in the trees obtained. The distributions of characters on trees con®rm assumptions that several distinctive similarities between Anaxagorea and other Magnoliales are primitive retentions (e.g., the presence of an adaxial plate of xylem in the midrib, nonpeltate stamen connectives, inner staminodes, and several leaf architectural characters). However, lateral extensions of the ``laminar'' stamens, though possibly ancestral in Anaxagorea, are convergent with those in other Magnoliales. A number of morphological synapomorphies have been identi®ed for a clade containing most Central American species and another comprising all Asian species (e.g., conical bud shape and reduced inner petals for the Central American clade, and adaxial cuticular striations and capitate stigma shape for the Asian clade).
    [Show full text]
  • Floristic and Structure of an Amazonian Primary Forest and a Chronosequence of Secondary Succession
    ACTA AMAZONICA http://dx.doi.org/10.1590/1809-4392201504341 Floristic and structure of an Amazonian primary forest and a chronosequence of secondary succession Camila Valéria de Jesus SILVA*1, João Roberto dos SANTOS1, Lênio Soares GALVÃO1, Ricardo Dal’Agnol da SILVA1, Yhasmin Mendes MOURA1 1 Instituto Nacional de Pesquisas Espaciais, Divisão de Sensoriamento Remoto, Avenida dos Astronautas, 1758, Jardim da Granja, São José dos Campos, SP, Brasil. CEP:12227-010. * Corresponding author: [email protected] ABSTRACT The analysis of changes in species composition and vegetation structure in chronosequences improves knowledge on the regeneration patterns following land abandonment in the Amazon. Here, the objective was to perform floristic-structural analysis in mature forests (with/without timber exploitation) and secondary successions (initial, intermediate and advanced vegetation regrowth) in the Tapajós region. The regrowth age and plot locations were determined using Landsat-5/Thematic Mapper images (1984-2012). For floristic analysis, we determined the sample sufficiency and the Shannon-Weaver (H’), Pielou evenness (J), Value of Importance (VI) and Fisher’s alpha (α) indices. We applied the Non-metric Multidimensional Scaling (NMDS) for similarity ordination. For structural analysis, the diameter at the breast height (DBH), total tree height (Ht), basal area (BA) and the aboveground biomass (AGB) were obtained. We inspected the differences in floristic-structural attributes using Tukey and Kolmogorov-Smirnov tests. The results showed an increase in the H’, J and α indices from initial regrowth to mature forests of the order of 47%, 33% and 91%, respectively. The advanced regrowth had more species in common with the intermediate stage than with the mature forest.
    [Show full text]
  • Phylogenomics of the Major Tropical Plant Family Annonaceae Using Targeted Enrichment of Nuclear Genes
    bioRxiv preprint doi: https://doi.org/10.1101/440925; this version posted October 11, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Phylogenomics of the major tropical plant family Annonaceae using targeted enrichment of nuclear genes Thomas L.P. Couvreur1,*+, Andrew J. Helmstetter1,+, Erik J.M. Koenen2, Kevin Bethune1, Rita D. Brandão3, Stefan Little4, Hervé Sauquet4,5, Roy H.J. Erkens3 1 IRD, UMR DIADE, Univ. Montpellier, Montpellier, France 2 Institute of Systematic Botany, University of Zurich, Zürich, Switzerland 3 Maastricht University, Maastricht Science Programme, P.O. Box 616, 6200 MD Maastricht, The Netherlands 4 Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université-Paris Saclay, 91400, Orsay, France 5 National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, Australia * [email protected] + authors contributed equally Abstract Targeted enrichment and sequencing of hundreds of nuclear loci for phylogenetic reconstruction is becoming an important tool for plant systematics and evolution. Annonaceae is a major pantropical plant family with 109 genera and ca. 2450 species, occurring across all major and minor tropical forests of the world. Baits were designed by sequencing the transcriptomes of five species from two of the largest Annonaceae subfamilies. Orthologous loci were identified. The resulting baiting kit was used to reconstruct phylogenetic relationships at two different levels using concatenated and gene tree approaches: a family wide Annonaceae analysis sampling 65 genera and a species level analysis of tribe Piptostigmateae sampling 29 species with multiple individuals per species.
    [Show full text]
  • The Vegetation of the Coastal Region of Suriname. Results of the Scientific Expedition to Suriname 1948—49 Botanical Series No
    The vegetation of the Coastal Region of Suriname. Results of the scientific expedition to Suriname 1948—49 botanical series No. 1 by J.C. Lindeman (Utrecht) CONTENTS GENERAL PART CHAPTER I. Introduction. 1 ....... Literature 2 Methods 5 ......... Terminology 7 ......... Vernacular 9 names ........ Value of vernacular names 12 The soil. 14 .......... The climate 18 CHAPTER II. AERIAL PHOTOGRAPHS 21 General remarks 21 Difficulties with herbaceous vegetation; illumination effects. 22 results 25 Interpretation ........ and 25 Mangrove swamps ....... Savannas 26 ......... Forests 27 SPECIAL PART CHAPTER III. DESCRIPTION OF THE LANDSCAPE IN THE INVESTIGATED AREAS 28 I. Wia- Transect from Moengo tapoe to the ‘Wiawiabank’ or wia flat 28 The saline coastal belt 29 . articulatus and Machaerium Typha-Cyperus swamp lunatum scrub 31 ........ Third to sixth with Cereus wood ridge , . 31 . Leersia hexandra and 32 swamps Erythrina glauca groves . Second series of ridges and 33 Cyperus giganteus swamps . The old ridges beyond km 9.5 34 II The 35 swaying swamps ....... The oldest and the savannas 37 ridges ..... II. Coronie 38 of the road 38 Brackish North . area . and fresh-water South of the road 39 Ridge complex swamp Third and fourth line 40 Totness 40 III. Nickerie 41 belt and brackish North of the Nickerie Mangrove swamps River 41 Fresh-water area South of the Nickerie River 44 ... IV. Tibiti 45 CHAPTER IV. MANGROVE AND STRAND 46 . ... I. belts the lower the rivers 46 Mangrove along part of . along rivers outside Suriname 48 Mangrove . and other 49 Epiphytes accompanying species ... II. Coastal 50 mangrove ........ Regressing coast 50 Accrescent 50 coast . Accompanying species ....... 53 Mixed forest 54 mangrove ......
    [Show full text]
  • Forest Response to Increased Disturbance in the Central Amazon
    1 Forest response to increased disturbance in the Central 2 Amazon and comparison to Western Amazonian forests 3 4 J. A. Holm1, J. Q. Chambers1,2, W. D. Collins1,3, N. Higuchi4 5 [1] {Lawrence Berkeley National Laboratory, Berkeley, California 94720} 6 [2] {Department of Geography, University of California, Berkeley, Berkeley, California 94720} 7 [3] {Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, 8 California 94720} 9 [4] {Departamento de Silvicultura Tropical, Manejo Florestal, Instituto Nacional de Pesquisas da 10 Amazônia, Av. André Araújo, 2936 Petrópolis, Manaus AM, Brasil} 11 Correspondence to: J. A. Holm ([email protected]) 12 13 Abstract 14 Uncertainties surrounding vegetation response to increased disturbance rates associated with 15 climate change remains a major global change issue for Amazon forests. Additionally, turnover 16 rates computed as the average of mortality and recruitment rates in the Western Amazon basin are 17 doubled when compared to the Central Amazon, and notable gradients currently exist in specific 18 wood density and aboveground biomass (AGB) between these two regions. This study 19 investigates the extent to which the variation in disturbance regimes contributes to these regional 20 gradients. To address this issue, we evaluated disturbance-recovery processes in a Central 21 Amazon forest under two scenarios of increased disturbance rates using first ZELIG-TROP, a 22 dynamic vegetation gap model which we calibrated using long-term inventory data, and second 23 using the Community Land Model (CLM), a global land surface model that is part of the 1 24 Community Earth System Model (CESM). Upon doubling the mortality rate in the Central 25 Amazon to mirror the natural disturbance regime in the Western Amazon of ~2% mortality, the 26 two regions continued to differ in multiple forest processes.
    [Show full text]
  • Angiosperms) Julien Massoni1*, Thomas LP Couvreur2,3 and Hervé Sauquet1
    Massoni et al. BMC Evolutionary Biology (2015) 15:49 DOI 10.1186/s12862-015-0320-6 RESEARCH ARTICLE Open Access Five major shifts of diversification through the long evolutionary history of Magnoliidae (angiosperms) Julien Massoni1*, Thomas LP Couvreur2,3 and Hervé Sauquet1 Abstract Background: With 10,000 species, Magnoliidae are the largest clade of flowering plants outside monocots and eudicots. Despite an ancient and rich fossil history, the tempo and mode of diversification of Magnoliidae remain poorly known. Using a molecular data set of 12 markers and 220 species (representing >75% of genera in Magnoliidae) and six robust, internal fossil age constraints, we estimate divergence times and significant shifts of diversification across the clade. In addition, we test the sensitivity of magnoliid divergence times to the choice of relaxed clock model and various maximum age constraints for the angiosperms. Results: Compared with previous work, our study tends to push back in time the age of the crown node of Magnoliidae (178.78-126.82 million years, Myr), and of the four orders, Canellales (143.18-125.90 Myr), Piperales (158.11-88.15 Myr), Laurales (165.62-112.05 Myr), and Magnoliales (164.09-114.75 Myr). Although families vary in crown ages, Magnoliidae appear to have diversified into most extant families by the end of the Cretaceous. The strongly imbalanced distribution of extant diversity within Magnoliidae appears to be best explained by models of diversification with 6 to 13 shifts in net diversification rates. Significant increases are inferred within Piperaceae and Annonaceae, while the low species richness of Calycanthaceae, Degeneriaceae, and Himantandraceae appears to be the result of decreases in both speciation and extinction rates.
    [Show full text]
  • Forest Response to Increased Disturbance in the Central Amazon and Comparison to Western Amazonian Forests
    Biogeosciences, 11, 5773–5794, 2014 www.biogeosciences.net/11/5773/2014/ doi:10.5194/bg-11-5773-2014 © Author(s) 2014. CC Attribution 3.0 License. Forest response to increased disturbance in the central Amazon and comparison to western Amazonian forests J. A. Holm1, J. Q. Chambers1,2, W. D. Collins1,3, and N. Higuchi4 1Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 2Department of Geography, University of California, Berkeley, California 94720, USA 3Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA 4Departamento de Silvicultura Tropical, Manejo Florestal, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936 Petrópolis, Manaus AM, Brasil Correspondence to: J. A. Holm ([email protected]) Received: 10 April 2014 – Published in Biogeosciences Discuss.: 28 May 2014 Revised: 25 August 2014 – Accepted: 15 September 2014 – Published: 20 October 2014 Abstract. Uncertainties surrounding vegetation response to the driver of AGB loss in ZELIG-TROP, a forest attribute that increased disturbance rates associated with climate change does not significantly vary across the Amazon Basin. Further remains a major global change issue for Amazonian forests. comparisons found that stem density, specific wood density, Additionally, turnover rates computed as the average of mor- and basal area growth rates differed between the two Amazo- tality and recruitment rates in the western Amazon basin are nian regions. Last, to help quantify the impacts of increased doubled when compared to the central Amazon, and notable disturbances on the climate and earth system, we evaluated gradients currently exist in specific wood density and above- the fidelity of tree mortality and disturbance in CLM.
    [Show full text]
  • Exploring Biocultural Contexts: Comparative Woody Plant Knowledge of an Indigenous and Afro-American Maroon Community in Suriname, South America
    Chapter 13 Exploring Biocultural Contexts: Comparative Woody Plant Knowledge of an Indigenous and Afro-American Maroon Community in Suriname, South America Bruce Hoffman Abstract Despite the increasing use of quantitative methods in ethnobotany, there has been relatively little advance in understanding of cross-cultural patterns. Within three tropical forest vegetation zones, I documented and compared local plant knowledge, categorical use, and resource selection for a short-resident (±300 years) Afro-American Saramacca “Maroon” community and an indigenous Cariban- speaking Trio community. For 3–4 male specialists at each site, the “recognition” and use of stems ³ 10 cm dbh in forest plots (0.5–1 ha) was recorded. Comparative methods included quantitative use value indices and categorized uses (construction, edible, medicine, technology, and trade). The Trio emphasized medicinal uses regardless of vegetation zone. Saramacca use value was greatest within fallow for- est, exceeded Trio knowledge for “construction” and “trade,” and emphasized tim- ber and carving species. For both groups, the use value of most taxa (family and species) was correlated with “apparency” (abundance, species richness), with the exception of palms and major cultural species. As hypothesized, Trio indigenous knowledge was greater – with more biological species named (97.3% vs. 83.9%) and utilized (87.7% vs. 66.9%) and more uses cited per species. However, the shorter-resident Saramacca Maroon participants still revealed a robust knowledge and use of woody plant diversity. Keywords Cross-cultural research • Quantitative ethnobotany • Use value indices • Traditional knowledge • Trio • Saramacca B. Hoffman , Ph.D. (*) National Herbarium of the Netherlands, Naturalis Biodiversity Center , P.O. Box 9514 , RA 2300, Leiden, The Netherlands e-mail: [email protected]; [email protected] R.
    [Show full text]