Patched Dependence Receptor Triggers Apoptosis Through Ubiquitination of Caspase-9
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
P53 and the Cathepsin Proteases As Co-Regulators of Cancer and Apoptosis
cancers Review Making Connections: p53 and the Cathepsin Proteases as Co-Regulators of Cancer and Apoptosis Surinder M. Soond 1,*, Lyudmila V. Savvateeva 1, Vladimir A. Makarov 1, Neonila V. Gorokhovets 1, Paul A. Townsend 2 and Andrey A. Zamyatnin, Jr. 1,3,4,* 1 Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; [email protected] (L.V.S.); [email protected] (V.A.M.); gorokhovets_n_v@staff.sechenov.ru (N.V.G.) 2 Division of Cancer Sciences and Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, and the NIHR Manchester Biomedical Research Centre, Manchester M13 9PL, UK; [email protected] 3 Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia 4 Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia * Correspondence: [email protected] (S.M.S.); [email protected] (A.A.Z.J.) Received: 6 October 2020; Accepted: 19 November 2020; Published: 22 November 2020 Simple Summary: This article describes an emerging area of significant interest in cancer and cell death and the relationships shared by these through the p53 and cathepsin proteins. While it has been demonstrated that the p53 protein can directly induce the leakage of cathepsin proteases from the lysosome, directly triggering cell death, little is known about what factors set the threshold at which the lysosome can become permeabilized. It appears that the expression levels of cathepsin proteases may be central to this process, with some of them being transcriptionally regulated by p53. -
The Role of Caspase-2 in Regulating Cell Fate
cells Review The Role of Caspase-2 in Regulating Cell Fate Vasanthy Vigneswara and Zubair Ahmed * Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; [email protected] * Correspondence: [email protected] Received: 15 April 2020; Accepted: 12 May 2020; Published: 19 May 2020 Abstract: Caspase-2 is the most evolutionarily conserved member of the mammalian caspase family and has been implicated in both apoptotic and non-apoptotic signaling pathways, including tumor suppression, cell cycle regulation, and DNA repair. A myriad of signaling molecules is associated with the tight regulation of caspase-2 to mediate multiple cellular processes far beyond apoptotic cell death. This review provides a comprehensive overview of the literature pertaining to possible sophisticated molecular mechanisms underlying the multifaceted process of caspase-2 activation and to highlight its interplay between factors that promote or suppress apoptosis in a complicated regulatory network that determines the fate of a cell from its birth and throughout its life. Keywords: caspase-2; procaspase; apoptosis; splice variants; activation; intrinsic; extrinsic; neurons 1. Introduction Apoptosis, or programmed cell death (PCD), plays a pivotal role during embryonic development through to adulthood in multi-cellular organisms to eliminate excessive and potentially compromised cells under physiological conditions to maintain cellular homeostasis [1]. However, dysregulation of the apoptotic signaling pathway is implicated in a variety of pathological conditions. For example, excessive apoptosis can lead to neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease, whilst insufficient apoptosis results in cancer and autoimmune disorders [2,3]. Apoptosis is mediated by two well-known classical signaling pathways, namely the extrinsic or death receptor-dependent pathway and the intrinsic or mitochondria-dependent pathway. -
Caspase-9 and Apaf-1 Are Expressed and Functionally Active in Human Neuroblastoma Tumor Cell Lines with 1P36 LOH and Ampli®Ed MYCN
Oncogene (2002) 21, 1848 ± 1858 ã 2002 Nature Publishing Group All rights reserved 0950 ± 9232/02 $25.00 www.nature.com/onc Caspase-9 and Apaf-1 are expressed and functionally active in human neuroblastoma tumor cell lines with 1p36 LOH and ampli®ed MYCN Tal Teitz1,3, Tie Wei1,2,3, Dong Liu1, Virginia Valentine1, Marcus Valentine1, Jose Grenet1, Jill M Lahti1 and Vincent J Kidd*,1 1Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, TN 38105, USA Important roles have been suggested for caspase-8, Introduction caspase-9 and Apaf-1 in controlling tumor development and their sensitivity to chemotherapeutic agents. Methy- Neuroblastoma is one of the most common pediatric lation and deletion of Apaf-1 and CASP8 results in the solid tumors, and it is commonly classi®ed by the stage loss of their expression in melanoma and neuroblastoma, of tumor development (Brodeur et al., 1992). Early respectively, while CASP9 localization to 1p36.1 stage neuroblastoma tumors (i.e., stages I, II and III) suggests it is a good candidate tumor suppressor. The are readily treatable with chemotherapeutic drugs and status of CASP9 and Apaf-1 expression in numerous irradiation, and many will even spontaneously regress. neuroblastoma cell lines with/without ampli®ed MYCN However, the prognosis for late stage tumors, es- and chromosome 1p36 loss-of-heterozygosity (LOH) was pecially stage IV tumors, and stage IV tumors that therefore examined to test the hypothesis that one or overexpress the oncoprotein N-Myc due to ampli®ca- both of these genes are tumor suppressors in neuro- tion of the corresponding MYCN gene, is not favorable blastoma. -
Caspase Substrates and Inhibitors
Downloaded from http://cshperspectives.cshlp.org/ on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Caspase Substrates and Inhibitors Marcin Pore˛ba1, Aleksandra Stro´z˙yk1, Guy S. Salvesen2, and Marcin Dra˛g1 1Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, 50-370 Wrocław, Poland 2Program in Cell Death Research, Sanford-Burnham Medical Research Institute, La Jolla, California 92024 Correspondence: [email protected] Caspases are proteases at the heart of networks that govern apoptosis and inflammation. The past decade has seen huge leaps in understanding the biology and chemistry of the caspases, largely through the development of synthetic substrates and inhibitors. Such agents are used to define the role of caspases in transmitting life and death signals, in imaging caspases in situ and in vivo, and in deconvoluting the networks that govern cell behavior. Additionally, focused proteomics methods have begun to reveal the natural substrates of caspases in the thousands. Together, these chemical and proteomics technologies are setting the scene for designing and implementing control of caspase activity as appropriate targets for disease therapy. WHAT IT TAKES TO BE A CASPASE group, known as cysteine protease clan CD that he need to recycle scarce amino acids in early also contains the plant metacaspases (Vercam- Tbiotic environments required that proteases men et al. 2004), and mammalian and plant were among the first proteins to appear in the proteases of the legumain family (involved in most primitive replicating organisms. Since that specific processing events), the eukaryotic pro- distant origin, proteases have diversified into tease separase (required for sisterchromatid sep- every biological niche, occupied every cellular aration during mitosis), and the bacterial prote- and extracellular compartment, and are encod- ases clostripain and gingipain (Chen et al. -
Global Mapping of the Topography and Magnitude of Proteolytic Events in Biological Systems Melissa M
Global Mapping of the Topography and Magnitude of Proteolytic Events in Biological Systems Melissa M. Dix *, Gabriel M. Simon *, Benjamin F. Cravatt † * These authors contributed equally; † To whom correspondence should be addressed: [email protected] Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 Introduction Persistent Fragments are Diverse Identification of Explicit Sites of Proteases play central roles in numerous biological and Identification of Known Markers of pathological processes. Their importance is underscored by the fact Apoptosis with PROTOMAP and Often Correlate with Functional Caspase Cleavage that roughly 2% of the genes in the human genome encode Domains proteases . Despite their essential functions, even the most well- Apoptosis was induced by incubation with the pan-kinase inhibitor studied proteolytic cascades remain only partially understood, and a staurosporine ( STS ) for 4 hours large portion of human proteases are wholly uncharacterized with B respect to endogenous substrates and biological function. Control Introduction Various methods have been devised to identify protease Apoptotic (STS) substratesProteolytic. enzymesThese methods are ubiquitious can ingenerally biological be placed into three systems, comprising anywhere from 1-5% of a categories:organisms genome.(1) DNA/RNA Proteolysis isdisplay, a key regulatory (2) 2-dimensional gel electrophoresis (2D-GE) and (3) N-terminal labeling strategies. These methods have all been applied, with varying degrees of success, to identify protease substrates in numerous biological CD contexts. While protease substrates can, indeed, be identified using these methods, they all suffer from serious drawbacks. Iterative display techniques such as DNA- or RNA-display, rely on ex-vivo expression of proteins and, therefore, often result in a high rate of false-positives due to expression of substrates at superphysiological concentrations. -
Caspase-Independent Photoreceptor Apoptosis in Vivo and Differential Expression of Apoptotic Protease Activating Factor-1 and Caspase-3 During Retinal Development
Cell Death and Differentiation (2002) 9, 1220 ± 1231 ã 2002 Nature Publishing Group All rights reserved 1350-9047/02 $25.00 www.nature.com/cdd Caspase-independent photoreceptor apoptosis in vivo and differential expression of apoptotic protease activating factor-1 and caspase-3 during retinal development M Donovan1 and TG Cotter*,1 Glu-Val-Asp-¯uromethylketone; DMSO, dimethyl sulphoxide; FITC, ¯uorescein isothiocyanate; GAPDH, glyceraldehydes-3- 1 Tumour Biology Laboratory, Department of Biochemistry, Lee Maltings, phosphate dehydrogenase; INL, inner nuclear layer; ip, intraper- University College Cork, Cork, Ireland itoneal; ONL, outer nuclear layer; PI3K, phosphatidylinositol 3- * Corresponding author: Department of Biochemistry, Lee Maltings, University kinase; PBS, phosphate buffered saline; RCS, Royal College of College Cork, Cork, Ireland. Tel:353-21-4904068; Fax: 353-21-4904259; Surgeons; rd, retinal degeneration; RP, Retinitis Pigmentosa; E-mail: [email protected][email protected] TUNEL, Terminal dUTP nick end labelling; TdT, terminal deox- Received 7.5.02; revised 3.7.02; accepted 5.7.02 ynucleotidyl transferase; UV, ultraviolet; zVAD-fmk, Z-Val-Ala- Edited by G Ciliberto Asp.¯uoromethylketone Abstract Introduction Apoptosis is the mode of photoreceptor cell death in many Light-induced photoreceptor apoptosis represents an animal retinal dystrophies. Exposure of Balb/c mice to excessive model for the study of retinal degenerations such as Retinitis levels of light induces photoreceptor apoptosis and repre- Pigmentosa (RP), a genetically diverse group of disorders sents an animal model for the study of retinal degenerations. involving the progressive death of photoreceptor cells.1 Caspases have emerged as central regulators of apoptosis, Apoptosis is the mode of photoreceptor cell death in both executing this tightly controlled death pathway in many cells. -
Caspases: Pharmacological Manipulation of Cell Death Inna N
Review series Caspases: pharmacological manipulation of cell death Inna N. Lavrik, Alexander Golks, and Peter H. Krammer Division of Immunogenetics, Tumor Immunology Program, German Cancer Research Center, Heidelberg, Germany. Caspases, a family of cysteine proteases, play a central role in apoptosis. During the last decade, major progress has been made to further understand caspase structure and function, providing a unique basis for drug design. This Review gives an overview of caspases and their classification, structure, and substrate specificity. We also describe the current knowledge of how interference with caspase signaling can be used to pharmacologically manipulate cell death. Introduction involved in the transduction of the apoptotic signal. This superfam- Apoptosis, or programmed cell death, is a common property of all ily consists of the death domain (DD), the death effector domain multicellular organisms (1, 2). It can be triggered by a number of (DED), and the caspase recruitment domain (CARD) (11). Each of factors, including ultraviolet or γ-irradiation, growth factor with- these motifs interacts with other proteins by homotypic interac- drawal, chemotherapeutic drugs, or signaling by death receptors tions. All members of the death domain superfamily are character- (DRs) (3, 4). The central role in the regulation and the execution of ized by similar structures that comprise 6 or 7 antiparallel amphipa- apoptotic cell death belongs to caspases (5–7). Caspases, a family thic α-helices. Structural similarity suggests a common evolutionary of cysteinyl aspartate–specific proteases, are synthesized as zymo- origin for all recruitment domains (12). However, the nature of the gens with a prodomain of variable length followed by a large sub- homotypic interactions differs within the superfamily. -
Regulation of Caspase-8 Activity at the Crossroads of Pro-Inflammation
International Journal of Molecular Sciences Review Regulation of Caspase-8 Activity at the Crossroads of Pro-Inflammation and Anti-Inflammation Jun-Hyuk Han 1, Jooho Park 1,2, Tae-Bong Kang 1,3,* and Kwang-Ho Lee 1,3 1 Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; [email protected] (J.-H.H.); [email protected] (J.P.); [email protected] (K.-H.L.) 2 Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27487, Korea 3 Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju 27487, Korea * Correspondence: [email protected]; Tel.: +82-43-840-3904 Abstract: Caspase-8 has been classified as an apoptotic caspase, and its initial definition was an initiator of extrinsic cell death. During the past decade, the concept of caspase-8 functioning has been changed by findings of its additional roles in diverse biological processes. Although caspase-8 was not originally thought to be involved in the inflammation process, many recent works have determined that caspase-8 plays an important role in the regulatory functions of inflammatory processes. In this review, we describe the recent advances in knowledge regarding the manner in which caspase-8 modulates the inflammatory responses concerning inflammasome activation, cell death, and cytokine induction. Keywords: caspase-8; inflammasome; inflammation; necroptosis; pyroptosis; apoptosis Citation: Han, J.-H.; Park, J.; Kang, T.-B.; Lee, K.-H. Regulation of Caspase-8 Activity at the Crossroads 1. Introduction of Pro-Inflammation and Anti-Inflammation. Int. J. Mol. Sci. Mammalian caspases have classically been divided into inflammatory and apoptotic 2021, 22, 3318. -
Promotion of Caspase Activation by Caspase-9-Mediated Feedback Amplification of Mitochondrial Damage Alan D
C al & ellu ic la n r li Im C m f u Journal of Guerrero et al., J Clin Cell Immunol 2012, 3:3 o n l o a l n o r DOI: 10.4172/2155-9899.1000126 g u y o J ISSN: 2155-9899 Clinical & Cellular Immunology Research Article Article OpenOpen Access Access Promotion of Caspase Activation by Caspase-9-mediated Feedback Amplification of Mitochondrial Damage Alan D. Guerrero1, Ingo Schmitz2, Min Chen1 and Jin Wang1* 1Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA 2Institute for Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg and Helmholtz Center for Infection Research, D-38124, Braunschweig, Germany Abstract Mitochondrial disruption during apoptosis results in the activation of caspase-9 and a downstream caspase cascade. Triggering this caspase cascade leads to the cleavage of anti-apoptotic Bcl-2 family proteins, resulting in feedback amplification of mitochondrial disruption. However, whether such a feedback loop plays an important role in the promotion of caspase activation and execution of apoptosis has not been well established. We observed that mutated Bcl-2 or Bcl-xL that are resistant to cleavage by caspases inhibited caspase-9-induced caspase activation in human H9 T cells. The release of Smac after the activation of caspase-9 was also inhibited by cleavage-resistant Bcl-2 or Bcl-xL. Consistently, caspase-9-deficient cells were defective in the release of Smac after induction of apoptosis. Moreover, addition of a Smac mimetic overcame the inhibitory effects of cleavage-resistant Bcl-2/Bcl- xL, and restored caspase-9-mediated cell death. -
Caspase-Dependent and Caspase-Independent Apoptosis Induced by Evodiamine in Human Leukemic U937 Cells
2398 Caspase-dependent and caspase-independent apoptosis induced by evodiamine in human leukemic U937 cells Tae-Jin Lee,1 Eun Jung Kim,1 Shin Kim,1 inducing factor, which suggests that evodiamine is, at Eun Mi Jung,1 Jong-Wook Park,1 least in part, able to bypass the resistance of leukemia cells Seung Hun Jeong,2 Sang Eun Park,2 via caspase-independent apoptotic pathways. Thus, thera- Young Hyun Yoo,2 and Taeg Kyu Kwon1 peutic strategy using evodiamine may warrant further evaluation. [Mol Cancer Ther 2006;5(9):2398–407] 1Department of Immunology and Chronic Disease Research Center and Institute for Medical Science, School of Medicine, Keimyung University, Taegu, South Korea and 2Department of Introduction Anatomy and Cell Biology, Dong-A University College of Medicine Most anticancer agents eradicate tumor cells by the induc- (BK21 Program), and Medical Science Research Center, tion of apoptosis. Recent studies have suggested that the Busan, South Korea various anticancer agents used against cancer mediate their effects by induction of apoptosis of the cancer cells (1–3). Abstract It is suggested that there are several apoptotic pathways in cells responsive to apoptotic stimuli,such as the death Evodiamine is one of the major bioactive compounds that receptor–mediated pathway,the mitochondrial apoptotic have been isolated and purified from the fruit of Evodiae pathway,and the endoplasmic reticulum pathway (4–6). fructus. Evodiamine exhibits antitumor activities against Although each pathway is initially mediated by different the human tumor cells, including multidrug-resistant tumor mechanisms,they share a common final phase of apoptosis, cells. However, the molecular mechanism involved in cell consisting of the activation of the executioner caspases and death induced by evodiamine treatment remains poorly dismantling of substrates critical for cell survival (7). -
Der F1 Induces Pyroptosis in Human Bronchial Epithelia Via the NLRP3 Inflammasome
INTERNATIONAL JOURNAL OF MOleCular meDICine 41: 757-764, 2018 Der f1 induces pyroptosis in human bronchial epithelia via the NLRP3 inflammasome YINg‑MINg TSAI1-3*, KUO-HWA CHIANG4,5*, JEN-YU HUNG2,6, WEI-AN CHANG2,7, HUI-PING LIN8, JIuNN‑MIN SHIEH4,5, INN-WEN CHONG2,9 and YA‑LINg HSu1 1graduate Institute of Medicine, College of Medicine, Kaohsiung Medical university; 2Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical university Hospital, Kaohsiung 807; 3Department of Internal Medicine, Kaohsiung Municipal Ta‑Tung Hospital, Kaohsiung 801; 4Department of Internal Medicine, Chi Mei Medical Center, Tainan 710; 5Chia Nan university of Pharmacy and Science, Tainan 717; 6School of Medicine; 7graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical university, Kaohsiung 807; 8Department of Respiratory Care, Zuoying Branch of Kaohsiung Armed Forces general Hospital, Kaohsiung 813; 9Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical university, Kaohsiung 807, Taiwan, R.O.C. Received June 2, 2016; Accepted November 24, 2017 DOI: 10.3892/ijmm.2017.3310 Abstract. Damage to the bronchial epithelium leads to pyroptosis. Therefore, the common allergen Der f1 was not persistent inflammation and airway remodelling in various only found to induce allergy, but also led to pyroptosis and respiratory diseases, such as asthma and chronic obstructive IL-1β secretion via the NLRP3‑caspase‑1 inflammasome pulmonary disease. To date, the mechanisms underlying bron- in HBECs. This newly identified connection of the Der f1 chial epithelial cell damage and death by common allergens allergen with BEC damage and inflammation may play an remain largely unknown. The aim of the present study was to important role in the pathogenesis of asthma. -
Insights Into Mucosal Innate Immune Responses in House Dust Mite-Mediated Allergic Asthma
REVIEW published: 07 December 2020 doi: 10.3389/fimmu.2020.534501 Insights Into Mucosal Innate Immune Responses in House Dust Mite-Mediated Allergic Asthma Arwa Abu Khweek 1,2,3, Eunsoo Kim 3, Marisa R. Joldrichsen 3, Amal O. Amer 2,4* and Prosper N. Boyaka 2,3,4* 1 Department of Biology and Biochemistry, Birzeit University, Birzeit, Palestine, 2 Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States, 3 Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States, 4 The Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States The prevalence of asthma has been rising steadily for several decades, and continues to be a major public health and global economic burden due to both direct and indirect costs. Asthma is defined as chronic heterogeneous inflammatory diseases characterized by airway obstruction, mucus production and bronchospasm. Different endotypes of asthma are being recognized based on the distinct pathophysiology, genetic predisposition, age, prognosis, and response to remedies. Mucosal innate Edited by: response to environmental triggers such as pollen, cigarette smoke, fragrances, viral Eric Cox, infection, and house dust mite (HDM) are now recognized to play an important role Ghent University, Belgium in allergic asthma. HDM are the most pervasive allergens that co-habitat with us, as Reviewed by: they are ubiquitous in-house dusts, mattress and bedsheets, and feed on a diet of Wayne Robert Thomas, University of Western exfoliated human skin flakes. Dermatophagoides pteronyssinus, is one among several Australia, Australia HDM identified up to date. During the last decade, extensive studies have been Stewart J.