Supplementary Information

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Information 1 Supplementary information A B Control Vitiligo-NL Vitiligo-L Control Vitiligo-NL Vitiligo-L phylum genus Alphaproteobacteria Paracoccus Gammaproteobacteria Acinetobacter Deltaproteobacteria Haematobacter Brevundimonas Pararhizobium Enhydrobacter Uncultured E. Shigella Roseomonas Amaricoccus Methylobacterium Rhodobacteraceae Sphingomonas Aureimonas Undibacterium Luteimonas Haemophilus Moraxella Ochrobactrum Pseudomonas Acetobacter 2 3 4 SUPPLEMENTARY FIGURE 1 Enrichment of Gammaproteobacteria and Paracoccus in 5 skin swab samples from vitiligo patients 6 Composition and relative abundance of Proteobacteria between different groups was examined 7 at phylum (A) and genus (B) levels. Individual subjects are shown as taxa bar plots (above) and 8 grouped data as pie charts (below). A complete list of OTUs is shown in Supplementary Table 9 5. 10 1 11 12 13 SUPPLEMENTARY FIGURE 2 Differences in b-diversity between swab and biopsy samples 14 PCoA plot representing b-diversity between biopsy and swab samples from the lesional and 15 non-lesional sites of vitiligo patients compared to healthy controls. Microbiota profile in skin 16 biopsies is very different from skin swabs (P<0.001) and skin biopsies taken from lesional sites 17 of vitiligo patients (light green) are significantly different from all other samples (P<0.001). 18 19 20 21 22 23 24 25 2 Control Vitiligo NL Vitiligo L Staphylococcus Cutibacterium Mycoplasma Streptococcus Mitochondrial DNA Corynebacterium Intestinibacteria Bacteroides Clostridium Enterococcus Escherichia-Shigella Parabacteroides Veillonella Bifidobacterium Gemella Rothia Raistonia Undibacterium Uncultured bacteria Lactobacillus 26 27 28 SUPPLEMENTARY FIGURE 3 Composition and diversity of skin microbiota in healthy and 29 vitiligo skin biopsy samples 30 Individual subject data are shown at the genus level in form of a heat map, illustrating the top 31 20 of the most abundant bacterial taxa between the three groups (n=10 per group). Differences 32 in microbial composition is tested using analysis of composition of microbiomes (ANCOM). 33 34 3 SUPPLEMENTARY TABLE 1 Stool OTUs in Figure 1 Complete list of OTUs in stool samples at phylum level SUPPLEMENTARY TABLE 2 Stool OTUs in Figure 1 Complete list of OTUs in stool samples at genus level SUPPLEMENTARY TABLE 3 Skin swab OTUs in Figure 3 Complete list of OTUs in swab samples at phylum level SUPPLEMENTARY TABLE 4 Skin swab OTUs in Figure 3 Complete list of OTUs in swab samples at genus level SUPPLEMENTARY TABLE 5 Proteobacteria OTUs in Supplementary Figure 1 Complete list of OTUs in biopsy samples from Proteobacteria family at phylum (top) and genus (bottom) level SUPPLEMENTARY TABLE 6 Skin Biopsy OTUs in Figure 4 Complete list of OTUs in biopsy samples at phylum level SUPPLEMENTARY TABLE 7 Skin Biopsy OTUs in Figure 4 Complete list of OTUs in biopsy samples at genus level 1 SUPPLEMENTARY TABLE 8 Sequences of fused primers 2 Forward: 3 AATGATACGGCGACCACCGAGATCTACACGTGCTAATAGGTTATGGTAATTAGCC 4 TACGGGNGGCWGCAGAATGATACGGCGACCACCGAGATCTACACGCGATCACAC 5 CTTATGGTAATTAGCCTACGGGNGGCWGCAGAATGATACGGCGACCACCGAGAT 6 CTACACAATGGACCGTTCTATGGTAATTAGCCTACGGGNGGCWGCAGAATGATA 7 CGGCGACCACCGAGATCTACACGTACGTCACTGATATGGTAATTAGCCTACGGGN 8 GGCWGCAGAATGATACGGCGACCACCGAGATCTACACTAGCCTGTCGTGTATGG 9 TAATTAGCCTACGGGNGGCWGCAGAATGATACGGCGACCACCGAGATCTACACA 10 CAGACGACGGATATGGTAATTAGCCTACGGGNGGCWGCAGAATGATACGGCGAC 11 CACCGAGATCTACACTCTATGCGAACGTATGGTAATTAGCCTACGGGNGGCWGC 12 AGAATGATACGGCGACCACCGAGATCTACACCTATGAGTCCAGTATGGTAATTAG 13 CCTACGGGNGGCWGCAGAATGATACGGCGACCACCGAGATCTACACGGAAACA 14 AACGGTATGGTAATTAGCCTACGGGNGGCWGCAGAATGATACGGCGACCACCGA 15 GATCTACACGATTGGCATAGTTATGGTAATTAGCCTACGGGNGGCWGCAGAATG 16 ATACGGCGACCACCGAGATCTACACGAGTTGTACGATTATGGTAATTAGCCTACG 17 GGNGGCWGCAGAATGATACGGCGACCACCGAGATCTACACCTCGAAATGCAATA 18 TGGTAATTAGCCTACGGGNGGCWGCAGAATGATACGGCGACCACCGAGATCTAC 19 ACAGAAGAAAGGCATATGGTAATTAGCCTACGGGNGGCWGCAGAATGATACGG 20 CGACCACCGAGATCTACACCCACTCTCTCTATATGGTAATTAGCCTACGGGNGGC 21 WGCAGAATGATACGGCGACCACCGAGATCTACACCCTCCTAATTCATATGGTAAT 22 TAGCCTACGGGNGGCWGCAGAATGATACGGCGACCACCGAGATCTACACTTCAT 23 GGCCAGCTATGGTAATTAGCCTACGGGNGGCWGCAG 24 25 Reversed: 26 CAAGCAGAAGACGGCATACGAGATTCAGTTCTCGTTAGTCAGTCAGCCGACTACH 27 VGGGTATCTAATCCCAAGCAGAAGACGGCATACGAGATTCGTGCGTGTTGAGTCA 28 GTCAGCCGACTACHVGGGTATCTAATCCCAAGCAGAAGACGGCATACGAGATGT 29 TATCGCATGGAGTCAGTCAGCCGACTACHVGGGTATCTAATCCCAAGCAGAAGA 30 CGGCATACGAGATGATCACGAGAGGAGTCAGTCAGCCGACTACHVGGGTATCTA 31 ATCCCAAGCAGAAGACGGCATACGAGATGTAAATTCAGGCAGTCAGTCAGCCGA 32 CTACHVGGGTATCTAATCCCAAGCAGAAGACGGCATACGAGATAGTGTTTCGGA 33 CAGTCAGTCAGCCGACTACHVGGGTATCTAATCCCAAGCAGAAGACGGCATACG 34 AGATACACGCGGTTTAAGTCAGTCAGCCGACTACHVGGGTATCTAATCCCAAGCA 35 GAAGACGGCATACGAGATTGGCAAATCTAGAGTCAGTCAGCCGACTACHVGGGT 36 ATCTAATCCCAAGCAGAAGACGGCATACGAGATCACCTTACCTTAAGTCAGTCAG 37 CCGACTACHVGGGTATCTAATCCCAAGCAGAAGACGGCATACGAGATTTAACCTT 38 CCTGAGTCAGTCAGCCGACTACHVGGGTATCTAATCCCAAGCAGAAGACGGCAT 39 ACGAGATTGCCGTATGCCAAGTCAGTCAGCCGACTACHVGGGTATCTAATCCCAA 40 GCAGAAGACGGCATACGAGATCGTGACAATAGTAGTCAGTCAGCCGACTACHVG 41 GGTATCTAATCCCAAGCAGAAGACGGCATACGAGATCGCTACAACTCGAGTCAG 42 TCAGCCGACTACHVGGGTATCTAATCCCAAGCAGAAGACGGCATACGAGATTTA 43 AGACAGTCGAGTCAGTCAGCCGACTACHVGGGTATCTAATCCCAAGCAGAAGAC 44 GGCATACGAGATTCTGCACTGAGCAGTCAGTCAGCCGACTACHVGGGTATCTAAT 45 CCCAAGCAGAAGACGGCATACGAGATCGCAGATTAGTAAGTCAGTCAGCCGACT 46 ACHVGGGTATCTAATCCCAAGCAGAAGACGGCATACGAGATCGGATAACCTCCA 47 GTCAGTCAGCCGACTACHVGGGTATCTAATCCCAAGCAGAAGACGGCATACGAG 48 ATAGGGTGACTTTAAGTCAGTCAGCCGACTACHVGGGTATCTAATCCCAAGCAGA 1 49 AGACGGCATACGAGATGACTTCATGCGAAGTCAGTCAGCCGACTACHVGGGTAT 50 CTAATCCCAAGCAGAAGACGGCATACGAGATGCCTGTCTGCAAAGTCAGTCAGC 51 CGACTACHVGGGTATCTAATCCCAAGCAGAAGACGGCATACGAGATACTGATGG 52 CCTCAGTCAGTCAGCCGACTACHVGGGTATCTAATCCCAAGCAGAAGACGGCAT 53 ACGAGATTTCGATGCCGCAAGTCAGTCAGCCGACTACHVGGGTATCTAATCCCAA 54 GCAGAAGACGGCATACGAGATTGTGGCTCGTGTAGTCAGTCAGCCGACTACHVG 55 GGTATCTAATCCCAAGCAGAAGACGGCATACGAGATAACTTTCAGGAGAGTCAG 56 TCAGCCGACTACHVGGGTATCTAATCC 57 2 .
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Diversity of Culturable Bacteria Including Pantoea in Wild Mosquito Aedes Albopictus Claire Valiente Moro, Florence-Hélène Tran, F
    Diversity of culturable bacteria including Pantoea in wild mosquito Aedes albopictus Claire Valiente Moro, Florence-Hélène Tran, F. N. Raharimalala, P. Ravelonandro, Patrick Mavingui To cite this version: Claire Valiente Moro, Florence-Hélène Tran, F. N. Raharimalala, P. Ravelonandro, Patrick Mavin- gui. Diversity of culturable bacteria including Pantoea in wild mosquito Aedes albopictus. BMC Microbiology, BioMed Central, 2013, 13 (1), pp.70. 10.1186/1471-2180-13-70. hal-02522192 HAL Id: hal-02522192 https://hal-univ-lyon1.archives-ouvertes.fr/hal-02522192 Submitted on 28 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Valiente Moro et al. BMC Microbiology 2013, 13:70 http://www.biomedcentral.com/1471-2180/13/70 RESEARCH ARTICLE Open Access Diversity of culturable bacteria including Pantoea in wild mosquito Aedes albopictus Claire Valiente Moro1,2*, Florence Hélène Tran1,2, Fara Nantenaina Raharimalala3,5, Pierre Ravelonandro4 and Patrick Mavingui1,2 Abstract Background: The microbiota has been shown to play an important role in the biology of insects. In recent decades, significant efforts have been made to better understand the diversity of symbiotic bacteria associated with mosquitoes and assess their influence on pathogen transmission.
    [Show full text]
  • Bacterial Avidins Are a Widely Distributed Protein Family in Actinobacteria, Proteobacteria and Bacteroidetes Olli H
    Laitinen et al. BMC Ecol Evo (2021) 21:53 BMC Ecology and Evolution https://doi.org/10.1186/s12862-021-01784-y RESEARCH ARTICLE Open Access Bacterial avidins are a widely distributed protein family in Actinobacteria, Proteobacteria and Bacteroidetes Olli H. Laitinen1†, Tanja P. Kuusela1†, Sampo Kukkurainen1†, Anssi Nurminen1, Aki Sinkkonen2 and Vesa P. Hytönen1,3* Abstract Background: Avidins are biotin-binding proteins commonly found in the vertebrate eggs. In addition to streptavidin from Streptomyces avidinii, a growing number of avidins have been characterized from divergent bacterial species. However, a systematic research concerning their taxonomy and ecological role has never been done. We performed a search for avidin encoding genes among bacteria using available databases and classifed potential avidins according to taxonomy and the ecological niches utilized by host bacteria. Results: Numerous avidin-encoding genes were found in the phyla Actinobacteria and Proteobacteria. The diversity of protein sequences was high and several new variants of genes encoding biotin-binding avidins were found. The living strategies of bacteria hosting avidin encoding genes fall mainly into two categories. Human and animal patho- gens were overrepresented among the found bacteria carrying avidin genes. The other widespread category were bacteria that either fx nitrogen or live in root nodules/rhizospheres of plants hosting nitrogen-fxing bacteria. Conclusions: Bacterial avidins are a taxonomically and ecologically diverse group mainly found in Actinobacteria, Proteobacteria and Bacteroidetes, associated often with plant invasiveness. Avidin encoding genes in plasmids hint that avidins may be horizontally transferred. The current survey may be used as a basis in attempts to understand the ecological signifcance of biotin-binding capacity.
    [Show full text]
  • Horizontal Operon Transfer, Plasmids, and the Evolution of Photosynthesis in Rhodobacteraceae
    The ISME Journal (2018) 12:1994–2010 https://doi.org/10.1038/s41396-018-0150-9 ARTICLE Horizontal operon transfer, plasmids, and the evolution of photosynthesis in Rhodobacteraceae 1 2 3 4 1 Henner Brinkmann ● Markus Göker ● Michal Koblížek ● Irene Wagner-Döbler ● Jörn Petersen Received: 30 January 2018 / Revised: 23 April 2018 / Accepted: 26 April 2018 / Published online: 24 May 2018 © The Author(s) 2018. This article is published with open access Abstract The capacity for anoxygenic photosynthesis is scattered throughout the phylogeny of the Proteobacteria. Their photosynthesis genes are typically located in a so-called photosynthesis gene cluster (PGC). It is unclear (i) whether phototrophy is an ancestral trait that was frequently lost or (ii) whether it was acquired later by horizontal gene transfer. We investigated the evolution of phototrophy in 105 genome-sequenced Rhodobacteraceae and provide the first unequivocal evidence for the horizontal transfer of the PGC. The 33 concatenated core genes of the PGC formed a robust phylogenetic tree and the comparison with single-gene trees demonstrated the dominance of joint evolution. The PGC tree is, however, largely incongruent with the species tree and at least seven transfers of the PGC are required to reconcile both phylogenies. 1234567890();,: 1234567890();,: The origin of a derived branch containing the PGC of the model organism Rhodobacter capsulatus correlates with a diagnostic gene replacement of pufC by pufX. The PGC is located on plasmids in six of the analyzed genomes and its DnaA- like replication module was discovered at a conserved central position of the PGC. A scenario of plasmid-borne horizontal transfer of the PGC and its reintegration into the chromosome could explain the current distribution of phototrophy in Rhodobacteraceae.
    [Show full text]
  • Key Role of Alphaproteobacteria and Cyanobacteria in the Formation of Stromatolites of Lake Dziani Dzaha (Mayotte, Western Indian Ocean)
    fmicb-09-00796 May 18, 2018 Time: 17:53 # 1 ORIGINAL RESEARCH published: 22 May 2018 doi: 10.3389/fmicb.2018.00796 Key Role of Alphaproteobacteria and Cyanobacteria in the Formation of Stromatolites of Lake Dziani Dzaha (Mayotte, Western Indian Ocean) Emmanuelle Gérard1*, Siham De Goeyse1, Mylène Hugoni2, Hélène Agogué3, Laurent Richard4, Vincent Milesi1, François Guyot5, Léna Lecourt1, Stephan Borensztajn1, Marie-Béatrice Joseph1, Thomas Leclerc1, Gérard Sarazin1, Didier Jézéquel1, Christophe Leboulanger6 and Magali Ader1 1 UMR CNRS 7154 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, Paris, France, 2 Université Lyon 1, UMR CNRS 5557 / INRA 1418, Ecologie Microbienne, Villeurbanne, France, 3 UMR 7266 CNRS-Université de la Rochelle, LIttoral ENvironnement Et Sociétés, La Rochelle, France, Edited by: 4 School of Mining and Geosciences, Nazarbayev University, Astana, Kazakhstan, 5 Museum National d’Histoire Naturelle, Christophe Dupraz, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 CNRS Sorbonne Universités, Université Stockholm University, Sweden Pierre et Marie Curie, Institut de Recherche pour le Développement UMR 206, Paris, France, 6 UMR MARBEC, IRD, Ifremer, Reviewed by: CNRS, Université de Montpellier, Sète, France Trinity L. Hamilton, University of Minnesota Twin Cities, United States Lake Dziani Dzaha is a thalassohaline tropical crater lake located on the “Petite Terre” Virginia Helena Albarracín, Island of Mayotte (Comoros archipelago, Western Indian Ocean). Stromatolites are Center for Electron Microscopy (CIME), Argentina actively growing in the shallow waters of the lake shores. These stromatolites are *Correspondence: mainly composed of aragonite with lesser proportions of hydromagnesite, calcite, Emmanuelle Gérard dolomite, and phyllosilicates.
    [Show full text]
  • Limibaculum Halophilum Gen. Nov., Sp. Nov., a New Member of the Family Rhodobacteraceae
    TAXONOMIC DESCRIPTION Shin et al., Int J Syst Evol Microbiol 2017;67:3812–3818 DOI 10.1099/ijsem.0.002200 Limibaculum halophilum gen. nov., sp. nov., a new member of the family Rhodobacteraceae Yong Ho Shin,1 Jong-Hwa Kim,1 Ampaitip Suckhoom,2 Duangporn Kantachote2 and Wonyong Kim1,* Abstract A Gram-stain-negative, cream-pigmented, aerobic, non-motile, non-spore-forming and short-rod-shaped bacterial strain, designated CAU 1123T, was isolated from mud from reclaimed land. The strain’s taxonomic position was investigated by using a polyphasic approach. Strain CAU 1123T grew optimally at 37 C and at pH 7.5 in the presence of 2 % (w/v) NaCl. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain CAU 1123T formed a monophyletic lineage within the family Rhodobacteraceae with 93.8 % or lower sequence similarity to representatives of the genera Rubrimonas, Oceanicella, Pleomorphobacterium, Rhodovulum and Albimonas. The major fatty acids were C18 : 1 !7c and 11-methyl C18 : 1 !7c and the predominant respiratory quinone was Q-10. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, two unidentified phospholipids, one unidentified aminolipid and one unidentified lipid. The DNA G+C content was 71.1 mol%. Based on the data from phenotypic, chemotaxonomic and phylogenetic studies, it is proposed that strain CAU 1123T represents a novel genus and novel species of the family Rhodobacteraceae, for which the name Limibaculumhalophilum gen. nov., sp. nov. The type strain is CAU 1123T (=KCTC 52187T, =NBRC 112522T). The family Rhodobacteraceae was first established by Garr- chemotaxonomic properties along with a detailed phyloge- ity et al.
    [Show full text]
  • Detection of Microbial 16S Rrna Gene in the Blood of Patients with Parkinson’S Disease
    ORIGINAL RESEARCH published: 24 May 2018 doi: 10.3389/fnagi.2018.00156 Detection of Microbial 16S rRNA Gene in the Blood of Patients With Parkinson’s Disease Yiwei Qian 1†, Xiaodong Yang 1†, Shaoqing Xu 1, Chunyan Wu 2, Nan Qin 2*, Sheng-Di Chen 1* and Qin Xiao 1* 1Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, 2Department of Bioinformatics, Realbio Genomics Institute, Shanghai, China Emerging evidence suggests that the microbiota present in feces plays a role in Parkinson’s disease (PD). However, the alterations of the microbiome in the blood of PD patients remain unknown. To test this hypothesis, we conducted this case-control study to explore the microbiota compositions in the blood of Chinese PD patients. Microbiota communities in the blood of 45 patients and their healthy spouses were investigated using high-throughput Illumina HiSeq sequencing targeting the V3-V4 region of 16S ribosomal RNA (rRNA) gene. The relationships between the microbiota in the blood and Edited by: PD clinical characteristics were analyzed. No difference was detected in the structure Jiawei Zhou, and richness between PD patients and healthy controls. The following genera were Institute of Neuroscience, Shanghai Institutes for Biological Sciences enriched in the blood of PD patients: Isoptericola, Cloacibacterium, Enhydrobacter (CAS), China and Microbacterium; whereas genus Limnobacter was enriched in the healthy controls Reviewed by: after adjusting for age, gender, body mass index (BMI) and constipation. Additionally, Liu Zhihua, University of Chinese Academy of the findings regarding these genera were validated in another independent group of Sciences (UCAS), China 58 PD patients and 57 healthy controls using real-time PCR targeting genus-specific Shuo Yang, Nanjing Medical University, China 16S rRNA genes.
    [Show full text]
  • Abstract Tracing Hydrocarbon
    ABSTRACT TRACING HYDROCARBON CONTAMINATION THROUGH HYPERALKALINE ENVIRONMENTS IN THE CALUMET REGION OF SOUTHEASTERN CHICAGO Kathryn Quesnell, MS Department of Geology and Environmental Geosciences Northern Illinois University, 2016 Melissa Lenczewski, Director The Calumet region of Southeastern Chicago was once known for industrialization, which left pollution as its legacy. Disposal of slag and other industrial wastes occurred in nearby wetlands in attempt to create areas suitable for future development. The waste creates an unpredictable, heterogeneous geology and a unique hyperalkaline environment. Upgradient to the field site is a former coking facility, where coke, creosote, and coal weather openly on the ground. Hydrocarbons weather into characteristic polycyclic aromatic hydrocarbons (PAHs), which can be used to create a fingerprint and correlate them to their original parent compound. This investigation identified PAHs present in the nearby surface and groundwaters through use of gas chromatography/mass spectrometry (GC/MS), as well as investigated the relationship between the alkaline environment and the organic contamination. PAH ratio analysis suggests that the organic contamination is not mobile in the groundwater, and instead originated from the air. 16S rDNA profiling suggests that some microbial communities are influenced more by pH, and some are influenced more by the hydrocarbon pollution. BIOLOG Ecoplates revealed that most communities have the ability to metabolize ring structures similar to the shape of PAHs. Analysis with bioinformatics using PICRUSt demonstrates that each community has microbes thought to be capable of hydrocarbon utilization. The field site, as well as nearby areas, are targets for habitat remediation and recreational development. In order for these remediation efforts to be successful, it is vital to understand the geochemistry, weathering, microbiology, and distribution of known contaminants.
    [Show full text]
  • Descriptions of Amaricoccus Veronensis Sp. Nov., Amaricoccus Tamworthensis Sp
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, July 1997, p. 727-734 Vol. 47, No. 3 0020-7713/97/$04.00 + 0 Copyright 0 1997, International Union of Microbiological Societies Amaricoccus gen. nov., a Gram-Negative Coccus Occurring in Regular Packages or Tetrads, Isolated from Activated Sludge Biomass, and Descriptions of Amaricoccus veronensis sp. nov., Amaricoccus tamworthensis sp. nov., Amaricoccus macauensis sp. nov., and Amaricoccus kaplicensis sp. nov. A. M. MASZENAN,’ R. J. SEVIOUR,l* B. K. C. PATEL,2 G. N. REES,3t AND B. M. McDOUGALLl Biotechnology Research Centre, La Trobe University, Bendigo, Ectoria 3550, Faculty of Science and Technology, Grifith University, Nathan, Brisbane, Queensland 4111, and Faculty of Applied Science, University of Canberra, Belconnen, Australian Capital Territory 261 6, Australia Three isolates of gram-negative bacteria, strains Ben 10ZT, Ben 103T, and Ben 104T,were obtained in pure culture by micromanipulation from activated sludge biomass from wastewater treatment plants in Italy, Australia, and Macau, respectively. These isolates all had a distinctive morphology; the cells were cocci that usually were arranged in tetrads. Based on this criterion, they resembled other bacteria from activated sludge previously called “G” bacteria. On the basis of phenotypic characteristics and the results of 16s ribosomal DNA sequence analyses, the three isolates were very similar to each other, but were sufficiently different from their closest phylogenetic relatives (namely, the genera Rhodobacter, Rhodovulum, and Paracoccus in the (Y subdivision of the Proteobacteria) to be placed in a new genus, Amaricoccus gen. nov. Each of the three isolates represents a new species of the genus Amaricoccus; strains Ben 10ZT, Ben 103T, and Ben 104T are named Amaricoccus veronensis, Amaricoccus tamworthensis, and Amaricoccus mucauensis, respectively.
    [Show full text]
  • Genomic Analysis of the Evolution of Phototrophy Among Haloalkaliphilic Rhodobacterales
    GBE Genomic Analysis of the Evolution of Phototrophy among Haloalkaliphilic Rhodobacterales Karel Kopejtka1,2,Ju¨rgenTomasch3, Yonghui Zeng4, Martin Tichy1, Dimitry Y. Sorokin5,6,and Michal Koblızek1,2,* 1Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, CAS, Center Algatech, Trebon, Czech Republic 2Faculty of Science, University of South Bohemia, Ceske ´ Budejovice, Czech Republic 3Research Group Microbial Communication, Helmholtz Centre for Infection Research, Braunschweig, Germany 4Aarhus Institute of Advanced Studies, Aarhus, Denmark 5Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia 6Department of Biotechnology, Delft University of Technology, The Netherlands *Corresponding author: E-mail: [email protected]. Accepted: July 26, 2017 Data deposition: This project has been deposited at NCBI GenBank under the accession numbers: GCA_001870665.1, GCA_001870675.1, GCA_001884735.1. Abstract A characteristic feature of the order Rhodobacterales is the presence of a large number of photoautotrophic and photo- heterotrophic species containing bacteriochlorophyll. Interestingly, these phototrophic species are phylogenetically mixed with chemotrophs. To better understand the origin of such variability, we sequenced the genomes of three closely related haloalkaliphilic species, differing in their phototrophic capacity and oxygen preference: the photoheterotrophic and faculta- tively anaerobic bacterium Rhodobaca barguzinensis, aerobic photoheterotroph Roseinatronobacter
    [Show full text]
  • Appendix 1. Validly Published Names, Conserved and Rejected Names, And
    Appendix 1. Validly published names, conserved and rejected names, and taxonomic opinions cited in the International Journal of Systematic and Evolutionary Microbiology since publication of Volume 2 of the Second Edition of the Systematics* JEAN P. EUZÉBY New phyla Alteromonadales Bowman and McMeekin 2005, 2235VP – Valid publication: Validation List no. 106 – Effective publication: Names above the rank of class are not covered by the Rules of Bowman and McMeekin (2005) the Bacteriological Code (1990 Revision), and the names of phyla are not to be regarded as having been validly published. These Anaerolineales Yamada et al. 2006, 1338VP names are listed for completeness. Bdellovibrionales Garrity et al. 2006, 1VP – Valid publication: Lentisphaerae Cho et al. 2004 – Valid publication: Validation List Validation List no. 107 – Effective publication: Garrity et al. no. 98 – Effective publication: J.C. Cho et al. (2004) (2005xxxvi) Proteobacteria Garrity et al. 2005 – Valid publication: Validation Burkholderiales Garrity et al. 2006, 1VP – Valid publication: Vali- List no. 106 – Effective publication: Garrity et al. (2005i) dation List no. 107 – Effective publication: Garrity et al. (2005xxiii) New classes Caldilineales Yamada et al. 2006, 1339VP VP Alphaproteobacteria Garrity et al. 2006, 1 – Valid publication: Campylobacterales Garrity et al. 2006, 1VP – Valid publication: Validation List no. 107 – Effective publication: Garrity et al. Validation List no. 107 – Effective publication: Garrity et al. (2005xv) (2005xxxixi) VP Anaerolineae Yamada et al. 2006, 1336 Cardiobacteriales Garrity et al. 2005, 2235VP – Valid publica- Betaproteobacteria Garrity et al. 2006, 1VP – Valid publication: tion: Validation List no. 106 – Effective publication: Garrity Validation List no. 107 – Effective publication: Garrity et al.
    [Show full text]
  • Supplement of Biogeosciences, 16, 4229–4241, 2019 © Author(S) 2019
    Supplement of Biogeosciences, 16, 4229–4241, 2019 https://doi.org/10.5194/bg-16-4229-2019-supplement © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Supplement of Identifying the core bacterial microbiome of hydrocarbon degradation and a shift of dominant methanogenesis pathways in the oil and aqueous phases of petroleum reservoirs of different temperatures from China Zhichao Zhou et al. Correspondence to: Ji-Dong Gu ([email protected]) and Bo-Zhong Mu ([email protected]) The copyright of individual parts of the supplement might differ from the CC BY 4.0 License. 1 Supplementary Data 1.1 Characterization of geographic properties of sampling reservoirs Petroleum fluids samples were collected from eight sampling sites across China covering oilfields of different geological properties. The reservoir and crude oil properties together with the aqueous phase chemical concentration characteristics were listed in Table 1. P1 represents the sample collected from Zhan3-26 well located in Shengli Oilfield. Zhan3 block region in Shengli Oilfield is located in the coastal area from the Yellow River Estuary to the Bohai Sea. It is a medium-high temperature reservoir of fluvial face, made of a thin layer of crossed sand-mudstones, pebbled sandstones and fine sandstones. P2 represents the sample collected from Ba-51 well, which is located in Bayindulan reservoir layer of Erlian Basin, east Inner Mongolia Autonomous Region. It is a reservoir with highly heterogeneous layers, high crude oil viscosity and low formation fluid temperature. It was dedicated to water-flooding, however, due to low permeability and high viscosity of crude oil, displacement efficiency of water-flooding driving process was slowed down along the increase of water-cut rate.
    [Show full text]