Both Caspase and Cathepsin Activity Germinal Center B Cell Apoptosis

Total Page:16

File Type:pdf, Size:1020Kb

Both Caspase and Cathepsin Activity Germinal Center B Cell Apoptosis Germinal Center B Cell Apoptosis Requires Both Caspase and Cathepsin Activity Marco van Eijk and Cornelis de Groot This information is current as J Immunol 1999; 163:2478-2482; ; of September 29, 2021. http://www.jimmunol.org/content/163/5/2478 Downloaded from References This article cites 35 articles, 9 of which you can access for free at: http://www.jimmunol.org/content/163/5/2478.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 29, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1999 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Germinal Center B Cell Apoptosis Requires Both Caspase and Cathepsin Activity Marco van Eijk and Cornelis de Groot1 Follicular dendritic cells (FDCs) select B cells during germinal center (GC) reactions. The B cells that are able to bind to the FDCs receive a signal that leads to the termination of endonuclease activity in the nuclei of those B cells. This signal must be in addition to the signals transferred through the cross-linkage of the B cell receptors and signals resulting from the interactions of the adhesion molecules lymphocyte function-associated Ag-1 and very late Ag-4 with ICAM-1 and VCAM-1, respectively. In this report, we present evidence that the FDCs silence all apoptotic processes in GC B lymphocytes and additionally switch off pre-present endonuclease activity. We also show that GC B cell apoptosis requires cathepsin activity downstream of caspase-3. This cathepsin activity is directly connected to endonuclease activity and therefore may be an interesting target for the antiapop- totic factors produced by FDCs. The Journal of Immunology, 1999, 163: 2478–2482. Downloaded from erminal centers (GCs)2 are specialized microenviron- To gain insight into the specific rescue mechanism of FDCs, it ments in lymphoid follicles of secondary lymphoid or- is necessary to know what routes are used to trigger apoptosis in G gans. Here, B lymphocytes undergo affinity maturation GC B cells. Cysteine proteases fulfill crucial roles in apoptosis. For of their B cell receptors (BCR) and Ig isotype-switch, resulting in instance, the family of IL-1b-converting enzyme-like proteases the formation of memory B cells (1–3). During a GC reaction, B (now called caspases) (14–16) forms an important cascade that http://www.jimmunol.org/ cells are selected and their Ag specificity is checked at different links triggering signals such as Fas ligation to the final activation levels (4). Antiapoptotic signals provided by follicular dendritic of DNA fragmentation (17–19). This cascade is highly redundant; cells (FDCs) are crucial in this selection process. Native Ags are however, in general, the activation of various members of the presented to GC B cells in the immune complexes present on caspase family may lead to the activation of caspase-3, resulting in FDCs, allowing B lymphocytes with high affinity BCRs to bind. cleavage of various substrates that are crucial in the execution As a result of this highly competitive binding, the programmed cell phase of apoptosis. In addition, it was shown recently that mem- death of the GC B cells is cancelled in the binding cells only (5, 6). bers of the papain family of cysteine proteases may be involved in FDCs protect the attached B lymphocytes in such a way that en- apoptotic processes as well. For example, calpains are involved in donuclease, which is pre-present in the nuclei of GC B cells, is the upstream regulation of thymocyte apoptosis (20, 21) and re- by guest on September 29, 2021 switched off within a few hours (7). cently, cathepsin W, also called lymphopain, was found in CD81 The precise mechanism of this action is largely unknown. BCR T lymphocytes and NK cells, suggesting a role in the apoptosis cross-linkage with Ag in the immune complexes on FDCs is an pathway that is used for target cell killing (22, 23). important prerequisite; however, interactions between the adhesion In the present paper, we have addressed the role of FDCs on GC molecules ICAM-1 (CD54) and VCAM-1 (CD106) with lympho- B cell apoptosis, and especially the enzymes involved in the reg- cyte function-associated Ag-1 (LFA-1) and very late Ag-4 ulation of endonuclease activity. Our experiments indicate that (VLA-4) (CD49d), respectively, also play a role in the intimate both caspase and cathepsin activity are required in the apoptotic contact between B lymphocytes and FDCs (8–10). Thus far, the cascade of GC B cells. Furthermore, we show that the cathepsin apoptosis of GC B cells could be postponed by cross-linkage of activity acts downstream of caspases and is probably the last pro- LFA-1, VLA-4, CD21, CD40, BCR, or CD40 and BCR; however, teolytic step involved in the activation of DNA fragmentation. none of these signals could switch off endonuclease activity in GC FDCs, therefore, may act on endonuclease activity directly be- B cells (5, 7, 9–13). cause that is the only apoptotic parameter present in freshly iso- lated GC B cells (F-B) that is switched off. Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands Materials and Methods Received for publication April 13, 1999. Accepted for publication June 11, 1999. Isolation of GC B cells from human tonsils The costs of publication of this article were defrayed in part by the payment of page B lymphocytes were isolated from tonsils according to the method of Lind- charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. hout et al. (7). Briefly, tonsillar cell suspensions were depleted of T cells using 2-aminoethylisothiouroniumhydrobromide (Sigma, St. Louis, MO) 1 Address correspondence and reprint requests to Dr. Cornelis de Groot, Department -treated SRBCs (24) followed by density centrifugation on a Lymphoprep of Cell Biology and Histology, Cellular Immunology Group, Academic Medical Cen- (1077 mg/ml; Nycomed, Oslo, Norway) to remove rosetted cells. The final ter, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Nether- . 1 , 1 lands. E-mail address: [email protected] cell population contained 98% CD20 cells (B cells) and 2% CD3 cells (T cells). This B cell suspension was centrifuged (15 min, 1200 3 g, 2 Abbreviations used in this paper: GC, germinal center; FDC, follicular dendritic 4°C) on a Percoll gradient (Pharmacia, Uppsala, Sweden) consisting of cell; F-B, freshly isolated B cells; N-B, nonclustered B cells; C-B, B cells clustered three layers (1043, 1067, and 1077 mg/ml). Cells at the 1043/1067 inter- to FDCs; BCR, B cell receptor; ZPP, Z-phenyl-phenyl-CHN2; LHVS, leucine-homo- phenylalanine-vinyl sulfone methyl; ZVAD, z-Val-Ala-DL-Asp; DiOC6, 3,39-di- face were collected and incubated with Abs against surface IgD (MAS hexyloxacarbocyanine iodide; PI, propidium iodide; PS, phosphatidyl serine; PARP, 590p, Harlan Sera-Lab, Loughborough, U.K.) and anti-CD39 (AC2, Im- poly(ADP-ribose)-polymerase; LFA, lymphocyte function-associated Ag; VLA, very munotech, Marseilles, France). Labeled cells were depleted using sheep Dc late Ag; m, mitochondrial membrane potential; DFF, DNA fragmentation factor. anti-mouse Ig-coated Dynabeads (Dynal AS, Oslo, Norway). The resulting Copyright © 1999 by The American Association of Immunologists 0022-1767/99/$02.00 The Journal of Immunology 2479 Dc FIGURE 1. PS exposure, m, and DNA strand breaks in GC B lymphocytes upon contact with Dc FDCs. a, PS exposure; b, m; c, DNA strand breaks. Apoptotic parameters were determined in F-B, N-B, and C-B. In a–c, an increase is observed in the N-B fraction. One representative example of at least three experiments is shown. Downloaded from purified GC B cell fractions consisted of .98% CD381 cells and ,2% Phosphatidyl serine (PS) exposure was determined using annexin V- CD391 and surface IgD1 cells. FITC (Bender Medsystems Diagnostics, Vienna, Austria) in combination with PI. Cells were labeled with annexin V-FITC for 30 min on ice, Isolation of FDCs washed, and taken up in medium containing PI. http://www.jimmunol.org/ Caspase-3 activity was measured using the ApoAlert CPP32 Fluores- FDCs were isolated from tonsils as described by Parmentier et al. (25). cent Assay Kit (Clontech, Palo Alto, CA). Briefly, before or after the in- Tonsils were cut into pieces and treated with a collagenase (200 U/ml duction of apoptosis, cells were lysed and taken up in reaction buffer. After collagenase IV, Worthington Biochemical, Lakewood, NJ)/DNase (10 addition of the 7-amino-4-trifluoromethyl coumarin-peptide substrate con- U/ml DNase I, Boehringer Mannheim, Mannheim, Germany) solution in jugate and subsequent incubation at 37°C, the enzyme activity was mon- IMDM (Life Technologies, Paisley, U.K.), followed by density sedimen- itored in a JASCO FP-750 spectrofluorometer (B&L Systems, Maarssen, tation on a cold discontinuous BSA (Path-o-cyte 4, bovine albumin, In- The Netherlands). struchemie, Hilversum, The Netherlands) gradient in HBSS (Life Tech- Poly(ADP-ribose)-polymerase (PARP) fragmentation was assessed by nologies), consisting of layers of 1.5, 2.5, and 5%.
Recommended publications
  • Alimentary Tract Proteinases of the Southern Corn
    Durham E-Theses Alimentary tract proteinases of the Southern corn rootworm (Diabrotica undecimpunctata howardi) and the potential of potato Kunitz proteinase inhibitors for larval control. Macgregor, James Mylne How to cite: Macgregor, James Mylne (2001) Alimentary tract proteinases of the Southern corn rootworm (Diabrotica undecimpunctata howardi) and the potential of potato Kunitz proteinase inhibitors for larval control., Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/3808/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 Alimentary tract proteinases of the Southern corn rootworm (Diabrotica undecimpunctata howardi) and the potential of potato Kunitz proteinase inhibitors for larval control. The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged. A thesis submitted by James Mylne Macgregor B.Sc.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • P53 and the Cathepsin Proteases As Co-Regulators of Cancer and Apoptosis
    cancers Review Making Connections: p53 and the Cathepsin Proteases as Co-Regulators of Cancer and Apoptosis Surinder M. Soond 1,*, Lyudmila V. Savvateeva 1, Vladimir A. Makarov 1, Neonila V. Gorokhovets 1, Paul A. Townsend 2 and Andrey A. Zamyatnin, Jr. 1,3,4,* 1 Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; [email protected] (L.V.S.); [email protected] (V.A.M.); gorokhovets_n_v@staff.sechenov.ru (N.V.G.) 2 Division of Cancer Sciences and Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, and the NIHR Manchester Biomedical Research Centre, Manchester M13 9PL, UK; [email protected] 3 Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia 4 Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia * Correspondence: [email protected] (S.M.S.); [email protected] (A.A.Z.J.) Received: 6 October 2020; Accepted: 19 November 2020; Published: 22 November 2020 Simple Summary: This article describes an emerging area of significant interest in cancer and cell death and the relationships shared by these through the p53 and cathepsin proteins. While it has been demonstrated that the p53 protein can directly induce the leakage of cathepsin proteases from the lysosome, directly triggering cell death, little is known about what factors set the threshold at which the lysosome can become permeabilized. It appears that the expression levels of cathepsin proteases may be central to this process, with some of them being transcriptionally regulated by p53.
    [Show full text]
  • The Role of Caspase-2 in Regulating Cell Fate
    cells Review The Role of Caspase-2 in Regulating Cell Fate Vasanthy Vigneswara and Zubair Ahmed * Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; [email protected] * Correspondence: [email protected] Received: 15 April 2020; Accepted: 12 May 2020; Published: 19 May 2020 Abstract: Caspase-2 is the most evolutionarily conserved member of the mammalian caspase family and has been implicated in both apoptotic and non-apoptotic signaling pathways, including tumor suppression, cell cycle regulation, and DNA repair. A myriad of signaling molecules is associated with the tight regulation of caspase-2 to mediate multiple cellular processes far beyond apoptotic cell death. This review provides a comprehensive overview of the literature pertaining to possible sophisticated molecular mechanisms underlying the multifaceted process of caspase-2 activation and to highlight its interplay between factors that promote or suppress apoptosis in a complicated regulatory network that determines the fate of a cell from its birth and throughout its life. Keywords: caspase-2; procaspase; apoptosis; splice variants; activation; intrinsic; extrinsic; neurons 1. Introduction Apoptosis, or programmed cell death (PCD), plays a pivotal role during embryonic development through to adulthood in multi-cellular organisms to eliminate excessive and potentially compromised cells under physiological conditions to maintain cellular homeostasis [1]. However, dysregulation of the apoptotic signaling pathway is implicated in a variety of pathological conditions. For example, excessive apoptosis can lead to neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease, whilst insufficient apoptosis results in cancer and autoimmune disorders [2,3]. Apoptosis is mediated by two well-known classical signaling pathways, namely the extrinsic or death receptor-dependent pathway and the intrinsic or mitochondria-dependent pathway.
    [Show full text]
  • Crystal Structure of Cathepsin X: a Flip–Flop of the Ring of His23
    st8308.qxd 03/22/2000 11:36 Page 305 Research Article 305 Crystal structure of cathepsin X: a flip–flop of the ring of His23 allows carboxy-monopeptidase and carboxy-dipeptidase activity of the protease Gregor Guncar1, Ivica Klemencic1, Boris Turk1, Vito Turk1, Adriana Karaoglanovic-Carmona2, Luiz Juliano2 and Dušan Turk1* Background: Cathepsin X is a widespread, abundantly expressed papain-like Addresses: 1Department of Biochemistry and v mammalian lysosomal cysteine protease. It exhibits carboxy-monopeptidase as Molecular Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia and 2Departamento de well as carboxy-dipeptidase activity and shares a similar activity profile with Biofisica, Escola Paulista de Medicina, Rua Tres de cathepsin B. The latter has been implicated in normal physiological events as Maio 100, 04044-020 Sao Paulo, Brazil. well as in various pathological states such as rheumatoid arthritis, Alzheimer’s disease and cancer progression. Thus the question is raised as to which of the *Corresponding author. E-mail: [email protected] two enzyme activities has actually been monitored. Key words: Alzheimer’s disease, carboxypeptidase, Results: The crystal structure of human cathepsin X has been determined at cathepsin B, cathepsin X, papain-like cysteine 2.67 Å resolution. The structure shares the common features of a papain-like protease enzyme fold, but with a unique active site. The most pronounced feature of the Received: 1 November 1999 cathepsin X structure is the mini-loop that includes a short three-residue Revisions requested: 8 December 1999 insertion protruding into the active site of the protease. The residue Tyr27 on Revisions received: 6 January 2000 one side of the loop forms the surface of the S1 substrate-binding site, and Accepted: 7 January 2000 His23 on the other side modulates both carboxy-monopeptidase as well as Published: 29 February 2000 carboxy-dipeptidase activity of the enzyme by binding the C-terminal carboxyl group of a substrate in two different sidechain conformations.
    [Show full text]
  • Cells T+ HLA-DR + Processing in Human CD4 Cathepsin S
    Cathepsin S Regulates Class II MHC Processing in Human CD4 + HLA-DR+ T Cells This information is current as Cristina Maria Costantino, Hidde L. Ploegh and David A. of September 26, 2021. Hafler J Immunol 2009; 183:945-952; Prepublished online 24 June 2009; doi: 10.4049/jimmunol.0900921 http://www.jimmunol.org/content/183/2/945 Downloaded from References This article cites 47 articles, 20 of which you can access for free at: http://www.jimmunol.org/content/183/2/945.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 26, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Cathepsin S Regulates Class II MHC Processing in Human CD4؉ HLA-DR؉ T Cells1 Cristina Maria Costantino,* Hidde L. Ploegh,† and David A. Hafler2* Although it has long been known that human CD4؉ T cells can express functional class II MHC molecules, the role of lysosomal proteases in the T cell class II MHC processing and presentation pathway is unknown.
    [Show full text]
  • Inhibition of Mitochondrial Complex II in Neuronal Cells Triggers Unique
    www.nature.com/scientificreports OPEN Inhibition of mitochondrial complex II in neuronal cells triggers unique pathways culminating in autophagy with implications for neurodegeneration Sathyanarayanan Ranganayaki1, Neema Jamshidi2, Mohamad Aiyaz3, Santhosh‑Kumar Rashmi4, Narayanappa Gayathri4, Pulleri Kandi Harsha5, Balasundaram Padmanabhan6 & Muchukunte Mukunda Srinivas Bharath7* Mitochondrial dysfunction and neurodegeneration underlie movement disorders such as Parkinson’s disease, Huntington’s disease and Manganism among others. As a corollary, inhibition of mitochondrial complex I (CI) and complex II (CII) by toxins 1‑methyl‑4‑phenylpyridinium (MPP+) and 3‑nitropropionic acid (3‑NPA) respectively, induced degenerative changes noted in such neurodegenerative diseases. We aimed to unravel the down‑stream pathways associated with CII inhibition and compared with CI inhibition and the Manganese (Mn) neurotoxicity. Genome‑wide transcriptomics of N27 neuronal cells exposed to 3‑NPA, compared with MPP+ and Mn revealed varied transcriptomic profle. Along with mitochondrial and synaptic pathways, Autophagy was the predominant pathway diferentially regulated in the 3‑NPA model with implications for neuronal survival. This pathway was unique to 3‑NPA, as substantiated by in silico modelling of the three toxins. Morphological and biochemical validation of autophagy markers in the cell model of 3‑NPA revealed incomplete autophagy mediated by mechanistic Target of Rapamycin Complex 2 (mTORC2) pathway. Interestingly, Brain Derived Neurotrophic Factor
    [Show full text]
  • Untersuchung Zur Selektivität Der Hemmung Von Cathepsin L-Ähnlichen Cysteinproteasen Durch Die Dazugehörigen Propeptide
    Untersuchung zur Selektivität der Hemmung von Cathepsin L-ähnlichen Cysteinproteasen durch die dazugehörigen Propeptide Dissertation zur Erlangung des akademischen Grades doctor medicinae dentariae (Dr. med. dent.) vorgelegt dem Rat der Medizinischen Fakultät der Friedrich-Schiller-Universität Jena von Yvonne Benedix, geboren am 05. Februar 1979 in Karl-Marx-Stadt Gutachter 1 Gutachter 2 Gutachter 3 Tag der öffentlichen Verteidigung Inhaltsverzeichnis 3 Abkürzungsverzeichnis 5 Zusammenfassung 7 1. Einleitung 9 2. Materialien und Methodik 16 2.1. Materialien 16 2.1.1. Antibiotika, Chemikalien, Enzyme, Standards und Substrate 16 2.1.2. Kits zur Bearbeitung von DNA 17 2.1.3. Verwendete Vektoren und Bakterienstämme 17 2.1.4. Geräte 18 2.1.5. Spezielle Computerprogramme 19 2.2. Molekularbiologische Methoden 19 2.2.1. Amplifizierung der Proregionen von Cathepsin H und L 19 mittels PCR 2.2.2. DNA-Trennung im Agarosegel und Extraktion 21 2.2.3. Klonierung, Ligation, Transformation und DNA-Isolierung 21 2.2.4. DNA-Seqzenzanalyse 25 2.3. Proteinchemische Methoden 26 2.3.1. Expression und Reinigung der rekombinanten Propeptide 26 2.3.2. Reinigung der Einschlusskörperchen durch Saccharose- Dichtegradientenzentrifugation 27 2.3.3. Endreinigung des Propeptids durch Gelfiltration 28 2.3.4. Charakterisierung der rekombinanten Propeptide 29 2.3.5. Massenspektrometrie durch MALDI-TOF 31 2.4. Kinetische Messung 31 2.4.1. Testdurchführung 31 2.4.2. Bestimmung des KM-Wertes 33 2.4.3. Bestimmung der Inhibitionskonstanten Ki und koff 34 3. Ergebnisse 37 3.1. Herstellung der Propeptide von Cathepsin H (kurz), Cathepsin H (lang) und Cathepsin L 37 3.1.1.
    [Show full text]
  • Reticulum Mainly Localized in the Endoplasmic Predominantly
    Human Cathepsin W, a Cysteine Protease Predominantly Expressed in NK Cells, Is Mainly Localized in the Endoplasmic Reticulum This information is current as of September 24, 2021. Thomas Wex, Frank Bühling, Heike Wex, Dagmar Günther, Peter Malfertheiner, Ekkehard Weber and Dieter Brömme J Immunol 2001; 167:2172-2178; ; doi: 10.4049/jimmunol.167.4.2172 http://www.jimmunol.org/content/167/4/2172 Downloaded from References This article cites 44 articles, 18 of which you can access for free at: http://www.jimmunol.org/content/167/4/2172.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 24, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Human Cathepsin W, a Cysteine Protease Predominantly Expressed in NK Cells, Is Mainly Localized in the Endoplasmic Reticulum1 Thomas Wex,2,3*† Frank Bu¨hling,2§ Heike Wex,*‡ Dagmar Gu¨nther,¶ Peter Malfertheiner,† Ekkehard Weber,¶ and Dieter Bro¨mme3* Human cathepsin W (also called lymphopain) is a recently described papain-like cysteine protease of unknown function whose gene expression was found to be restricted to cytotoxic cells.
    [Show full text]
  • A Cysteine Protease Inhibitor Blocks SARS-Cov-2 Infection of Human and Monkey Cells
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.23.347534; this version posted October 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. A cysteine protease inhibitor blocks SARS-CoV-2 infection of human and monkey cells Drake M. Mellott,1 Chien-Te Tseng,3 Aleksandra Drelich,3 Pavla Fajtová,4,5 Bala C. Chenna,1 Demetrios H. Kostomiris1, Jason Hsu,3 Jiyun Zhu,1 Zane W. Taylor,2,9 Vivian Tat,3 Ardala Katzfuss,1 Linfeng Li,1 Miriam A. Giardini,4 Danielle Skinner,4 Ken Hirata,4 Sungjun Beck4, Aaron F. Carlin,8 Alex E. Clark4, Laura Beretta4, Daniel Maneval6, Felix Frueh,6 Brett L. Hurst,7 Hong Wang,7 Klaudia I. Kocurek,2 Frank M. Raushel,2 Anthony J. O’Donoghue,4 Jair Lage de Siqueira-Neto,4 Thomas D. Meek1.*, and James H. McKerrow#4,* Departments of Biochemistry and Biophysics1 and Chemistry,2 Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, 3Department of Microbiology and Immunology, University of Texas, Medical Branch, 3000 University Boulevard, Galveston, Texas, 77755-1001, 4Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 5Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic, 6Selva Therapeutics, and 7Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, 5600 Old Main Hill, Utah State University, Logan, Utah, 84322, 8Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA.9Current address: Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99353.
    [Show full text]
  • Cysteine Cathepsin Proteases: Regulators of Cancer Progression and Therapeutic Response
    REVIEWS Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response Oakley C. Olson1,2 and Johanna A. Joyce1,3,4 Abstract | Cysteine cathepsin protease activity is frequently dysregulated in the context of neoplastic transformation. Increased activity and aberrant localization of proteases within the tumour microenvironment have a potent role in driving cancer progression, proliferation, invasion and metastasis. Recent studies have also uncovered functions for cathepsins in the suppression of the response to therapeutic intervention in various malignancies. However, cathepsins can be either tumour promoting or tumour suppressive depending on the context, which emphasizes the importance of rigorous in vivo analyses to ascertain function. Here, we review the basic research and clinical findings that underlie the roles of cathepsins in cancer, and provide a roadmap for the rational integration of cathepsin-targeting agents into clinical treatment. Extracellular matrix Our contemporary understanding of cysteine cathepsin tissue homeostasis. In fact, aberrant cathepsin activity (ECM). The ECM represents the proteases originates with their canonical role as degrada- is not unique to cancer and contributes to many disease multitude of proteins and tive enzymes of the lysosome. This view has expanded states — for example, osteoporosis and arthritis4, neuro­ macromolecules secreted by considerably over decades of research, both through an degenerative diseases5, cardiovascular disease6, obe- cells into the extracellular
    [Show full text]
  • The P53-Cathepsin Axis Cooperates with ROS to Activate Programmed Necrotic Death Upon DNA Damage
    The p53-cathepsin axis cooperates with ROS to activate programmed necrotic death upon DNA damage Ho-Chou Tua,1, Decheng Rena,1, Gary X. Wanga, David Y. Chena, Todd D. Westergarda, Hyungjin Kima, Satoru Sasagawaa, James J.-D. Hsieha,b, and Emily H.-Y. Chenga,b,c,2 aDepartment of Medicine, Molecular Oncology, bSiteman Cancer Center, and cDepartment of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 Edited by Stuart A. Kornfeld, Washington University School of Medicine, St. Louis, MO, and approved November 25, 2008 (received for review August 19, 2008) Three forms of cell death have been described: apoptosis, autophagic cells that are deprived of the apoptotic gateway to mediate cyto- cell death, and necrosis. Although genetic and biochemical studies chrome c release for caspase activation (Fig. S1) (9–11, 19, 20). have formulated a detailed blueprint concerning the apoptotic net- Despite the lack of caspase activation (20), DKO cells eventually work, necrosis is generally perceived as a passive cellular demise succumb to various death signals manifesting a much slower death resulted from unmanageable physical damages. Here, we conclude an kinetics compared with wild-type cells (Fig. 1A, Fig. S2, and data active de novo genetic program underlying DNA damage-induced not shown). To investigate the mechanism(s) underlying BAX/ necrosis, thus assigning necrotic cell death as a form of ‘‘programmed BAK-independent cell death, we first examined the morphological cell death.’’ Cells deficient of the essential mitochondrial apoptotic features of the dying DKO cells. Electron microscopy uncovered effectors, BAX and BAK, ultimately succumbed to DNA damage, signature characteristics of necrosis in DKO cells after DNA exhibiting signature necrotic characteristics.
    [Show full text]