Stock Annex | 1

Total Page:16

File Type:pdf, Size:1020Kb

Stock Annex | 1 ICES Stock Annex | 1 Stock Annex: Sole (Solea spp.) in divisions 8.c and 9.a (Cantabrian Sea and At- lantic Iberian waters) Stock-specific documentation of standard assessment procedures used by ICES. Stock Sole Group Working Group for the Bay of Biscay and Iberian Waters Ecoregion (WGBIE) Created Maria de Fatima Borges (WGBIE) May 2014 Last updated March 2021 Last updated by Maria Grazia Pennino and Catarina Maia A. General A.1. Stock definition Solea Solea is a widely distributed species in Northeast Atlantic shelf waters with a range from southern Norway including North Sea and western Baltic and Mediterra- nean Sea, to the Northwest of Africa inhabiting sandy and muddy bottoms at depths near to 100 and 200 meters (Quero et al., 1986). At present there is no information on stock unit definition for common sole in ICES subdivision 8.c and 9.a. It was considered that in the absence on specific information on stock structure, the subdivisions 8.c and 9.a may be used as a management unit. A.2. Fishery The unit management of the common sole stock in the Iberian Atlantic waters includes the ICES subdivisions 8.c and 9.a. where both the Portuguese and Spanish fleets oper- ate. In this area common sole is target mainly by multispecies fleets using as main fish- ing gears trammel and gillnets. The minimum landing size of sole species is 24 cm. There are other regulations regarding the mesh size for trammel and trawl nets, fishing grounds and vessel’s size. Sole species are under the Landing Obligation in divisions 8.abde (all bottom trawls, mesh sizes between 70 mm and 100 mm, all beam trawls, mesh sizes between 70 mm and 100 mm and all trammel and gillnets, mesh size larger or equal to 100 mm) and in Division 9.a (all trammel nets and gillnets, mesh size larger or equal to 100 mm). In Portugal all catches of sole species from all gears and mesh sizes are under the Landing Obligation (more restrictively than required by European regulations). The EU multiannual plan (MAP; EU, 2019) for stocks in the Western Waters and adja- cent waters applies to this stock. The MAP stipulates that when the FMSY ranges are not available, fishing opportunities should be based on the best available scientific advice. A.3. Ecosystem aspects The life cycle of common sole is complex and presents different ontogenetic migrations (Tanner et al., 2017). Common sole spawn in coastal waters at depths ranging from 30 to 100 m (van der Land, 1991). The spawning period is commonly between February and May, although it can occur in early winter in warmer areas. The development of the larvae is temperature-dependent and takes place in shallow waters (Tanner et al., 2 | ICES Stock Annex 2017). It is during transport from spawning areas to coastal nurseries that the larvae metamorphose into benthic life (Marchand, 1991). Nursery areas are generally located within estuaries where juveniles of common sole spend up to two years in a residence phase before returning to the adult feeding and spawning areas on the continental shelf (e.g. Vasconcelos et al., 2010). B. Data B.1. Commercial catch During the WGBIE2020, Portuguese's colleagues highlighted that catches from Portu- gal have a problem of misidentification in some ports with the three species (i.e. Solea solea, Solea senegalensis, Pegusa lascaris and Solea spp.) (Dinis et al., 2020). For the WKWEST2021 benchmark, using data from the Data Collection Framework (DCF) sampling, Portuguese catches were proportionally divided by sole species ap- plying the species weight proportion to the total weight of Soleidae in each year, land- ing port, and semester and using a simple random sampling estimator, following Figueiredo et al. (2020). Details on data available and catch estimation procedures can be found in Annex 2 of the working document Pennino et al. (2021). At the moment the new Portuguese catches are considered reliable. In addition, from the WKWEST2021 data call, catches for S. solea were also reported by France and now are available in InterCatch from 2009 to 2019 (Figure 1). Information on discards indicates that discarding can be considered negligible (< 1%). For the years 2009–2010, only catches from Spain and France are available, while for the other years (2011–2019) catches are available for the three countries (i.e. Portugal, Spain and France) (Figure 2). Figure 1: Catches for Solea solea by category (landings, discards and BMS landing) in the ICES divisions 8c9a for Portugal, Spain and France from 2009 to 2019. Source data: InterCatch. ICES Stock Annex | 3 Figure 2: Catches for Solea solea in the ICES divisions 8c9a by country from 2009 to 2019. Source data: InterCatch. When catches are analysed by division it is possible to see that the majority of them are in the ICES Division 9a and that, although different fleets fish this stock, the two main ones are the polyvalent fleet from Portugal (i.e. “MIS_MIS_0_0_0”) and the trammel net fleet from Spain (i.e. “GRT_DEF_60-79_0_0”) (Figure 3). The distribution of the catches is almost homogenous along the year for the two main countries (i.e. Portugal and Spain), as well as for the main fleets (Figure 4). 4 | ICES Stock Annex Figure 3: Catches for Solea solea by the main fleet in the ICES divisions 8c9a for Portugal, Spain and France from 2009 to 2019. Source data: InterCatch. Figure 4: Catches for Solea solea by quarter in the ICES divisions 8c9a for Portugal, Spain and France from 2009 to 2019. Source data: InterCatch. Length frequency distribution ICES Stock Annex | 5 In InterCatch, data on length frequency distribution are available for the years 2011– 2019 (Figure 5). The majority of the data are of the polyvalent fleet (i.e. métier “MIS_MIS_0_0_0”) from Portugal. Figure 5: Length frequency distribution of catches for Solea solea in the ICES divisions 8c9a by year (from 2011 to 2019) for Portugal, Spain and France. Source data: Inter- Catch. Other sole species For the WKWEST21 an official data call was requested for this stock to get all the pos- sible data, not only for the common sole (S. Solea) but also for the other sole species Solea senegalensis, Pegusa lascaris and Solea spp. (Figure 6). For Portugal, S. Senegalensis and P. lascaris landings and length frequency distribution are available for the period 2011–2019. Solea spp. landings are also available for the pe- riod 2011–2019. For Spain, S. Senegalensis, P. lascaris and Solea spp. landings are availa- ble for the period 2009–2019. No French data on these species were available. 6 | ICES Stock Annex Figure 6: Sole species landings for the Division 8c9a. Data are from Spain and Portu- gal together. B.2. Biological Growth studies based on S. solea otolith readings in the Portuguese coast indicate Linf 52.1 cm for and 45.7 cm for while the growth coefficient (k) estimate of females (K=0.23) was slightly higher than for males (k=0.21) and to estimates were -0.11 and 1.57 for fe- males and males respectively (Teixeira and Cabral, 2010). Common sole length of first maturity was estimated as 25 cm for males and 27 cm for females (Jardim et al., 2011). The natural mortality parameter M is not known for this stock but for the stock of com- mon sole ICES Division 8a, is used a M of 0.2. A recent study of Cerim et al. (2020) defined the M of the common sole as M= 0.31 yr-1. L95 is not known for this stock but for the common sole ICES Division 8a, b is 27.5 (see stock annex sol-bisc division 8a,b). Bayesian length–weight: a=0.00759 (0.00629–0.00915), b=3.06 (3.00–3.12), in cm Total Length, based on LWR estimates for this species (Froese et al., 2014). B.3. Surveys Common sole data were collected during the scientific survey series SP-NSGFS Q4 per- formed by the Instituto Español de Oceanografía (IEO) in autumn (September and Oc- tober) between 2000 and 2019. Surveys were conducted on the northern continental shelf of the Iberian Peninsula (ICES divisions 8c and the northern part of 9a) which has a total surface area of almost 18 000 km2 (Figure 7). ICES Stock Annex | 7 Surveys were performed using a stratified sampling design based on depth with three bathymetric strata: 70–120 m, 121–200 m and 201–500 m. Sampling stations consisted of 30 minute trawling hauls located randomly within each stratum at the beginning of the design. The gear used is the baka 44/60 and the survey follow the protocol of the International Bottom Trawl Survey Working Group (IBTSWG) of ICES (ICES, 2017). Figure 7: Map of the study area. Black dots represent annual sampling locations. However, the common sole is a species with a biological bathymetric range between 0 and 200 meters in the Iberian Atlantic waters. The SP-NSGFS Q4 only covers partially the common sole bathymetric range and the resultant abundance index is probably underestimated. For this reason, and with the aim to correct this sampling bias, a hur- dle Bayesian spatiotemporal was applied to this dataset. Two response variables were analysed in order to characterize the spatiotemporal be- haviour of common sole individuals. Firstly, a presence/absence variable was consid- ered to measure the occurrence probability of the species. Secondly, the weight by haul (kg) was used as an indicator of the conditional-to-presence abundance of the species. As environmental variable we used the bathymetry. Bathymetry values were retrieved from the European Marine Observation and Data Network (EMODnet, http://www.emodnet.eu/) with a spatial resolution of 0.02 x 0.02 decimal degrees (20 m).
Recommended publications
  • FISH LIST WISH LIST: a Case for Updating the Canadian Government’S Guidance for Common Names on Seafood
    FISH LIST WISH LIST: A case for updating the Canadian government’s guidance for common names on seafood Authors: Christina Callegari, Scott Wallace, Sarah Foster and Liane Arness ISBN: 978-1-988424-60-6 © SeaChoice November 2020 TABLE OF CONTENTS GLOSSARY . 3 EXECUTIVE SUMMARY . 4 Findings . 5 Recommendations . 6 INTRODUCTION . 7 APPROACH . 8 Identification of Canadian-caught species . 9 Data processing . 9 REPORT STRUCTURE . 10 SECTION A: COMMON AND OVERLAPPING NAMES . 10 Introduction . 10 Methodology . 10 Results . 11 Snapper/rockfish/Pacific snapper/rosefish/redfish . 12 Sole/flounder . 14 Shrimp/prawn . 15 Shark/dogfish . 15 Why it matters . 15 Recommendations . 16 SECTION B: CANADIAN-CAUGHT SPECIES OF HIGHEST CONCERN . 17 Introduction . 17 Methodology . 18 Results . 20 Commonly mislabelled species . 20 Species with sustainability concerns . 21 Species linked to human health concerns . 23 Species listed under the U .S . Seafood Import Monitoring Program . 25 Combined impact assessment . 26 Why it matters . 28 Recommendations . 28 SECTION C: MISSING SPECIES, MISSING ENGLISH AND FRENCH COMMON NAMES AND GENUS-LEVEL ENTRIES . 31 Introduction . 31 Missing species and outdated scientific names . 31 Scientific names without English or French CFIA common names . 32 Genus-level entries . 33 Why it matters . 34 Recommendations . 34 CONCLUSION . 35 REFERENCES . 36 APPENDIX . 39 Appendix A . 39 Appendix B . 39 FISH LIST WISH LIST: A case for updating the Canadian government’s guidance for common names on seafood 2 GLOSSARY The terms below are defined to aid in comprehension of this report. Common name — Although species are given a standard Scientific name — The taxonomic (Latin) name for a species. common name that is readily used by the scientific In nomenclature, every scientific name consists of two parts, community, industry has adopted other widely used names the genus and the specific epithet, which is used to identify for species sold in the marketplace.
    [Show full text]
  • Fisheries Centre
    Fisheries Centre The University of British Columbia Working Paper Series Working Paper #2015 - 80 Reconstruction of Syria’s fisheries catches from 1950-2010: Signs of overexploitation Aylin Ulman, Adib Saad, Kyrstn Zylich, Daniel Pauly and Dirk Zeller Year: 2015 Email: [email protected] This working paper is made available by the Fisheries Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada. Reconstruction of Syria’s fisheries catches from 1950-2010: Signs of overexploitation Aylin Ulmana, Adib Saadb, Kyrstn Zylicha, Daniel Paulya, Dirk Zellera a Sea Around Us, Fisheries Centre, University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada b President of Syrian National Committee for Oceanography, Tishreen University, Faculty of Agriculture, P.O. BOX; 1408, Lattakia, Syria [email protected] (corresponding author); [email protected]; [email protected]; [email protected]; [email protected] ABSTRACT Syria’s total marine fisheries catches were estimated for the 1950-2010 time period using a reconstruction approach which accounted for all fisheries removals, including unreported commercial landings, discards, and recreational and subsistence catches. All unreported estimates were added to the official data, as reported by the Syrian Arab Republic to the United Nation’s Food and Agriculture Organization (FAO). Total reconstructed catch for 1950-2010 was around 170,000 t, which is 78% more than the amount reported by Syria to the FAO as their national catch. The unreported components added over 74,000 t of unreported catches, of which 38,600 t were artisanal landings, 16,000 t industrial landings, over 4,000 t recreational catches, 3,000 t subsistence catches and around 12,000 t were discards.
    [Show full text]
  • Age, Growth and Population Dynamics of Lemon Sole Microstomus Kitt(Walbaum 1792)
    Age, growth and population dynamics of lemon sole Microstomus kitt (Walbaum 1792) sampled off the west coast of Ireland By Joan F. Hannan Masters Thesis in Fish Biology Galway-Mayo Institute of Technology Supervisors of Research Dr. Pauline King and Dr. David McGrath Submitted to the Higher Education and Training Awards Council July 2002 Age, growth and population dynamics of lemon sole Microstomus kitt (Walbaum 1792) sampled off the west coast of Ireland Joan F. Hannan ABSTRACT The age, growth, maturity and population dynamics o f lemon sole (Microstomus kitt), captured off the west coast o f Ireland (ICES division Vllb), were determined for the period November 2000 to February 2002. The maximum age recorded was 14 years. Males o f the population were dominated by 4 year olds, while females were dominated by 5 year olds. Females dominated the sex ratio in the overall sample, each month sampled, at each age and from 22cm in total length onwards (when N > 20). Possible reasons for the dominance o f females in the sex ratio are discussed. Three models were used to obtain the parameters o f the von Bertalanfly growth equation. These were the Ford-Walford plot (Beverton and Holt 1957), the Gulland and Holt plot (1959) and the Rafail (1973) method. Results o f the fitted von Bertalanffy growth curves showed that female lemon sole o ff the west coast o f Ireland grew faster than males and attained a greater size. Male and female lemon sole mature from 2 years o f age onwards. There is evidence in the population o f a smaller asymptotic length (L«, = 34.47cm), faster growth rate (K = 0.1955) and younger age at first maturity, all o f which are indicative o f a decrease in population size, when present results are compared to data collected in the same area 22 years earlier.
    [Show full text]
  • Fish and Fish Populations
    Intended for Energinet Document type Report Date March 2021 THOR OWF TECHNICAL REPORT – FISH AND FISH POPULATIONS THOR OWF TECHNICAL REPORT – FISH AND FISH POPULATIONS Project name Thor OWF environmental investigations Ramboll Project no. 1100040575 Hannemanns Allé 53 Recipient Margot Møller Nielsen, Signe Dons (Energinet) DK-2300 Copenhagen S Document no 1100040575-1246582228-4 Denmark Version 5.0 (final) T +45 5161 1000 Date 05/03/2021 F +45 5161 1001 Prepared by Louise Dahl Kristensen, Sanne Kjellerup, Danni J. Jensen, Morten Warnick https://ramboll.com Stæhr Checked by Anna Schriver Approved by Lea Bjerre Schmidt Description Technical report on fish and fish populations. Rambøll Danmark A/S DK reg.no. 35128417 Member of FRI Ramboll - THOR oWF TABLE OF CONTENTS 1. Summary 4 2. Introduction 6 2.1 Background 6 3. Project Plan 7 3.1 Turbines 8 3.2 Foundations 8 3.3 Export cables 8 4. Methods And Materials 9 4.1 Geophysical survey 9 4.1.1 Depth 10 4.1.2 Seabed sediment type characterization 10 4.2 Fish survey 11 4.2.1 Sampling method 12 4.2.2 Analysis of catches 13 5. Baseline Situation 15 5.1 Description of gross area of Thor OWF 15 5.1.1 Water depth 15 5.1.2 Seabed sediment 17 5.1.3 Protected species and marine habitat types 17 5.2 Key species 19 5.2.1 Cod (Gadus morhua L.) 20 5.2.2 European plaice (Pleuronectes platessa L.) 20 5.2.3 Sole (Solea solea L.) 21 5.2.4 Turbot (Psetta maxima L.) 21 5.2.5 Dab (Limanda limanda) 22 5.2.6 Solenette (Buglossidium luteum) 22 5.2.7 Herring (Clupea harengus) 22 5.2.8 Sand goby (Pomatoschistus minutus) 22 5.2.9 Sprat (Sprattus sprattus L.) 23 5.2.10 Sandeel (Ammodytes marinus R.
    [Show full text]
  • Fish Bulletin 161. California Marine Fish Landings for 1972 and Designated Common Names of Certain Marine Organisms of California
    UC San Diego Fish Bulletin Title Fish Bulletin 161. California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California Permalink https://escholarship.org/uc/item/93g734v0 Authors Pinkas, Leo Gates, Doyle E Frey, Herbert W Publication Date 1974 eScholarship.org Powered by the California Digital Library University of California STATE OF CALIFORNIA THE RESOURCES AGENCY OF CALIFORNIA DEPARTMENT OF FISH AND GAME FISH BULLETIN 161 California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California By Leo Pinkas Marine Resources Region and By Doyle E. Gates and Herbert W. Frey > Marine Resources Region 1974 1 Figure 1. Geographical areas used to summarize California Fisheries statistics. 2 3 1. CALIFORNIA MARINE FISH LANDINGS FOR 1972 LEO PINKAS Marine Resources Region 1.1. INTRODUCTION The protection, propagation, and wise utilization of California's living marine resources (established as common property by statute, Section 1600, Fish and Game Code) is dependent upon the welding of biological, environment- al, economic, and sociological factors. Fundamental to each of these factors, as well as the entire management pro- cess, are harvest records. The California Department of Fish and Game began gathering commercial fisheries land- ing data in 1916. Commercial fish catches were first published in 1929 for the years 1926 and 1927. This report, the 32nd in the landing series, is for the calendar year 1972. It summarizes commercial fishing activities in marine as well as fresh waters and includes the catches of the sportfishing partyboat fleet. Preliminary landing data are published annually in the circular series which also enumerates certain fishery products produced from the catch.
    [Show full text]
  • Culture of Solea Spp
    Culture of Solea spp. Dinis M.T., Reis J. Marine aquaculture finfish species diversification Zaragoza : CIHEAM Cahiers Options Méditerranéennes; n. 16 1995 pages 9-19 Article available on line / Article disponible en ligne à l’adresse : -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- http://om.ciheam.org/article.php?IDPDF=96605560 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- To cite this article / Pour citer cet article -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Dinis M.T., Reis J. Culture of Solea spp.. Marine aquaculture finfish species diversification . Zaragoza : CIHEAM, 1995. p. 9-19 (Cahiers Options Méditerranéennes; n. 16) -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- http://www.ciheam.org/ http://om.ciheam.org/ CIHEAM - Options Mediterraneennes Culture of Solea spp. M.T DINIS J. REIS U.C.T.R.A., UNIVERSIDADE DO ALGARVE CAMPUS DE GAMBELAS 8000 FARO PORTUGAL SUMMARY - This paperdeals with the broodstock managementand larval rearing of Soleasenegalensis Kaup obtained in a pilot-research project in Portugal since Soleasenegalensis, is a common
    [Show full text]
  • APPENDIX 1 Classified List of Fishes Mentioned in the Text, with Scientific and Common Names
    APPENDIX 1 Classified list of fishes mentioned in the text, with scientific and common names. ___________________________________________________________ Scientific names and classification are from Nelson (1994). Families are listed in the same order as in Nelson (1994), with species names following in alphabetical order. The common names of British fishes mostly follow Wheeler (1978). Common names of foreign fishes are taken from Froese & Pauly (2002). Species in square brackets are referred to in the text but are not found in British waters. Fishes restricted to fresh water are shown in bold type. Fishes ranging from fresh water through brackish water to the sea are underlined; this category includes diadromous fishes that regularly migrate between marine and freshwater environments, spawning either in the sea (catadromous fishes) or in fresh water (anadromous fishes). Not indicated are marine or freshwater fishes that occasionally venture into brackish water. Superclass Agnatha (jawless fishes) Class Myxini (hagfishes)1 Order Myxiniformes Family Myxinidae Myxine glutinosa, hagfish Class Cephalaspidomorphi (lampreys)1 Order Petromyzontiformes Family Petromyzontidae [Ichthyomyzon bdellium, Ohio lamprey] Lampetra fluviatilis, lampern, river lamprey Lampetra planeri, brook lamprey [Lampetra tridentata, Pacific lamprey] Lethenteron camtschaticum, Arctic lamprey] [Lethenteron zanandreai, Po brook lamprey] Petromyzon marinus, lamprey Superclass Gnathostomata (fishes with jaws) Grade Chondrichthiomorphi Class Chondrichthyes (cartilaginous
    [Show full text]
  • Intrinsic Vulnerability in the Global Fish Catch
    The following appendix accompanies the article Intrinsic vulnerability in the global fish catch William W. L. Cheung1,*, Reg Watson1, Telmo Morato1,2, Tony J. Pitcher1, Daniel Pauly1 1Fisheries Centre, The University of British Columbia, Aquatic Ecosystems Research Laboratory (AERL), 2202 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada 2Departamento de Oceanografia e Pescas, Universidade dos Açores, 9901-862 Horta, Portugal *Email: [email protected] Marine Ecology Progress Series 333:1–12 (2007) Appendix 1. Intrinsic vulnerability index of fish taxa represented in the global catch, based on the Sea Around Us database (www.seaaroundus.org) Taxonomic Intrinsic level Taxon Common name vulnerability Family Pristidae Sawfishes 88 Squatinidae Angel sharks 80 Anarhichadidae Wolffishes 78 Carcharhinidae Requiem sharks 77 Sphyrnidae Hammerhead, bonnethead, scoophead shark 77 Macrouridae Grenadiers or rattails 75 Rajidae Skates 72 Alepocephalidae Slickheads 71 Lophiidae Goosefishes 70 Torpedinidae Electric rays 68 Belonidae Needlefishes 67 Emmelichthyidae Rovers 66 Nototheniidae Cod icefishes 65 Ophidiidae Cusk-eels 65 Trachichthyidae Slimeheads 64 Channichthyidae Crocodile icefishes 63 Myliobatidae Eagle and manta rays 63 Squalidae Dogfish sharks 62 Congridae Conger and garden eels 60 Serranidae Sea basses: groupers and fairy basslets 60 Exocoetidae Flyingfishes 59 Malacanthidae Tilefishes 58 Scorpaenidae Scorpionfishes or rockfishes 58 Polynemidae Threadfins 56 Triakidae Houndsharks 56 Istiophoridae Billfishes 55 Petromyzontidae
    [Show full text]
  • Measuring Consciousness in Turbot (Scophthalmus Maximus) and Common Sole (Solea Solea) Subjected to Electrical Stunning Before Slaughter
    Measuring consciousness in turbot (Scophthalmus maximus) and common sole (Solea solea) subjected to electrical stunning before slaughter M.B.M. Bracke1*, A.H. Daskalova3, J.W. van de Vis2, E. Lambooij1 1 Livestock Research, Wageningen UR, Lelystad, The Netherlands * [email protected] 2 Wageningen UR IMARES, IJmuiden, The Netherlands 3 Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria Keywords: Electrical stunning; Fish; Slaughter; Animal welfare; EEG; Behaviour In order to limit painful experiences all animals including fish should be rendered unconscious before slaughter. We subjected two species of flatfish, turbot (Scophthalmus maximus) and common sole (Solea solea) to dry (de- watered) electrical stunning. In one group the fish were exposed to a short stun (1 s) followed by a second, long stun (20 s) after 1 min of recovery. In the second group the fish were exposed to a long stun (20 s). The electrical potential difference for the short stun was set to approximately 110-120 Vrms for turbot and 150 Vrms for sole. For the long stun the potensial difference was set to 50 Vrms. This resulted in a short-stun current of 2.3 ± 1.0 Arms in turbot and 1.2 ± 0.7 Arms in sole, while the long-stun currents were 4.0 ± 1.3 Arms for 1 s + 1.0 ± 1.0 Arms for 19 s in turbot in group 1, and 1.2 ± 0.6 Arms for 1 s + 0.4 ± 0.2 Arms for 19 s for sole in group 2. The objective was to examine whether the fish lost consciousness immediately (within 1 s) and did not recover when submersed in ice water immediately after the long stun.
    [Show full text]
  • On a Possible Case of Mimicry in the Common Sole. by A
    MIMICRY IN TEE COMMON SOLE. 239 On a Possible Case of Mimicry in the Common Sole. By A. T. MASTERMAN, M.A., D.Sc., F.L.8. [Read 6th March, 1908.1 THEREare two common species of Weever (Trachinids) found in British waters, namely, the Greater Weever (Trachinus draco) and the Lesser Weever (Traclii?ivs aipera). Both are venoinous, and the ‘poison is concen- trated at the spines of the first dorsal fin and the opercular spine in its immediate neighbourhood. The habits of T. vipera are the better known. On all occasions it attempts to bury itself in the sand until only the top of its head, with eyes and mouth, and dorsal fins are above the surface. In this position it apparently lies in wait for the shrimps and small fry which form its food. As a probable adaptation to this habit, the eyes and mouth of the fish are elevated into a dorsal position, so that the least possible surface oE the body need be exposed above the sand. The habits of T. draco are closely similar. It is abundant off the coast of Norway, and on occasions it is taken in great shoals. Of its habits Professor Smitt remarks * :- “The Great Weever lives in water of a moderate depth with a sandy bottom. It buries itself in the sand and keeps in hiding, in order more suddenly to attack its prey, which consists of small fishes and crustaceans.” In British waters 1. draco is found further off-shore and in deeper water than 7’. vipera. The experience of our trawlers in the Southern North Sea and in the English Channel is that 7.
    [Show full text]
  • Fish, Crustaceans, Molluscs, Etc Capture Production by Species
    440 Fish, crustaceans, molluscs, etc Capture production by species items Atlantic, Northeast C-27 Poissons, crustacés, mollusques, etc Captures par catégories d'espèces Atlantique, nord-est (a) Peces, crustáceos, moluscos, etc Capturas por categorías de especies Atlántico, nordeste English name Scientific name Species group Nom anglais Nom scientifique Groupe d'espèces 2002 2003 2004 2005 2006 2007 2008 Nombre inglés Nombre científico Grupo de especies t t t t t t t Freshwater bream Abramis brama 11 2 023 1 650 1 693 1 322 1 240 1 271 1 299 Freshwater breams nei Abramis spp 11 1 543 1 380 1 412 1 420 1 643 1 624 1 617 Common carp Cyprinus carpio 11 11 4 2 - 0 - 1 Tench Tinca tinca 11 1 2 5 5 10 9 13 Crucian carp Carassius carassius 11 69 45 28 45 24 38 30 Roach Rutilus rutilus 11 4 392 3 630 3 467 3 334 3 409 3 571 3 339 Rudd Scardinius erythrophthalmus 11 2 1 - - - - - Orfe(=Ide) Leuciscus idus 11 211 216 164 152 220 220 233 Vimba bream Vimba vimba 11 277 149 122 129 84 99 97 Sichel Pelecus cultratus 11 523 532 463 393 254 380 372 Asp Aspius aspius 11 23 23 20 17 27 26 4 White bream Blicca bjoerkna 11 - - - - - 0 1 Cyprinids nei Cyprinidae 11 63 59 34 80 132 91 121 Northern pike Esox lucius 13 2 307 2 284 2 102 2 049 3 125 3 077 3 077 Wels(=Som)catfish Silurus glanis 13 - - 0 0 1 1 1 Burbot Lota lota 13 346 295 211 185 257 247 242 European perch Perca fluviatilis 13 5 552 6 012 5 213 5 460 6 737 6 563 6 122 Ruffe Gymnocephalus cernuus 13 31 - 2 1 2 2 1 Pike-perch Sander lucioperca 13 2 363 2 429 2 093 1 698 2 017 2 117 1 771 Freshwater
    [Show full text]
  • Predicting the Impact of Climate Change on Threatened Species in UK Waters
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of East Anglia digital repository Predicting the Impact of Climate Change on Threatened Species in UK Waters Miranda C. Jones1,2,3*, Stephen R. Dye2, Jose A. Fernandes1, Thomas L. Fro¨ licher4, John K. Pinnegar2, Rachel Warren1,3, William W. L. Cheung5 1 School of Environmental Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom, 2 Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, Suffolk, United Kingdom, 3 Tyndall Centre for Climate Change Research, Norwich, Norfolk, United Kingdom, 4 Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey, United States of America, 5 Changing Ocean Research Unit, Fisheries Centre, University of British Columbia, Vancouver, British Columbia, Canada Abstract Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study.
    [Show full text]