Appendix: Pioneers of Semiconductor Physics Remember

Total Page:16

File Type:pdf, Size:1020Kb

Appendix: Pioneers of Semiconductor Physics Remember Appendix: Pioneers of Semiconductor Physics Remember... Semiconductor physics has a long and distinguished history. The early devel­ opments culminated in the invention of the transistor by Bardeen, Shockley, and Brattain in 1948. More recent work led to the discovery of the laser diode by three groups independently in 1962. Many prominent physicists have con­ tributed to this fertile and exciting field. In the following short contributions some of the pioneers have recaptured the historic moments that have helped to shape semiconductor physics as we know it today. They are (in alphabetical order): Elias Burstein Emeritus Mary Amanda Wood Professor of Physics, University of Pennsylvania, Philadelphia, PA, USA. Editor-in-chief of Solid State Communications 1969-1992; John Price Wetherill Medal, Franklin Institute 1979; Frank Isakson Prize, American Physical Society, 1986. Marvin Cohen Professor of Physics, University of California, Berkeley, CA, USA. Oliver Buckley Prize, American Physical Society, 1979; Julius Edgar Lilienfeld Prize, American Physical Society, 1994. Leo Esaki President, Tsukuba University, Tsukuba, Japan. Nobel Prize in Physics, 1973. Eugene Haller Professor of Materials Science and Mineral Engineering, University of California, Berkeley, CA, USA. Alexander von Humboldt Senior Scientist Award, 1986. Max Planck Research Award, 1994. Conyers Herring Professor of Applied Physics, Stanford University, Stanford, CA, USA. Oliver Buckley Prize, American Physical Society, 1959; Wolf Prize in Physics, 1985. 538 Appendix Charles Kittel Emeritus Professor of Physics, University of California, Berkeley, CA, USA. Oliver Buckley Prize, American Physical Society, 1957; Oersted Medal, American Association of Physics Teachers, 1978. Neville Smith Scientific Program Head, Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, CA, USA. c.J Davisson and L.H. Germer Prize, American Physical Society, 1991. Jan Taue Emeritus Professor of Physics and Engineering, Brown University, Providence, RI, USA. Alexander von Humboldt Senior Scientist Award, 1981; Frank Isakson Prize, American Physical Society, 1982. Klaus von Klitzing Director, Max-Planck-Institut fUr Festkorperforschung, Stuttgart, Germany. Nobel Prize in Physics, 1985. Ultra-Pure Germanium 539 Ultra-Pure Germanium: From Applied to Basic Research or an Old Semiconductor Offering New Opportunities Eugene E. Haller University of California, Berkeley, USA Imagine arriving one morning at the laboratory and somebody comes to ask you if single crystals of germanium with a doping impurity concentration in the 1010_1011 cm3 range can be grown! You quickly compare this concentra­ tion with the number of Ge atoms per cm - 3, which is close to 4 x 1022 . Well, you pause and wonder how anybody can ask if a 99.999999999% pure sub­ stance can be made. The purest chemicals available are typically 6 or 7 nines pure. Robert N. Hall of the General Electric Company proposed in 1968 [1] that such crystals could be grown and that they would be most useful in fab­ ricating very large volume (up to 400 cm3) p-i-n junctions working as gamma­ ray detectors [2]. When I arrived at Berkeley as a postdoc I joined the group of ES. (Fred) Goulding, who headed one of the leading groups of semiconductor detector and electronics experts at the Lawrence Berkeley Laboratory (LBL), then called the Radiation Laboratory. There I met w,L. (Bill) Hansen, who had started the race towards the ultra-pure Ge single-crystal goal believed to be at­ tainable by Hall. Bill was extremely knowledgeable in chemistry, physics, and general laboratory techniques. In addition, he was the fastest-working experi­ mentalist I had ever encountered. Somewhat overwhelmed, I started to work with Bill and Fred on these Ge crystals. When Bill tried out various Czochral­ ski crystal growth configurations [3], he rigorously pursued ultra-purity by us­ ing the simplest crystal growth design, the purest synthetic silica (Si02) con­ tainer for the Ge melt, and hydrogen gas purified in a Pd diffusion system. I, on the other hand, tried to build up an arsenal of characterization techniques which would allow us to find out within hours the purity and crystalline per­ fection we had achieved. The IEEE meetings on nuclear science, which were held every fall, provided the forum where we "crossed swords" with Hall [4- 7]. It was a close race. Hall had the advantage of enormous experience, which started way back when Ge was first purified and single crystals were grown for transistors. We had the advantage of blissful ignorance but also excellent and helpful colleagues. Furthermore, nobody could match Bill's agility in try­ ing out new purification and crystal growth methods. One major development for us was learning, through Hall, about a super-sensitive photoconductivity technique which was capable of identifying extremely small numbers of im­ purities in Ge single crystals. The technique had been discovered by Russian scientists at the Institute of Radio-engineering and Electronics in Moscow [8, 6.85]; see Figs. 6.39 and 6.40. They found that a two-step ionization process of 540 Appendix shallow hydrogenic donors or acceptors in a very cold crystal would lead to photoconductivity peaks which were very sharp and unique for each dopant species. Paul Richards, of the Physics Department at the University of Califor­ nia at Berkeley, had a home-built Fourier-transform far-infrared spectrometer and the necessary liquid helium temperature dewar. By the end of the first day of experimenting we had a spectrum of a p-type high-purity Ge crystal with only 1010 cm-3 net amount of acceptors and we knew also that phosphorus and aluminum were the major residual impurities. In parallel with a number of novel and interesting physics studies we fabri­ cated gamma-ray detectors at LBL. We broke records in the resolution of the gamma-ray photopeaks with our ultra-pure crystals [2]. Soon the commercial detector manufacturers became interested and started their own ultra-pure Ge crystal-pulling programs. In a few years several companies in the US and in Europe succeeded in developing large-diameter (~ 8 cm) single crystals with incredibly good yield, excellent purity « 2 X 1010 cm - 3) and very small con­ centrations (108 cm-3) of deep-level defects which would detrimentally affect the charge collection in large-size coaxial p-i-n diodes. In order to achieve the best spectral resolution, electrons and holes had to have mean-free-paths of up to several meters. Most semiconductor physicists simply shook their heads and could not comprehend these numbers. How pure is ultra-pure Ge? The person who cares only about electrically active impurities would say that crystals with a few 1010 cm-3 of impurities are routinely grown. But are there other inactive impurities? Yes, of course there are. Hydrogen, oxygen, silicon and carbon are usually present at con­ centrations of up to 1014 cm-3, depending on the crystal growth conditions. These impurities do not interfere with Ge's operation as radiation detectors provided certain rules are followed: no heating to temperatures above 350°C and no rapid temperature changes. Can we reduce the concentration of these four electrically inactive impurities? Yes, we can, but we pay a price. Elimi­ nating hydrogen by growing in vacuum leads to the introduction of impurities which can no longer be "flushed" out of the crystal puller. Furthermore, hy­ drogen will passivate the very small concentrations of deep-level defects and impurities which are always present. Free oxygen and silicon are generated by the reduction of the ultra-pure silica crucible by the liquid Ge. We do not know of any substance which can replace silica with, perhaps, the exception of graphite. Numerous attempts to grow ultra-pure Ge in graphite crucibles have failed so far because the resultant crystals contain too many Al acceptors. Most recently, the interest in Ge has sharply increased because isotopically pure Ge can be obtained from Russia. Isotopically pure Ge bulk crystals [9- 12] and isotope superlattices [13] have been grown. New phonon physics and electronic transport studies are currently being pursued by several groups with these isotopically controlled crystals and multilayers. Have we arrived at the ultimately ideal material: isotopically and chemi­ cally pure and crystallographically perfect Ge single crystals? Perhaps the an­ swer is no, but I certainly do not know of another parameter that can be con­ trolled. Ultra-Pure Germanium 541 References 1 R.N. Hall: in Proc. of the 12th Int. Conf on Physics of Semiconductors, ed. by M.H. Pilkuhn (Teubner, Stuttgart 1974), p. 363 2 E.E. Haller, ES. Goulding: Handbook on Semiconductors, Vol. 4, ed. by C. Hilsum (Elsevier, New York 1993), Chap. 11, p. 937-963 3 w.L. Hansen, E.E. Haller: Mater. Res. Soc. Proc. 16, 1 (1983) 4 R.N. Hall, T.1. Soltys: IEEE Trans. Nucl. Sci. NS-18, 160 (1971) 5 E.E. Haller, w.L. Hansen, ES. Goulding: IEEE Trans. Nucl. Sci. NS-20, 481 (1973) 6 E.E. Haller, w.L. Hansen, G.S. Hubbard, ES. Goulding: IEEE Trans. Nucl. Sci. NS- 23, 81 (1976) 7 E.E. Haller, w.L. Hansen, ES. Goulding: Adv. Phys. 30, 93 (1981) 8 E.E. Haller: Physics 146B, 201 (1987) 9 E.E. Haller: Semicond. Sci. Techno!. 5, 319 (1990) 10 E.E. Haller: Solid State Phenom. 32-33, 11 (1993) 11 G. Davies, 1. Hartung, V. Ozhogin, K. Itoh, w.L. Hansen, E.E. Haller: Semicond. Sci. Techno!. 8, 127 (1993) 12 H.D. Fuchs, P. Etchegoin, M. Cardona, K. Itoh, E.E. Haller: Phys. Rev. Lett. 70, 1715 (1993) 13 1. Spitzer, T. Ruf, M. Cardona, W. Dondl, R. Schorer, G. Abstreiter, E.E. Haller: Phys. Rev. Lett. 72, 1565 (1994) 542 Appendix Two Pseudopotential Methods: Empirical and Ab Initio Marvin L. Cohen University of California, Berkeley, USA It took a relatively long time to develop methods capable of determining the detailed electronic structure of solids.
Recommended publications
  • Curriculum Vitae
    Sidney Perkowitz Curriculum vitae 2549 Cosmos Dr. Telephone: 404/374-1470 Atlanta, GA 30345 December 2017 [email protected] Website: http://www.sidneyperkowitz.net/ @physp Facebook: http://tinyurl.com/7tu87rx Portfolio: https://sidneyperkowitz.contently.com/ PERSONAL Born: Brooklyn, New York. Married, one child. EDUCATION University of Pennsylvania, Philadelphia, Pennsylvania Ph. D. in solid state physics, June, 1967 (Frazier Fellowship) Thesis adviser: Elias Burstein M. S. in physics, June, 1962 Polytechnic University, New York B. S. in physics, summa cum laude, June, 1960 PROFESSIONAL INTERESTS Research: optical properties of condensed matter including semiconductors and superconductors, and biological materials; infrared, Raman, synchrotron, and picosecond spectroscopy; characterization of technological materials. Writing, teaching, and lecturing: physics and science for nonscientists; science writing and science journalism; science and art; science in film and the theater. PROFESSIONAL EXPERIENCE 2011 – date: Charles Howard Candler Professor Emeritus of Physics, Emory University 1987 - 2011: Charles Howard Candler Professor of Physics, Emory University (1979, Professor; 1974, Associate Professor; 1969, Assistant Professor), 1990 - 1991: Visiting Senior Scientist, Southeastern Universities Research Association, Washington, DC 1989 - 2000: Adjunct Professor of Liberal Arts, Atlanta College of Art 1983 - 84: Visiting Professor of Physics, University of California at Santa Barbara 1966 - 69: Solid State Physicist, GT&E Laboratories, Bayside,
    [Show full text]
  • April 17-19, 2018 the 2018 Franklin Institute Laureates the 2018 Franklin Institute AWARDS CONVOCATION APRIL 17–19, 2018
    april 17-19, 2018 The 2018 Franklin Institute Laureates The 2018 Franklin Institute AWARDS CONVOCATION APRIL 17–19, 2018 Welcome to The Franklin Institute Awards, the a range of disciplines. The week culminates in a grand United States’ oldest comprehensive science and medaling ceremony, befitting the distinction of this technology awards program. Each year, the Institute historic awards program. celebrates extraordinary people who are shaping our In this convocation book, you will find a schedule of world through their groundbreaking achievements these events and biographies of our 2018 laureates. in science, engineering, and business. They stand as We invite you to read about each one and to attend modern-day exemplars of our namesake, Benjamin the events to learn even more. Unless noted otherwise, Franklin, whose impact as a statesman, scientist, all events are free, open to the public, and located in inventor, and humanitarian remains unmatched Philadelphia, Pennsylvania. in American history. Along with our laureates, we celebrate his legacy, which has fueled the Institute’s We hope this year’s remarkable class of laureates mission since its inception in 1824. sparks your curiosity as much as they have ours. We look forward to seeing you during The Franklin From sparking a gene editing revolution to saving Institute Awards Week. a technology giant, from making strides toward a unified theory to discovering the flow in everything, from finding clues to climate change deep in our forests to seeing the future in a terahertz wave, and from enabling us to unplug to connecting us with the III world, this year’s Franklin Institute laureates personify the trailblazing spirit so crucial to our future with its many challenges and opportunities.
    [Show full text]
  • Structuring American Solid State Physics, 1939–1993 A
    Solid Foundations: Structuring American Solid State Physics, 1939–1993 A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Joseph Daniel Martin IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Michel Janssen, Co-Advisor Sally Gregory Kohlstedt, Co-Advisor May 2013 © Joseph Daniel Martin 2013 Acknowledgements A dissertation is ostensibly an exercise in independent research. I nevertheless struggle to imagine completing one without incurring a litany of debts—intellectual, professional, and personal—similar to those described below. This might be a single-author project, but authorship is just one of many elements that brought it into being. Regrettably, this space is too small to convey full appreciation for all of them, but I offer my best attempt. I am foremost indebted to my advisors, Michel Janssen and Sally Gregory Kohlstedt, for consistent encouragement and keen commentary. Michel is one of the most incisive critics it has been my pleasure to know. If the arguments herein exhibit any subtlety, clarity, or grace it is in no small part because they steeped in Michel’s witty and weighty marginalia. I am grateful to Sally for the priceless gift of perspective. She has never let my highs carry me too high, or my lows lay me too low, and her selfless largess, bestowed in time and wisdom, has challenged me to become a humbler learner and a more conscientious colleague. My committee has enriched my scholarly life in ways that will shape my thinking for the rest of my career. Bill Wimsatt, a true intellectual force multiplier, lent me his peerless ability to distill insight from scholarship in any field.
    [Show full text]
  • Appendix A: Pioneers of Semiconductor Physics Remember
    Appendix A: Pioneers of Semiconductor Physics Remember... Semiconductor physics has a long and distinguished history. The early devel- opments culminated in the invention of the transistor by Bardeen, Shockley, and Brattain in 1948. More recent work led to the discovery of the laser diode by three groups independently in 1962. Many prominent physicists have con- tributed to this fertile and exciting field. In the following short contributions some of the pioneers have recaptured the historic moments that have helped to shape semiconductor physics as we know it today. They are (in alphabetical order): Elias Burstein Emeritus Mary Amanda Wood Professor of Physics, University of Pennsylvania, Philadelphia, PA, USA. Editor-in-chief of Solid State Communications 1969–1992; John Price Wetherill Medal, Franklin Institute 1979; Frank Isakson Prize, American Physical Society, 1986. Marvin Cohen Professor of Physics, University of California, Berkeley, CA, USA. Oliver Buckley Prize, American Physical Society, 1979; Julius Edgar Lilienfeld Prize, American Physical Society, 1994. Leo Esaki President, Tsukuba University, Tsukuba, Japan. Nobel Prize in Physics, 1973. Eugene Haller Professor of Materials Science and Mineral Engineering, University of California, Berkeley, CA, USA. Alexander von Humboldt Senior Scientist Award, 1986. Max Planck Research Award, 1994. Conyers Herring Professor of Applied Physics, Stanford University, Stanford, CA, USA. Oliver Buckley Prize, American Physical Society, 1959; Wolf Prize in Physics, 1985. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors, Graduate Texts in Physics, 4th ed., DOI 10.1007/978-3-642-00710-1, © Springer-Verlag Berlin Heidelberg 2010 554 Appendix A Charles Kittel Emeritus Professor of Physics, University of California, Berkeley, CA, USA.
    [Show full text]
  • Biographical Information: Arjun G. Yodh
    BIOGRAPHICAL INFORMATION: ARJUN G. YODH See Group Website for more information: https://web.sas.upenn.edu/yodh-lab/ EDUCATION 1986 Ph.D., Harvard University, Division of Applied Sciences 1982 M.S., Harvard University, Division of Applied Sciences 1981 B.Sc., Cornell University, School of Applied and Engineering Physics POSITIONS HELD 1997- Professor of Physics and Astronomy, University of Pennsylvania 1997- Professor of Radiation Oncology, University of Pennsylvania 1993-97 Associate Professor of Physics, University of Pennsylvania 1988-93 Assistant Professor of Physics, University of Pennsylvania 1987-88 Postdoctoral Research Associate with Harry W. K. Tom, AT&T Bell Labs 1986-87 Postdoctoral Research Associate with Steven Chu, AT&T Bell Labs 1982-86 Research Assistant (RA) with Thomas W. Mossberg, Harvard University HONORS, APPOINTMENTS, FELLOWSHIPS, MEMBERSHIPS James M. Skinner Professor of Science, Endowed Chair, Univ. of Pennsylvania (2000- ) Director, PENN Laboratory for Research on Structure of Matter (LRSM) (2009-20) Director, NSF Materials Research Science & Engineering Center (MRSEC) (2009-20) Co-Director, NSF Partnership for Res. & Edu. in Materials (PREM), U Puerto Rico (2009-20) Elected Member at Large, Medical Physics Group (GMED), APS (2020-23) Elected Electorate Nominating Committee, AAAS (2017-20) Alexander von Humboldt Senior Research Award, Heinrich-Heine-Un. of Düsseldorf (2015-18) Raymond and Beverly Sackler Lecturer, Tel-Aviv University (2015-16) Visiting Professor, École Supérieure of Industrial Physics & Chemistry
    [Show full text]
  • Appendix: Pioneers of Semiconductor Physics Remember
    Appendix: Pioneers of Semiconductor Physics Remember... Semiconductor physics has a long and distinguished history. The early devel- opments culminated in the invention of the transistor by Bardeen, Shockley, and Brattain in 1948. More recent work led to the discovery of the laser diode by three groups independently in 1962. Many prominent physicists have con- tributed to this fertile and exciting field. In the following short contributions some of the pioneers have recaptured the historic moments that have helped to shape semiconductor physics as we know it today. They are (in alphabetical order): Elias Burstein Emeritus Mary Amanda Wood Professor of Physics, University of Pennsylvania, Philadelphia, PA, USA. Editor-in-chief of Solid State Communications 1969–1992; John Price Wetherill Medal, Franklin Institute 1979; Frank Isakson Prize, American Physical Society, 1986. Marvin Cohen Professor of Physics, University of California, Berkeley, CA, USA. Oliver Buckley Prize, American Physical Society, 1979; Julius Edgar Lilienfeld Prize, American Physical Society, 1994. Leo Esaki President, Tsukuba University, Tsukuba, Japan. Nobel Prize in Physics, 1973. Eugene Haller Professor of Materials Science and Mineral Engineering, University of California, Berkeley, CA, USA. Alexander von Humboldt Senior Scientist Award, 1986. Max Planck Research Award, 1994. Conyers Herring Professor of Applied Physics, Stanford University, Stanford, CA, USA. Oliver Buckley Prize, American Physical Society, 1959; Wolf Prize in Physics, 1985. 554 Appendix Charles Kittel Emeritus Professor of Physics, University of California, Berkeley, CA, USA. Oliver Buckley Prize, American Physical Society, 1957; Oersted Medal, American Association of Physics Teachers, 1978. Neville Smith Scientific Program Head, Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, CA, USA.
    [Show full text]
  • ED026268.Pdf
    DOCUMENT RESUME 11 ED 026 268 SE 006 034 By -Barisch, Sylvia Directory of Physics & Astronomy Faculties 1968-1969, United States,Canada, Mexico. American Inst. of Physics, New York, N.Y. .. Report No-R-135.7 Pub Date 68 Note-213p. Available from-The American Institute of Physics, 335 East 45 Street, NewYork, N.Y. 10017 ($5.00) EDRS Price MF-$1.00 HC-$10.75 Descriptors-*Astronomy, College Faculty, *College Science, Curriculum, Directories,Educational Programs, Graduate Study, *Physics, *Physics Teachers, Undergraduate Study Identifiers.- Ar vrican Institute of Physics This directory is the tenth edition published by the AmericanInstitute of Physics listing colleges and universities which offer degreeprograms in physics, astronomy and astrophysics, and the staff members who teach thecourses. Institutions in the United States, Canada, and Mexicoare indexed separately, both geographically and alphabetically. Also included isan alphabetical indek of personnel. The document is available for sale by Department DAPD, the American Institute ofPhysics, 335 East 45 Street, New York, New York 10017, price $5.00. (GR) -.. --',..- 4ttsioropm.righ /RECTO PHYSICS & ASTR ...Y FACULTIES1 1969 UNITED STATES CANADA I MEXICO s - - - i) - - . r_ tt U S DEPARTMENT Of HEALTH EDUCATION & WELFARE OFFICE Of EDUCATION THIS DOCUMENT HAS BEEN REKOD:_FD EXACTLY AS RECEIV:D FROM THE )ERSON OR ORGANIZATION ORISINATING IT POINTS Of VIEW OR OPINIONS S'ATEJ DO NOT NECESSARILY PEPRESENT OFFICIAL OFFICE OF EDUCATION PCSITION OR PO'..ICY , * , + t ..+, ,..,.-,. .1. Ca:. - -,.. - , ts _ - 41 ) s: -. - ',',...3,,,_ c -- - .-,, '0'- _ -, tt't-,), _ .'Y .-ct, ,;,---,,,,,,,- t--, -.rfe - 4 ;:': e-...,- : 0:4_, O'i -.. - t _ *s, :::-.", r.,--4, .4 --A,-, 0 -.,,, -- ....,-_:134,,- - - 0 ., Q9 , 0i '.% .J, ".t..
    [Show full text]
  • 265Th Commencement Program 2021
    265 th COMMENCEMENT MAY 17, 2021 Class of 2021265th COMMENCEMENT MAY 17, 2021 CLASS OF 2021 Keeping Franklin’s Promise In the words of one elegiac tribute, “Great men have two lives: one which occurs while they work on this earth; a second which begins at the day of their death and continues as long as their ideas and conceptions remain powerful.” These words befit the great Benjamin Franklin, whose inventions, innovations, ideas, writings, and public works continue to shape our thinking and renew the Republic he helped to create and the institutions he founded, including the University of Pennsylvania. Nowhere does Franklin feel more contemporary, more revolutionary, and more alive than at the University of Pennsylvania. His startling vision of a secular, nonsectarian Academy that would foster an “Inclination join’d with an Ability to serve Mankind, one’s Country, Friends and Family” has never ceased to challenge Penn to redefine the scope and mission of the modern American university. When pursued vigorously and simultaneously, the two missions – developing the inclination to do good and the ability to do well – merge to help form a more perfect university that educates more capable citizens for our democracy. Penn has embodied and advanced Franklin’s revolutionary vision for 281 years. Throughout its history, Penn has extended the frontiers of higher learning and research to produce graduates and scholars whose work has enriched the nation and all of humanity. The modern liberal arts curriculum as we know it can trace its roots to Franklin’s innovation to have Penn students study international commerce and foreign languages.
    [Show full text]
  • May 1-5, 2017 the 2017 Franklin Institute AWARDS CONVOCATION MAY 1–5, 2017
    May 1-5, 2017 The 2017 Franklin Institute AWARDS CONVOCATION MAY 1–5, 2017 Welcome to The Franklin Institute Awards, the In this convocation book, you will find biographies United States’ oldest comprehensive science awards of our 2017 laureates. We invite you to read about program. From uncovering the Earth’s past deep each one and to attend the events listed within beneath frozen ground to revolutionizing technology these pages. Unless noted otherwise, all events are through light, from understanding the human brain’s free, open to the public, and located in Philadelphia, intricacies to explaining the materials of the future and Pennsylvania. developing new ways to create them, from unlocking the mechanisms of disease to demonstrating that We hope that this year’s remarkable class of laureates working together leads to success, this year’s Franklin sparks your curiosity and expands your interest in the Institute laureates exemplify the incredible range of exploration of science and technology. talent involved in the discovery and development of new scientific ideas and the transformation of those ideas from theory to application. The Franklin Institute presents, as part of its Awards Week celebration of science, a series of learning opportunities for the public, so that its internationally distinguished laureates can share their discoveries, experiences, and perspectives with the greater Philadelphia community. These events offer a unique insider’s view on research activities in a range of disciplines. The week culminates in a grand medaling ceremony, befitting the distinction of this historic awards program. We thank Bank of America for its support as Presenting Sponsor of the Awards Donald E.
    [Show full text]
  • Sidney Perkowitz Curriculum Vitae
    Sidney Perkowitz Curriculum vitae Physics Department Telephone: 404/727-4321 Emory University FAX: 404/727-0873 400 Dowman Drive [email protected] Atlanta, GA 30322-2430 http://www.sidneyperkowitz.net/ July 2011 http://www.physics.emory.edu/faculty/perkowitz.html PERSONAL Born: Brooklyn, New York. Married, one child. EDUCATION University of Pennsylvania, Philadelphia, Pennsylvania Ph. D. in solid state physics, June, 1967 (Frazier Fellowship) Thesis adviser: Elias Burstein M. S. in physics, June, 1962 Polytechnic University, New York B. S. in physics, summa cum laude, June, 1960 PROFESSIONAL INTERESTS Research: optical properties of condensed matter including semiconductors and superconductors, and biological materials; infrared, Raman, synchrotron, and picosecond spectroscopy; characterization of technological materials. Writing, teaching, and lecturing: physics and science for nonscientists; science writing and science journalism; science and art; science in film and the theater. PROFESSIONAL EXPERIENCE 1987 - date: Charles Howard Candler Professor of Condensed Matter Physics, Emory University, Atlanta. (1979 - Professor; 1974 - Associate Professor; 1969 - Assistant Professor, Emory University) 1990 - 1991: Visiting Senior Scientist, Southeastern Universities Research Association, Washington, DC 1989 - 2000: Adjunct Professor of Liberal Arts, Atlanta College of Art 1983 - 84: Visiting Professor of Physics, University of California at Santa Barbara 1966 - 69: Solid State Physicist, GT & E Laboratories, Bayside, NY 2 ADMINISTRATIVE EXPERIENCE
    [Show full text]
  • Elias Burstein 1917–2017
    Elias Burstein 1917–2017 A Biographical Memoir by James M. Kikkawa, Eugene Mele, Aron Pinczuk, Erio Tosatti, and Arjun G. Yodh ©2019 National Academy of Sciences. Any opinions expressed in this memoir are those of the authors and do not necessarily reflect the views of the National Academy of Sciences. ELIAS BURSTEIN September 30, 1917–June 17, 2017 Elected to the NAS, 1979 Elias Burstein was an American physicist whose work in condensed-matter science spanned nearly seven decades. Known in particular for his pioneering funda- mental research in the optical physics of solids, Eli was highly regarded as well for his organization of meetings, conferences, and symposia that brought together scien- tists from around the world, and for his mentoring of numerous younger physicists.1 Born in Brooklyn, New York, Eli earned a B.A. degree in chemistry from Brooklyn College in 1938 and an M.A. in chemistry from the University of Kansas in 1941. Over the next two years he took graduate courses in chemistry and physics at MIT, but his doctoral studies were interrupted by World War II. In 1944 Eli worked on war-related projects in By James M. Kikkawa, MIT’s Physics Department, and in 1945 he joined the U.S. Eugene Mele, Aron Pinczuk, Erio Tosatti, Naval Research Laboratory (NRL) in Washington, DC, as a and Arjun G. Yodh member of the physics section of its crystal branch. Eli served as head of the crystal branch from 1948 to1958. A noteworthy achievement during that time occurred in 1954, when he interpreted an apparent shift of the optical absorption edge in semiconductors as a manifestation of the Pauli principle.
    [Show full text]
  • Full Technical Report 2019 Ii
    Full Technical Report 2019 ii This document is the full technical report of ICTP for the year 2019. For the non-technical description of 2019 highlights, please see the printed “ICTP: A Year in Review” publication. iii Contents Research ............................................................................................................................................................ 1 High Energy, Cosmology and Astroparticle Physics (HECAP) ........................................................................... 2 Phenomenology of Particle Physics ............................................................................................................ 2 Cosmology ................................................................................................................................................. 5 The ICTP ATLAS Experimental group at the CERN Large Hadron Collider ..................................................... 5 String and Quantum Field Theories ............................................................................................................ 6 Training Activities ....................................................................................................................................... 8 Interdisciplinary Activities .......................................................................................................................... 8 Outside Activities ......................................................................................................................................
    [Show full text]