Texas Artificial Reef Fishery Management Plan

Total Page:16

File Type:pdf, Size:1020Kb

Texas Artificial Reef Fishery Management Plan Texas Artificial Reef Fishery Management Plan by C. Dianne Stephan Brett G. Dansby Hal R. Osburn Gary C. Matlock Robin K. Riechers Ralph Rayburn Fishery Management Plan Series Number 3 Texas Parks and Wildlife Department Coastal Fisheries Branch 4200 Smith School Road Austin, Texas 78744 EXECUTIVE SUMMARY rtificial reefs can be used Texas Parks and Wildlife Code. international law and national with other fishery manage- Meetings with Department staff fishing law and does not create Ament techniques designed and the Committee were held in any unreasonable obstruction to to achieve optimum yield from January, May, August, and Octo- navigation; fisheries. The Texas legislature ber of 1990. These meetings were (6) uses the best scientific recognized this potential with the also open to and attended by information available; and passage of the Artificial Reef Act members of the public and other (7) conforms to the state of 1989, which directed the Texas state officials. Meetings were artificial reef plan. Parks and Wildlife Department recorded and transcripts are Recommendations which (Department) to promote, develop, available upon request. have been developed in the maintain, monitor, and enhance All comments received Artificial Reef Plan to guide the the artificial reef potential in state were carefully considered. As Department’s artificial reef pro- waters and federal waters adjacent directed by the Legislature, the gram include the following: to Texas. The act defined an Committee consisted of a • The Department should be artificial reef as a structure or representative of each of the made a permitting agency for system of structures constructed, following: (1) salt water sports artificial reef development in placed, or permitted in the navi- fishing organization, (2) off- Texas and the adjacent Exclu- sive Economic Zone, with authority to deny any permit for proposed artificial reef The Artificial Reef Act of 1989 provided construction which does not conform to the Texas Artificial guidance for planning and developing Reef Plan. • Subsequent to the adoption artificial reefs in a cost effective manner to of the Artificial Reef Plan, an advisory committee consisting minimize conflicts and environmental risks. of persons from groups with interest in artificial reefs should be selected by the Chairman of gable water of Texas or water of shore oil and gas company, (3) the Texas Parks and Wildlife the federal exclusive economic Texas tourist industry, (4) General Commission for the purpose of zone adjacent to Texas for the Land Office, (5) shrimping organi- advising the Department on purpose of enhancing fishery zation, (6) Texas diving club, (7) implementation of the Plan. resources and commercial and Attorney General’s Office, (8) • The specific locations for recreational fishing opportuni- Texas university, and (9) artificial reef development ties. Enhancement of fishery environmental group. should be within the priority resources is considered to be the The Artificial Reef Act of areas identified in the Plan. restoration or creation of habitat 1989 provided guidance for • Artificial reefs should be to improve recruitment and planning and developing artifi- constructed as benthic reefs spawning potential of reef cial reefs in a cost effective using ships, oil platforms, or associated species, while enhanc- manner to minimize conflicts and similarly constructed materials ement of fishing opportunities is environmental risks. As directed arranged in as complex a the creation or improvement of by the legislature, an artificial fishing opportunities. To fulfill reef covered under this Plan must fashion as possible without these purposes, the Department be sited, constructed, maintained, jeopardizing structural integ- was directed to develop a state monitored, and managed in a rity, and oriented in a fashion artificial reef plan in accordance manner that: which maximizes effectiveness, with Chapter 89 of the Texas (1) enhances and conserves durability and stability. Parks and Wildlife code. fishery resources to the maxi- • The Department should The Texas Artificial Reef mum extent practicable; actively pursue acquiring off- Plan is a product of a process (2) facilitates access and shore platforms for use as designed to maximize the input use by Texas recreational and artificial reefs in the Gulf of of those interest groups most commercial fishermen; Mexico, in deference to other affected by the placement of (3) minimizes conflicts structures. artificial reefs in salt waters. The among competing uses of • The cost of the Department’s Plan has been reviewed by the water and water resources; artificial reef development, Texas Artificial Reef Advisory (4) minimizes environ- maintenance, and marking pro- Committee, created to advise and mental risks and risks to per- make recommendations to the sonal and public health and gram should not exceed revenues Department on details and property; accumulated in the Artificial specifications of the plan, in (5) is consistent with gen- Reef Fund. The cost of creating accordance with Chapter 89 of erally accepted principles of and maintaining artificial reefs should be borne by the donor; recreational and commercial mandates and to continue to however, the Department should fishing to achieve optimum determine fishery harvest minimize these costs to the yield, minimize impacts on trends, economics and impacts maximum extent possible. other users of the water column, of sociological influences. • The Artificial Reef Fund and minimize environmental, • Continued assessment and should be the sole source of property and health risks. evaluation of the Department’s funds for costs to the Depart- • The liability incurred by the activities by the Texas Parks and ment associated with artificial Department through any Wildlife Commission are reefs. Any donation of artifi- donations of artificial reef necessary to meet legislative cial reef material should be material should be minimized to mandates and to address data accompanied by at least 50% the maximum extent possible. needs reviewed in this Plan. of the realized savings to the • The Department should • The Department should donor. Costs associated with continue to work with other continue to maintain a high donation of an artificial reef groups to coordinate artificial level of interdepartmental and should be included when cal- reef development and manage- interagency communication to culating potential savings. ment. more fully benefit from the • Existing oil and gas plat- • Fishery resource harvest free flow of information con- forms located in the priority from artificial reefs should be cerning artificial reef research, areas for artificial reef develop- regulated to satisfy fishery adverse environmental con- ment should be deployed as management objectives of the ditions and changes in economic artificial reefs as near their regulating entities within Texas and societal goals. current location and in a form and the adjacent Exclusive • The Department should take as close to their current form Economic Zone. advantage of the opportunities as possible. • The Department’s present afforded by the creation of • Oil and gas platforms monitoring program should be artificial reefs for scientific located within excluded areas enhanced to meet legislative study and education of the at the time of removal should be mandates and to continue to public, including recreational placed as near as possible to determine trends in population spectators (e.g., nonconsump- artificial reefs located in abundance and stability, mov- tive divers). priority areas. ement, growth, mortality and Implementation of the Texas • The specific location for the impacts of environmental Artificial Reef Plan should insure materials not already present influences on reef associated the continued enhancement of within the priority areas species. fishery resources and fishing should be at sites that maxi- • The Department’s present opportunities for future Texans. mize enhancement of fishery monitoring program should be By doing so, many other Texans resources and opportunities for enhanced to meet legislative and visitors to Texas will benefit directly and indirectly. INTRODUCTION rtificial reefs are any Fisheries Conservation Zone. from man’s placement of struc- structures placed by man The Department manages tures and rigid materials in the Ain the environment which the fisheries of the state to achieve aquatic environment. For exam- alter the natural habitat. As such, optimum yield. For purposes of ple, the indiscriminate dumping artificial reefs represent a tool by the Plan, optimum yield is defined of various materials of opportu- which man can elicit changes in as the amount of resources that nity in the Gulf of Mexico (Gulf) the ecosystem to achieve benefits. the fisheries will produce on a has led to interference with nav- In general, the benefits sought continuing basis to achieve the igation, expensive marking, and through the use of artificial reefs maximum economic benefits to sites inaccessible to anglers. The have been the enhancement of the fishing industries and the state specific goals to be achieved with fishery resources with a con- as modified by any relevant artificial reef placement have comitant increase in fishing social or ecological factors. seldom been clearly defined, opportunities. As with any tool, Stated simply, fisheries should leading to conflicts among com- however, artificial reefs can be be managed by the State in a way peting interests as well
Recommended publications
  • Marais Des Cygnes River Basin Total Maximum Daily Load
    MARAIS DES CYGNES RIVER BASIN TOTAL MAXIMUM DAILY LOAD Waterbody: Pomona Lake Water Quality Impairment: Eutrophication & Siltation 1. INTRODUCTION AND PROBLEM IDENTIFICATION Subbasin: Upper Marais Des Cygnes County: Osage, Wabaunsee and Lyon HUC 8: 10290101 HUC 10 (12): 02 (01, 02, 03, 04, 05, 06, 07, 08) Ecoregion: Central Irregular Plains, Osage Cuestas (40b) Flint Hills (28) Drainage Area: 322 square miles Conservation Pool: Surface Area = 3,621 acres Watershed/Lake Ratio: 57:1 Maximum Depth = 38 feet Mean Depth = 16 feet Storage Volume = 55,670 acre feet Estimated Retention Time = 0.45 years Mean Annual Inflow = 149,449 acre feet Mean Annual Discharge = 136,729 acre feet Constructed: 1962 Designated Uses: Primary Contact Recreation Class A; Expected Aquatic Life Support; Domestic Water Supply; Food Procurement; Ground Water Recharge; Industrial Water Supply; Irrigation Use; Livestock Watering Use. 303(d) Listings: 2002, 2004, 2008, 2010 & 2012 Marais Des Cygnes River Basin Lakes Impaired Use: All uses in Pomona Lake are impaired to a degree by eutrophication Water Quality Criteria: General – Narrative: Taste-producing and odor-producing substances of artificial origin shall not occur in surface waters at concentrations that interfere with the production of potable water by conventional water treatment processes, that impart an unpalatable flavor to edible aquatic or semiaquatic life or terrestrial wildlife, or that result in noticeable odors in the vicinity of surface waters (KAR 28-16-28e(b)(7). 1 Nutrients - Narrative: The introduction of plant nutrients into streams, lakes, or wetlands from artificial sources shall be controlled to prevent the accelerated succession or replacement of aquatic biota or the production of undesirable quantities or kinds of aquatic life (KAR 28-16- 28e(c)(2)(A)).
    [Show full text]
  • Sediment Transport in the San Francisco Bay Coastal System: an Overview
    Marine Geology 345 (2013) 3–17 Contents lists available at ScienceDirect Marine Geology journal homepage: www.elsevier.com/locate/margeo Sediment transport in the San Francisco Bay Coastal System: An overview Patrick L. Barnard a,⁎, David H. Schoellhamer b,c, Bruce E. Jaffe a, Lester J. McKee d a U.S. Geological Survey, Pacific Coastal and Marine Science Center, Santa Cruz, CA, USA b U.S. Geological Survey, California Water Science Center, Sacramento, CA, USA c University of California, Davis, USA d San Francisco Estuary Institute, Richmond, CA, USA article info abstract Article history: The papers in this special issue feature state-of-the-art approaches to understanding the physical processes Received 29 March 2012 related to sediment transport and geomorphology of complex coastal–estuarine systems. Here we focus on Received in revised form 9 April 2013 the San Francisco Bay Coastal System, extending from the lower San Joaquin–Sacramento Delta, through the Accepted 13 April 2013 Bay, and along the adjacent outer Pacific Coast. San Francisco Bay is an urbanized estuary that is impacted by Available online 20 April 2013 numerous anthropogenic activities common to many large estuaries, including a mining legacy, channel dredging, aggregate mining, reservoirs, freshwater diversion, watershed modifications, urban run-off, ship traffic, exotic Keywords: sediment transport species introductions, land reclamation, and wetland restoration. The Golden Gate strait is the sole inlet 9 3 estuaries connecting the Bay to the Pacific Ocean, and serves as the conduit for a tidal flow of ~8 × 10 m /day, in addition circulation to the transport of mud, sand, biogenic material, nutrients, and pollutants.
    [Show full text]
  • Cover and Final Landform Design for the B-Zone Waste Rock Pile at Rabbit Lake Mine
    Cover and final landform design for the B-zone waste rock pile at Rabbit Lake Mine Brian Ayres1, Pat Landine2, Les Adrian2, Dave Christensen1, Mike O’Kane1 1O’Kane Consultants Inc., Saskatoon, Saskatchewan, Canada 2Cameco Corporation, Saskatoon, Saskatchewan, Canada Abstract. A detailed study was undertaken to evaluate various cover system and final landform designs for the B-zone waste rock pile at Rabbit Lake Mine in Can- ada. Several tasks were completed including physical and hydraulic characteriza- tion of the waste and potential cover materials and numerical modelling to exam- ine erosion and slope stability. Soil-atmosphere numeric simulations were conducted to predict net infiltration and oxygen ingress rates through several cover system alternatives. A seepage numerical modelling programme was com- pleted to predict current and future seepage rates from the base of the pile for al- ternate cover system designs. Several final landform alternatives were developed for the pile along with a preliminary design for a surface water management sys- tem. The potential impact of various physical, chemical, and biological processes on the sustainable performance of the final landform was also considered. This paper provides an overview of the investigations completed towards the develop- ment of a cover system and final landform design for the B-zone waste rock pile. Introduction Rabbit Lake Mine, owned and operated by Cameco Corporation, began operation in 1975, and is the longest operating uranium production facility in Saskatchewan, Canada. The operation is located 700 km north of Saskatoon (Fig. 1). Historic and current operations at this site include four open pits, one underground mine, sev- eral mine waste storage facilities, and a mill.
    [Show full text]
  • Why Did the Southern Gulf of California Rupture So Rapidly?—Oblique Divergence Across Hot, Weak Lithosphere Along a Tectonically Active Margin
    Why did the Southern Gulf of California rupture so rapidly?—Oblique divergence across hot, weak lithosphere along a tectonically active margin breakup, is mainly dependent on the thermal structure, crust- Paul J. Umhoefer, Geology Program, School of Earth Sciences & Environmental Sustainability, Northern Arizona University, al thickness, and crustal strength of the lithosphere when Flagstaff, Arizona 86011, USA; [email protected] rifting begins (e.g., Buck, 2007), as well as forces at the base of the lithosphere and far-field plate interactions (Ziegler and Cloetingh, 2004). ABSTRACT Continental rupture at its two extremes creates either large Rifts in the interior of continents that evolve to form large ocean basins or small and narrow marginal seas depending oceans typically last for 30 to 80 m.y. and longer before com- largely on the tectonic setting of the rift. Rupture of a conti- plete rupture of the continent and onset of sea-floor spreading. nent that creates large oceans most commonly initiates as A distinct style of rifts form along the active tectonic margins of rifts in old, cold continental lithosphere or within former continents, and these rifts more commonly form marginal seas large collisional belts in the interior of large continents, part and terranes or continental blocks or slivers that are ruptured of the process known as the Wilson Cycle (Wilson, 1966). away from their home continent. The Gulf of California and the Rupture to create narrow marginal seas commonly occurs in Baja California microplate make up one of the best examples active continental margins and results in the formation of of the latter setting and processes.
    [Show full text]
  • The Gulf of Mexico Workshop on International Research, March 29–30, 2017, Houston, Texas
    OCS Study BOEM 2019-045 Proceedings: The Gulf of Mexico Workshop on International Research, March 29–30, 2017, Houston, Texas U.S. Department of the Interior Bureau of Ocean Energy Management Gulf of Mexico OCS Region OCS Study BOEM 2019-045 Proceedings: The Gulf of Mexico Workshop on International Research, March 29–30, 2017, Houston, Texas Editors Larry McKinney, Mark Besonen, Kim Withers Prepared under BOEM Contract M16AC00026 by Harte Research Institute for Gulf of Mexico Studies Texas A&M University–Corpus Christi 6300 Ocean Drive Corpus Christi, TX 78412 Published by U.S. Department of the Interior New Orleans, LA Bureau of Ocean Energy Management July 2019 Gulf of Mexico OCS Region DISCLAIMER Study collaboration and funding were provided by the US Department of the Interior, Bureau of Ocean Energy Management (BOEM), Environmental Studies Program, Washington, DC, under Agreement Number M16AC00026. This report has been technically reviewed by BOEM, and it has been approved for publication. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the US Government, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. REPORT AVAILABILITY To download a PDF file of this report, go to the US Department of the Interior, Bureau of Ocean Energy Management website at https://www.boem.gov/Environmental-Studies-EnvData/, click on the link for the Environmental Studies Program Information System (ESPIS), and search on 2019-045. CITATION McKinney LD, Besonen M, Withers K (editors) (Harte Research Institute for Gulf of Mexico Studies, Corpus Christi, Texas).
    [Show full text]
  • SEDIMENTARY FRAMEWORK of Lmainland FRINGING REEF DEVELOPMENT, CAPE TRIBULATION AREA
    GREAT BARRIER REEF MARINE PARK AUTHORITY TECHNICAL MEMORANDUM GBRMPA-TM-14 SEDIMENTARY FRAMEWORK OF lMAINLAND FRINGING REEF DEVELOPMENT, CAPE TRIBULATION AREA D.P. JOHNSON and RM.CARTER Department of Geology James Cook University of North Queensland Townsville, Q 4811, Australia DATE November, 1987 SUMMARY Mainland fringing reefs with a diverse coral fauna have developed in the Cape Tribulation area primarily upon coastal sedi- ment bodies such as beach shoals and creek mouth bars. Growth on steep rocky headlands is minor. The reefs have exten- sive sandy beaches to landward, and an irregular outer margin. Typically there is a raised platform of dead nef along the outer edge of the reef, and dead coral columns lie buried under the reef flat. Live coral growth is restricted to the outer reef slope. Seaward of the reefs is a narrow wedge of muddy, terrigenous sediment, which thins offshore. Beach, reef and inner shelf sediments all contain 50% terrigenous material, indicating the reefs have always grown under conditions of heavy terrigenous influx. The relatively shallow lower limit of coral growth (ca 6m below ADD) is typical of reef growth in turbid waters, where decreased light levels inhibit coral growth. Radiocarbon dating of material from surveyed sites confirms the age of the fossil coral columns as 33304110 ybp, indicating that they grew during the late postglacial sea-level high (ca 5500-6500 ybp). The former thriving reef-flat was killed by a post-5500 ybp sea-level fall of ca 1 m. Although this study has not assessed the community structure of the fringing reefs, nor whether changes are presently occur- ring, it is clear the corals present today on the fore-reef slope have always lived under heavy terrigenous influence, and that the fossil reef-flat can be explained as due to the mid-Holocene fall in sea-level.
    [Show full text]
  • Background Document for Deep-Sea Sponge Aggregations 2010
    Background Document for Deep-sea sponge aggregations Biodiversity Series 2010 OSPAR Convention Convention OSPAR The Convention for the Protection of the La Convention pour la protection du milieu Marine Environment of the North-East Atlantic marin de l'Atlantique du Nord-Est, dite (the “OSPAR Convention”) was opened for Convention OSPAR, a été ouverte à la signature at the Ministerial Meeting of the signature à la réunion ministérielle des former Oslo and Paris Commissions in Paris anciennes Commissions d'Oslo et de Paris, on 22 September 1992. The Convention à Paris le 22 septembre 1992. La Convention entered into force on 25 March 1998. It has est entrée en vigueur le 25 mars 1998. been ratified by Belgium, Denmark, Finland, La Convention a été ratifiée par l'Allemagne, France, Germany, Iceland, Ireland, la Belgique, le Danemark, la Finlande, Luxembourg, Netherlands, Norway, Portugal, la France, l’Irlande, l’Islande, le Luxembourg, Sweden, Switzerland and the United Kingdom la Norvège, les Pays-Bas, le Portugal, and approved by the European Community le Royaume-Uni de Grande Bretagne and Spain. et d’Irlande du Nord, la Suède et la Suisse et approuvée par la Communauté européenne et l’Espagne. Acknowledgement This document has been prepared by Dr Sabine Christiansen for WWF as lead party. Rob van Soest provided contact with the surprisingly large sponge specialist group, of which Joana Xavier (Univ. Amsterdam) has engaged most in commenting on the draft text and providing literature. Rob van Soest, Ole Tendal, Marc Lavaleye, Dörte Janussen, Konstantin Tabachnik, Julian Gutt contributed with comments and updates of their research.
    [Show full text]
  • Late Cambrian Hard Substrate Communities from Montana/ Wyoming: the Oldest Known Hardground Encrusters
    Late Cambrian hard substrate communities from Montana/ Wyoming: the oldest known hardground encrusters CARLTON E. BREIT, W. DAVID LIDDELL AND KRAIG L. DERSTLER Brett. Carlton E., Liddell, W. David & Derstler, Kraig L. 1983 10 IS: Late Cambrian hard substrate I JETHAIA communities from MontandWyoming: the oldest known hardground encrustcrs. Lethaia, Vol. 16, pp. 281-289. Oslo. ISSN 0024-1164. Hardground surfaces from the Late Cambrian Snowy Range Formation in MontanalWyoming are the oldest known non-reefal hard substrates exhibiting encrusting fossils. These surfaces range in age from Early Franconian to early Trempealeauan. Hardgrounds were developed on slightly hummocky to planar, truncated surfaces of glauconite-rich, carbonate, flat pebble conglomerates, which were deposited during episodes of storm scouring in shallow subtidal environments of the Montana/Wyoming shelf. Snowy Range hardgrounds are encrusted by a low diversity assemblage of fossils dominated by simple discoidal holdfasts of pelmatozoans, probably crinoids, and including small conical spongiomorph algae? and probable stromatolites. Macroborings (e.g. Trypanites) are notably absent from all hardground surfaces, although sharp-walled, vertical, cylindrical holes (borings?) occur in micrite clasts imbedded in certain flat pebble conglomerates. No evidence of faunal succession or microecologic partitioning of irregular surfaces was observed on these Cambrian hardgrounds. 0 Hardgrounds, epibionts, macrobor- ings, pelmatozoan echinoderms, paleoecology, Cambrian, MontanaiWyoming. Cariton E. Brett, Department of Geological Sciences, The University of Rochesrer, Rochester. New York 14627; W. David Liddell, Department of Geology, Utah Stare University, Logan, Utah 84322; Kraig L. Derstler, Department of Geology, University of New Orleans, New Orleans, Louisiana 70122; 9th September, 1982. Hardgrounds afford a unique opportunity for pa- morph algae? and pelmatozoan echinoderm leoecological studies.
    [Show full text]
  • Sediment Exchanges Along the Coastal Margin of the Moray Firth, Eastern Scotland
    Journal ofthe Geological Society, London, Vol. 144, 1987, pp. 179-185, 8 figs., 2 tables. Printed in Northern Ireland Sediment exchanges along the coastal margin of the Moray Firth, Eastern Scotland G. REID' & J. McMANUS Department of Geology, The University, Dundee, Scotland 1 Present address: Department of Oceanography, University College of North Wales, Menai Bridge, Gwynedd LL.59 5EY, UK Abstrart: The Moray Firthis the largest of only three major coastal embayments on the East Coastof Scotland. The relationships between the offshore, coastal margin and fluvial sediments are examined in terms of processes and deposits. These suggest that the large post-glacial accretions of sediment infilling the inner firths are in part attributable to transport of material from the offshore zone. Since the fluvial input to the area appears tobe relatively small and much is retained on estuarine tidal flats it is likely that the offshore contribution is the most important constituent of the deposits of the coastal margin. The other major source is glacial and fluvioglacial material now being reworked by marine activity. Basis of Moray Firth study post-glacial sediments in such areas mayexceed 80 m in Incontrast tothe strongly dissected WestCoast, major thickness. Inthe outer MorayFirth seismicevidence coastal indentations along the East Coast of Scotland are suggests thinner post-and late-glacial accumulations locally limited to the three major embayments of the Forth, the withpatchy distributions resting upona moraine strewn Tay and the largerMoray Firth. Since the rocky stretches of surface (Chesher & Lawson 1983). coastline are sedimentologically relatively inactive,an understanding of the sedimentaryregimes of themajor inlets provides a key to understanding sediment exchanges Hydrographic regime across most of the coast of Eastern Scotland.
    [Show full text]
  • A Research Overview of the Siltation Loss Controls and Capacity Recovery Processes in China’S Reservoirs
    MATEC Web of Conferences 246, 01086 (2018) https://doi.org/10.1051/matecconf/201824601086 ISWSO 2018 A Research Overview of the Siltation Loss Controls and Capacity Recovery Processes in China’s Reservoirs H H Hu, A J Deng, J G Chen, H L Shi and M Ye China Institute of Water Resources and Hydropower Research, Beijing, China Abstract. There are many reservoirs in China with serious siltation issues which are affecting the function and safety of the reservoirs. Recently, research studies have been carried out regarding siltation loss control and capacity recovery technology due to the decreases in suitable dam sites for establishing reservoirs, and the increasingly serious siltation losses which have been occurring in the present reservoirs. The results of these studies have been of great significance to the partial recoveries of the siltation capacities of reservoirs, improvements in the respective efficiencies of the current reservoirs, and the prolonging of the service life the reservoirs. This study presented a simple review of the previous research findings regarding the current siltation loss situations and controls, as well as the capacity recoveries which have been achieved. Also, this study proposed the urgent need for in-depth examinations to be conducted pertaining to the national investigations of the reservoir siltation status in China, as well as a review of the current mechanisms and control measures for reservoir siltation losses. 1 Introduction At the present time, millions of different dams have been built around the world, which include 50,000 large dams, China has the largest number of reservoirs among all forming a global reservoir capacity of approximately 7 countries of the world.
    [Show full text]
  • Impacts of Sediment Burial on Mangroves
    Marine Pollution Bulletin Vol. 37, Nos. 8±12, pp. 420±426, 1998 Ó 1999 Elsevier Science Ltd. All rights reserved Printed in Great Britain PII: S0025-326X(98)00122-2 0025-326X/99 $ - see front matter Impacts of Sediment Burial on Mangroves JOANNA C. ELLISON School of Applied Science, University of Tasmania, P.O. Box 1214, Launceston, Tasmania 7250, Australia Aerial roots are a common adaptation of mangrove trees Rates of Mangrove Tidal Swamp Accretion to their saline wetland habitat, allowing root respiration in the anaerobic substrate. While mangroves ¯ourish on First, it is necessary to establish natural rates of sedi- sedimentary shorelines, it is shown here that excess input mentation, for mangroves are known to promote sedi- of sediment to mangroves can cause death of trees owing mentation. Scon (1970) showed that the roots of to root smothering. Descriptions of 26 cases were found in Rhizophora mangle can signi®cantly reduce the velocity the literature or described here, where mangroves have of tidal water, and provide a better sediment binding been adversely aected by sediment burial of roots. The capacity compared with a variety of sea-grasses and impacts ranged from reduced vigour to death, depending algal mats. Furukawa and Wolanski (1996) and Fur- on the amount and type of sedimentation, and the species ukawa et al. (1997) demonstrated that a combination of involved. There are insucient data to establish speci®c vegetational friction on water movement and sediment tolerances. For rehabilitation, where the disturbance was a ¯occulation promotes sedimentation within mangrove past event, the elevation change must be assessed in swamps.
    [Show full text]
  • Life on the Coral Reef
    Coral Reef Teacher’s Guide Life on the Coral Reef Life on the Coral Reef THE CORAL REEF ECOSYSTEM The muddy silt drifts out to sea, covering the nearby Coral reefs provide the basis for the most productive coral reefs. Some corals can remove the silt, but many shallow water ecosystem in the world. An ecosystem cannot. If the silt is not washed off within a short pe- is a group of living things, such as coral, algae and riod of time by the current, the polyps suffocate and fishes, along with their non-living environment, such die. Not only the rainforest is destroyed, but also the as rocks, water, and sand. Each influences the other, neighboring coral reef. and both are necessary for the successful maintenance of life. If one is thrown out of balance by either natural Reef Zones or human-made causes, then the survival of the other Coral reefs are not uniform, but are shaped by the is seriously threatened. forces of the sea and the structure of the sea floor into DID YOU KNOW? All of the Earth’s ecosystems are a series of different parts or reef zones. Understand- interrelated, forming a shell of life that covers the ing these zones is useful in understanding the ecol- entire planet – the biosphere. For instance, if too many ogy of coral reefs. Keep in mind that these zones can trees are cut down in the rainforest, soil from the for- blend gradually into one another, and that sometimes est is washed by rain into rivers that run to the ocean.
    [Show full text]