Promotion of Caspase Activation by Caspase-9-Mediated Feedback Amplification of Mitochondrial Damage Alan D

Total Page:16

File Type:pdf, Size:1020Kb

Promotion of Caspase Activation by Caspase-9-Mediated Feedback Amplification of Mitochondrial Damage Alan D C al & ellu ic la n r li Im C m f u Journal of Guerrero et al., J Clin Cell Immunol 2012, 3:3 o n l o a l n o r DOI: 10.4172/2155-9899.1000126 g u y o J ISSN: 2155-9899 Clinical & Cellular Immunology Research Article Article OpenOpen Access Access Promotion of Caspase Activation by Caspase-9-mediated Feedback Amplification of Mitochondrial Damage Alan D. Guerrero1, Ingo Schmitz2, Min Chen1 and Jin Wang1* 1Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA 2Institute for Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg and Helmholtz Center for Infection Research, D-38124, Braunschweig, Germany Abstract Mitochondrial disruption during apoptosis results in the activation of caspase-9 and a downstream caspase cascade. Triggering this caspase cascade leads to the cleavage of anti-apoptotic Bcl-2 family proteins, resulting in feedback amplification of mitochondrial disruption. However, whether such a feedback loop plays an important role in the promotion of caspase activation and execution of apoptosis has not been well established. We observed that mutated Bcl-2 or Bcl-xL that are resistant to cleavage by caspases inhibited caspase-9-induced caspase activation in human H9 T cells. The release of Smac after the activation of caspase-9 was also inhibited by cleavage-resistant Bcl-2 or Bcl-xL. Consistently, caspase-9-deficient cells were defective in the release of Smac after induction of apoptosis. Moreover, addition of a Smac mimetic overcame the inhibitory effects of cleavage-resistant Bcl-2/Bcl- xL, and restored caspase-9-mediated cell death. Our data suggest that caspase-9-induced feedback disruption of mitochondria plays an important role in promoting the activation of caspases, while a defect in this process can be overcome by promoting Smac functions. Keywords: Caspase-9; Mitochondrial feedback; Bcl-2, Bcl-xL induced cleavage inactivates the anti-apoptosis function of Bcl-2 and Bcl-xL [24-27]. Interestingly, loss of mitochondrial membrane Abbreviations: iCasp9: Inducible Caspase-9; CID: Chemical- potential during cell death is inhibited when caspase-9 or caspases-3 Inducer of Dimerization; AIF: Apoptosis-Inducing Factor; Endo G: and -7 are deficient [28-33], suggesting an important role for caspases Endonuclease G; HtrA2: High Temperature Requirement Protein A2; in feedback disruption of mitochondria. Smac/DIABLO: Second Mitochondria-Derived Activator of Caspases/ Direct IAP-Binding Protein with Low pI; IAP: Inhibitor of Apoptosis; Nuclear fragmentation following the activation of the caspase XIAP: X-linked IAP; CAD/DFF40: Caspase-Activated DNase/DNA cascade is a hallmark of apoptosis [34]. The degradation of DNA from Fragmentation Factor 40 kDa; ICAD/DFF45: Inhibitor of CAD/DNA apoptotic cells may be important for the prevention of autoimmunity Fragmentation Factor 45 kDa; VDAC: Voltage-Dependent Anion [35,36]. Caspase-activated DNase (CAD)/DNA Fragmentation Channel; GAPDH: Glyceraldehyde 3-phosphate Dehydrogenase; HA: Factor 40 kDa (DFF40) plays a prominent role in mediating nuclear Hemagglutinin; TMRE: Tetramethylrhodamine Ethyl Ester; zVAD- fragmentation [37-40]. CAD is associated with its inhibitor and fmk: Carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylk- chaperone, inhibitor of CAD (ICAD)/DNA Fragmentation Factor etone; UV: Ultraviolet 45 kDa (DFF45) [37-39]. Processing of ICAD by caspases results in Introduction the release and activation of CAD to induce nuclear damage [37-39]. Deletion of either CAD or its inhibitor/chaperone ICAD blocks nuclear In mitochondrial apoptosis, the disruption of the mitochondrial fragmentation in apoptotic cells, suggesting the importance of CAD outer membrane allows the release of cytochrome c from the in mediating nuclear damages [41,42]. Whether caspase-9-induced mitochondria into the cytosol [1,2]. Cytochrome c, Apaf-1 and feedback disruption of mitochondria is important for promoting CAD caspase-9 form the apoptosome for the dimerization and activation activation and inducing nuclear damage is not known. of caspase-9 [3-5]. Caspase-9 then proteolytically cleaves downstream To study the signaling events downstream of caspase-9, we have effector caspases, such as caspase-3, resulting in the activation of expressed caspase-9 that can be dimerized for the direct activation of these caspases [6-8]. Other proteins released from the mitochondria, caspase-9 in intact cells [6,24]. Dimerization of caspase-9 induces the including apoptosis-inducing factor (AIF), endonuclease G (Endo activation of a downstream caspase cascade through caspase-3 [6], G), high temperature requirement protein A2 (HtrA2) and second and triggers a feedback loop for mitochondrial disruption through mitochondria-derived activator of caspases (Smac)/direct IAP-binding protein with low pI (DIABLO), also regulate cell death [9-18]. While AIF, Endo G and HtrA2 may cause cell death independent of caspases [19], Smac promotes caspase activation by releasing caspase-9 and *Corresponding author: Jin Wang, Ph.D., Department of Immunology, Baylor College of Medicine, One Baylor Plaza, Room N920, Houston, Texas 77030, USA, caspase-3 from inhibition by the inhibitor of apoptosis (IAP) proteins Tel: 713-798-6193; Fax: 713-798-3033; E-mail: [email protected] [17,18,20,21]. Received June 15, 2012; Accepted August 02, 2012; Published August 09, 2012 Anti-apoptotic Bcl-2 family proteins, such as Bcl-2 and Bcl-xL, Citation: Guerrero AD, Schmitz I, Chen M, Wang J (2012) Promotion of Caspase maintain the stability of the mitochondrial outer membrane and inhibit Activation by Caspase-9-mediated Feedback Amplification of Mitochondrial the release of mitochondrial apoptotic proteins [1,2,22,23]. However, Damage. J Clin Cell Immunol 3:126. doi:10.4172/2155-9899.1000126 Bcl-2 and Bcl-xL are cleavable by caspases in apoptotic cells [24-26]. Copyright: © 2012 Guerrero AD, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits Cleavage-resistant Bcl-2 and Bcl-xL are more effective in inhibiting unrestricted use, distribution, and reproduction in any medium, provided the apoptosis than their wild type counterparts, suggesting that caspase- original author and source are credited. J Clin Cell Immunol ISSN:2155-9899 JCCI, an open access journal Volume 3 • Issue 3 • 1000126 Citation: Guerrero AD, Schmitz I, Chen M, Wang J (2012) Promotion of Caspase Activation by Caspase-9-mediated Feedback Amplification of Mitochondrial Damage. J Clin Cell Immunol 3:126. doi:10.4172/2155-9899.1000126 Page 2 of 9 cleavage of anti-apoptotic Bcl-2 family proteins [24]. Here we show Flow cytometric analyses of sub-diploid nuclei that cleavage-resistant Bcl-2 or Bcl-xL suppresses the release of Smac and cytochrome c after dimerization of caspase-9 in H9 T cells, leading Cells were cultured for the indicated times with or without to inhibition of both endogenous caspase activation and nuclear apoptotic stimuli. Cells were then collected, washed once in PBS damage. A Smac mimetic overcame the inhibitory effects of cleavage- and re-suspended in hypotonic staining buffer (0.1% sodium citrate, resistant Bcl-2 or Bcl-xL to promote caspase activation and apoptosis, 0.1% Triton X-100 and 50 µg/mL propidium iodide) at 4° in the dark supporting the importance for using Smac mimetics in cancer therapy. overnight as described [32]. Cells were analyzed using an LSRII flow cytometer (BD Biosciences). Materials and Methods Cell death assay Cell lines Cells (20,000/well) were plated in 96-well plates and cultured 5’ HA-tagged inducible caspase-9 (iCasp9) was created by fusing with a Smac mimetic [45] or solvent control for 2 h. Cells were then a mutated FK506-binding protein with the protease domain of treated with CID for 24 h and stained with propidium iodide (PI). The caspase-9 [43]. Human H9 T cell lines that stably express iCasp9 (H9- percentage of cell loss was quantitated by flow cytometry as described iCasp9 cells) were established as described [6,24]. AP20187 (ARIAD [6,24]. Pharmaceuticals, Cambridge, MA), a dimeric FK506 analog, was used as a chemical-inducer of dimerization (CID) to activate iCasp9 [6,24]. Caspase activity assay H9-iCasp9 cells with silencing of caspase-3 or stably expressing wild type Bcl-2 or Bcl-xL, or mutant Bcl-2 or Bcl-xL resistant to proteolytic Caspase activation was determined using the Caspase-Glo 3/7 Kit cleavage by caspases (Bcl-2D/A or Bcl-xLD/A), have been reported [24]. (Promega, Madison, WI) according to the manufacturer’s instructions. JMR cells and JMR cells reconstituted with caspase-9 (JMR-C9) have Cells (10,000/well) were plated in 96-well flat bottom plates and treated been described [31,32]. with a Smac mimetic [45] or solvent control for 2 h, followed by treatment with CID for 6 h. The Caspase-Glo 3/7 reagent was added Western blotting to cells and the plate was incubated for 1 h at room temperature. Cells were lysed in lysis buffer (50 mM HEPES, pH 7.5, 150 mM Luminescence was measured using a FLUOstar OPTIMA plate reader NaCl, 1 mM EDTA, 1% Triton X-100, 1x protease inhibitor cocktail from (BMG Labtech, Offenburg, Germany). Results are shown in Relative Roche, 2 µM z-VAD-fmk) at different time points for Western blotting Light Units (RLU). as described [6,24]. The following primary antibodies were used for Measurement of mitochondrial membrane potential Western blotting: mouse monoclonal antibodies to Smac, cytochrome c and Bcl-2 (BD Biosciences, San Jose, CA), ICAD and caspase-9 Cells were cultured for the indicated times. During the last 20 minutes (Medical and Biological Laboratories, Woburn, MA), HA (Covance, of culture, cells were incubated with 25 nM of tetramethylrhodamine Princeton, NJ) and α-tubulin (Santa Cruz Biotechnology, Santa Cruz, ethyl ester (TMRE; Invitrogen). Cells were collected, washed and CA); rabbit polyclonal antibody to caspase-3 (BD Biosciences), Bcl-xL mitochondrial membrane potential was quantitated on a LSRII flow and GAPDH (Cell Signaling Technology, Danvers, MA) and VDAC1 cytometer (BD Bioscience).
Recommended publications
  • P53 and the Cathepsin Proteases As Co-Regulators of Cancer and Apoptosis
    cancers Review Making Connections: p53 and the Cathepsin Proteases as Co-Regulators of Cancer and Apoptosis Surinder M. Soond 1,*, Lyudmila V. Savvateeva 1, Vladimir A. Makarov 1, Neonila V. Gorokhovets 1, Paul A. Townsend 2 and Andrey A. Zamyatnin, Jr. 1,3,4,* 1 Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; [email protected] (L.V.S.); [email protected] (V.A.M.); gorokhovets_n_v@staff.sechenov.ru (N.V.G.) 2 Division of Cancer Sciences and Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, and the NIHR Manchester Biomedical Research Centre, Manchester M13 9PL, UK; [email protected] 3 Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia 4 Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia * Correspondence: [email protected] (S.M.S.); [email protected] (A.A.Z.J.) Received: 6 October 2020; Accepted: 19 November 2020; Published: 22 November 2020 Simple Summary: This article describes an emerging area of significant interest in cancer and cell death and the relationships shared by these through the p53 and cathepsin proteins. While it has been demonstrated that the p53 protein can directly induce the leakage of cathepsin proteases from the lysosome, directly triggering cell death, little is known about what factors set the threshold at which the lysosome can become permeabilized. It appears that the expression levels of cathepsin proteases may be central to this process, with some of them being transcriptionally regulated by p53.
    [Show full text]
  • The Role of Caspase-2 in Regulating Cell Fate
    cells Review The Role of Caspase-2 in Regulating Cell Fate Vasanthy Vigneswara and Zubair Ahmed * Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; [email protected] * Correspondence: [email protected] Received: 15 April 2020; Accepted: 12 May 2020; Published: 19 May 2020 Abstract: Caspase-2 is the most evolutionarily conserved member of the mammalian caspase family and has been implicated in both apoptotic and non-apoptotic signaling pathways, including tumor suppression, cell cycle regulation, and DNA repair. A myriad of signaling molecules is associated with the tight regulation of caspase-2 to mediate multiple cellular processes far beyond apoptotic cell death. This review provides a comprehensive overview of the literature pertaining to possible sophisticated molecular mechanisms underlying the multifaceted process of caspase-2 activation and to highlight its interplay between factors that promote or suppress apoptosis in a complicated regulatory network that determines the fate of a cell from its birth and throughout its life. Keywords: caspase-2; procaspase; apoptosis; splice variants; activation; intrinsic; extrinsic; neurons 1. Introduction Apoptosis, or programmed cell death (PCD), plays a pivotal role during embryonic development through to adulthood in multi-cellular organisms to eliminate excessive and potentially compromised cells under physiological conditions to maintain cellular homeostasis [1]. However, dysregulation of the apoptotic signaling pathway is implicated in a variety of pathological conditions. For example, excessive apoptosis can lead to neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease, whilst insufficient apoptosis results in cancer and autoimmune disorders [2,3]. Apoptosis is mediated by two well-known classical signaling pathways, namely the extrinsic or death receptor-dependent pathway and the intrinsic or mitochondria-dependent pathway.
    [Show full text]
  • Relationships Between Expression of BCS1L, Mitochondrial Bioenergetics, and Fatigue Among Patients with Prostate Cancer
    Cancer Management and Research Dovepress open access to scientific and medical research Open Access Full Text Article ORIGINAL RESEARCH Relationships between expression of BCS1L, mitochondrial bioenergetics, and fatigue among patients with prostate cancer This article was published in the following Dove Press journal: Cancer Management and Research Chao-Pin Hsiao1,2 Introduction: Cancer-related fatigue (CRF) is the most debilitating symptom with the Mei-Kuang Chen3 greatest adverse side effect on quality of life. The etiology of this symptom is still not Martina L Veigl4 understood. The purpose of this study was to examine the relationship between mitochon- Rodney Ellis5 drial gene expression, mitochondrial oxidative phosphorylation, electron transport chain Matthew Cooney6 complex activity, and fatigue in prostate cancer patients undergoing radiotherapy (XRT), Barbara Daly1 compared to patients on active surveillance (AS). Methods: The study used a matched case–control and repeated-measures research design. Charles Hoppel7 Fatigue was measured using the revised Piper Fatigue Scale from 52 patients with prostate 1The Frances Payne Bolton School of cancer. Mitochondrial oxidative phosphorylation, electron-transport chain enzymatic activity, Nursing, Case Western Reserve ’ University, Cleveland, OH, USA; 2School and BCS1L gene expression were determined using patients peripheral mononuclear cells. of Nursing, Taipei Medical University, Data were collected at three time points and analyzed using repeated measures ANOVA. 3 Taipei , Taiwan; Department of Results: The fatigue score was significantly different over time between patients undergoing XRT Psychology, University of Arizona, fi Tucson, AZ, USA; 4Gene Expression & and AS (P<0.05). Patients undergoing XRT experienced signi cantly increased fatigue at day 21 Genotyping Facility, Case Comprehensive and day 42 of XRT (P<0.01).
    [Show full text]
  • Apoptosis Induced by Microinjection of Cytochrome C Is Caspase-Dependent and Is Inhibited by Bcl-2
    Cell Death and Differentiation (1998) 5, 660 ± 668 1998 Stockton Press All rights reserved 13509047/98 $12.00 http://www.stockton-press.co.uk/cdd Apoptosis induced by microinjection of cytochrome c is caspase-dependent and is inhibited by Bcl-2 Odd T. Brustugun1, Kari E. Fladmark1, Stein O. Dùskeland1,3, proteins, chromatin and RNA degradation, cell shrinkage and Sten Orrenius2 and Boris Zhivotovsky2 blebbing of cell membranes accompanied by the appearance of phosphatidyl serine on the outer surface of the plasma 1 Department of Anatomy and Cell Biology, University of Bergen, AÊ rstadveien 19, membrane. N-5009 Bergen, Norway The biochemical machinery involved in the killing and 2 Institute of Environmental Medicine, Division of Toxicology, Karolinska degradation of the cell is constitutively expressed. During Institutet, Box 210, S-171 77 Stockholm, Sweden the last few years the `main players' in the induction and 3 corresponding author: Department of Anatomy and Cell Biology, University of execution cascade of reactions in apoptotic cells were Bergen, AÊ rstadveien 19, N-5009 Bergen, Norway. tel: +47 55 58 63 76; fax: +47 55 58 63 60; e-mail: [email protected] identified as a family of aspartic acid-specific cysteine proteases, the caspases (Alnemri et al, 1996). Over- Received 26.11.97; revised 2.3.98; accepted 23.3.98 expression of any of these proteases leads to apoptotic Edited by G. Melino cell death. Moreover, mice deficient in caspase-3 have a striking defect in the extensive apoptosis that occurs during brain development. Peptide inhibitors of caspases can Abstract prevent apoptosis both in isolated cells and in in vivo Microinjection of cytochrome c induced apoptosis in all the models of development.
    [Show full text]
  • Bax Transmembrane Domain Interacts with Prosurvival Bcl-2 Proteins in Biological Membranes
    Bax transmembrane domain interacts with prosurvival Bcl-2 proteins in biological membranes Vicente Andreu-Fernándeza,b,c, Mónica Sanchoa, Ainhoa Genovésa, Estefanía Lucendoa, Franziska Todtb, Joachim Lauterwasserb,d, Kathrin Funkb,d, Günther Jahreise, Enrique Pérez-Payáa,f,1, Ismael Mingarroc,2, Frank Edlichb,g,2, and Mar Orzáeza,2 aLaboratory of Peptide and Protein Chemistry, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain; bInstitute for Biochemistry and Molecular Biology, University of Freiburg, 79104 Freiburg, Germany; cDepartament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina, Universitat de València, 46100 Burjassot, Spain; dFaculty of Biology, University of Freiburg, 79104 Freiburg, Germany; eDepartment of Biochemistry/Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; fInstituto de Biomedicina de Valencia, Instituto de Biomedicina de Valencia–Consejo Superior de Investigaciones Científicas, 46010 Valencia, Spain; and gBIOSS, Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany Edited by William F. DeGrado, School of Pharmacy, University of California, San Francisco, CA, and approved November 29, 2016 (received for review July 28, 2016) The Bcl-2 (B-cell lymphoma 2) protein Bax (Bcl-2 associated X, across bilayers via changes in the oligomeric state or protein con- apoptosis regulator) can commit cells to apoptosis via outer mito- formation (22–24). The Bax TMD targets fusion proteins to the chondrial membrane permeabilization. Bax activity is controlled in OMM; its deletion results in cytosolic Bax localization and impaired healthy cells by prosurvival Bcl-2 proteins. C-terminal Bax trans- Bax activity (25). Analysis of the active Bax membrane topology membrane domain interactions were implicated recently in Bax pore suggests that the TMD could play a central role in Bax oligomeri- formation.
    [Show full text]
  • Pyruvate Dehydrogenase Deficiency in a Child with Motor Neuropathy
    003 1-399819313303-0284$03.00/0 PEDIATRIC RESEARCH Vol. 33, No. 3, 1993 Copyright O 1993 International Pediatric Research Foundation, Inc. Prinled in U.S.A. Pyruvate Dehydrogenase Deficiency in a Child with Motor Neuropathy GISELE BONNE, CHANTAL BENELLI, LINDA DE MEIRLEIR, WILLY LISSENS, MICHELE CHAUSSAIN, MONIQUE DIRY, JEAN-PIERRE CLOT, GERARD PONSOT, VALERIE GEOFFROY, JEAN-PAUL LEROUX, AND CECILE MARSAC INSERM U 75, Faculte Neclter, 75015 Paris, France[G.B., M.D., J.P.L., C.M.], INSERM U 30, H6pital Neclter, 75015 Puri.~,France [C.B., J-P.C., V.G.];Lahoraroire de GenPtique, Vrije Universili Bruxelles, 1090 Bruxelles, Belgiz~rn[L.D.M., W.L.];and N6pital Saint Vincent de Paul, 75014 Paris, France [M.C., G.P/ ABSTRACT. We report the case of a boy who developed role in aerobic energy metabolism (1). It consists of multiple a motor neuropathy during infectious episodes at 18 mo copies of three catalytic enzymes: PDH El, which is composed and 3 y of age. When he was 7 y old, he suffered persistent of two a and two p subunits and uses thiamine pyrophosphate weakness and areflexia; his resting lactate and pyruvate as a coenzyme, PDH E2, and PDH E3. An additional protein X values were 3.65 mM and 398 pM, respectively (controls: is involved in the linkage of the different subunits (2). Two 1.1 f 0.3 mM and 90 f 22 pM), and an exercise test regulatory enzymes (PDH kinase and PDH phosphatase) catalyze demonstrated a lactic acidosis (13.6 mM, controls: 6.4 f the interconversion of the active, dephosphorylated and the 1.3 mM) with a high pyruvate level (537 pM; controls: 176 inactive, phosphorylated forms of PDH El (3).
    [Show full text]
  • Function and Structure of Complex Ii of The
    Annu. Rev. Biochem. 2003. 72:77–109 doi: 10.1146/annurev.biochem.72.121801.161700 FUNCTION AND STRUCTURE OF COMPLEX II * OF THE RESPIRATORY CHAIN Gary Cecchini Molecular Biology Division, Veterans Administration Medical Center, San Francisco, California 94121, and Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143; email: [email protected] Key Words succinate dehydrogenase, fumarate reductase, quinone oxidoreductase, reactive oxygen species, respiratory chain f Abstract Complex II is the only membrane-bound component of the Krebs cycle and in addition functions as a member of the electron transport chain in mitochondria and in many bacteria. A recent X-ray structural solution of members of the complex II family of proteins has provided important insights into their function. One feature of the complex II structures is a linear electron transport chain that extends from the flavin and iron-sulfur redox cofactors in the membrane extrinsic domain to the quinone and b heme cofactors in the membrane domain. Exciting recent developments in relation to disease in humans and the formation of reactive oxygen species by complex II point to its overall importance in cellular physiology. CONTENTS OVERVIEW OF MEMBRANE-BOUND RESPIRATORY CHAIN .......... 78 COMPLEX II .......................................... 80 OVERALL STRUCTURE OF COMPLEX II ....................... 83 FLAVOPROTEIN SUBUNIT AND FORMATION OF THE COVALENT FAD LINKAGE............................................ 87 CATALYSIS IN COMPLEX II................................ 91 IRON-SULFUR CLUSTERS OF COMPLEX II AND THE ELECTRON TRANS- FER PATHWAY........................................ 94 MEMBRANE DOMAIN OF COMPLEX II ........................ 95 ROLE OF THE b HEME IN COMPLEX II ........................ 99 RELATION OF COMPLEX II TO DISEASE AND REACTIVE OXYGEN SPECIES ............................................100 CONCLUDING REMARKS .................................104 *The U.S.
    [Show full text]
  • Citrate Synthase a Mitochondrial Marker Enzyme
    Oroboros Protocols Enzymes Mitochondrial Physiology Network 17.04(04):1-12 (2020) Version 04: 2020-04-18 ©2013-2020 Oroboros Updates: http://wiki.oroboros.at/index.php/MiPNet17.04_CitrateSynthase Laboratory Protocol: Citrate synthase a mitochondrial marker enzyme Eigentler A1,2, Draxl A2, Gnaiger E1,2 1D. Swarovski Research Laboratory Dept Visceral, Transplant and Thoracic Surgery Medical Univ Innsbruck, Austria www.mitofit.org 2Oroboros Instruments High-Resolution Respirometry Schöpfstrasse 18, A-6020 Innsbruck, Austria Email: [email protected]; www.oroboros.at 1. Background 1 1.1. Enzymatic reaction catalyzed by citrate synthase 2 1.2. Principle of spectrophotometric enzyme assay 2 1.3. Temperature of enzyme assay 3 2. Reagents and buffers 3 2.1. Prepare every month new and store at 4 °C 3 2.2. Prepare 12.2 mM acetyl-CoA, store at -20 °C 3 2.3. Prepare fresh every day 3 2.4. Chemicals 4 3. Sample preparation 4 4. Measurement: Spectrophotometer HP8452A Diode Array 6 4.1. Measurement of CS activity in 1 mL cuvette 6 4.2. Blank measurement 6 4.3. Sample measurement 7 4.4. Experimental procedure 7 5. Data analysis: calculation of specific CS activity 8 5.1. Absorbance, concentration and rate of reaction 8 5.2. Specific enzyme activity: reaction rate per unit sample 8 6. Normalization of respiratory flux for CS activity 9 6.1. Flow per instrumental chamber, IO2 9 6.2. Flux per chamber volume, JV,O2 10 6.3. Flow per experimental object, IO2/N 10 6.4. Flux per sample mass, JO2/m 10 7. References 10 8.
    [Show full text]
  • Patched Dependence Receptor Triggers Apoptosis Through Ubiquitination of Caspase-9
    Patched dependence receptor triggers apoptosis through ubiquitination of caspase-9 Joanna Fombonnea,1, Pierre-Antoine Bisseya,1, Catherine Guixa, Rémy Sadoulb, Chantal Thibertb, and Patrick Mehlena,2 aApoptosis, Cancer and Development Laboratory-Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Centre de Cancérologie de Lyon, Institut National de la Santé et de la Recherche Médicale U1052-Centre National de la Recherche Scientifique Unité Mixte de Recherche 5286, Centre Léon Bérard, Université de Lyon, 69008 Lyon, France; and bNeurodegenerescence and Plasticity Laboratory-Institut des Neurosciences, Institut National de la Santé et de la Recherche Médicale U836, Université Joseph Fourier, 38042 Grenoble, France Edited* by Bert Vogelstein, The Johns Hopkins University, Baltimore, MD, and approved April 30, 2012 (received for review January 4, 2012) Patched (Ptc), the main receptor for Sonic Hedghog, is a tumor (E3), such as Nedd4. Ubiquitination was initially described to suppressor. Ptc has been shown to be a dependence receptor, play a major role in protein degradation by providing a signal for and as such triggers apoptosis in the absence of its ligand. This proteasome-mediated degradation. However, it has been shown apoptosis induction occurs through the recruitment by the Ptc in- recently that ubiquitination is important not only for protein tracellular domain of a caspase-activating complex, which includes degradation but also for the regulation of both prosurvival and the adaptor proteins DRAL and TUCAN, and the apical caspase-9. proapoptotic signals (13–15). Considering recent data describing We show here that this caspase-activating complex also includes the ubiquitination of caspase-8 as a mechanism for caspase-8 the E3 ubiquitin ligase NEDD4.
    [Show full text]
  • Caspase-6 Induces 7A6 Antigen Localization to Mitochondria During FAS-Induced Apoptosis of Jurkat Cells HIROAKI SUITA, TAKAHISA SHINOMIYA and YUKITOSHI NAGAHARA
    ANTICANCER RESEARCH 37 : 1697-1704 (2017) doi:10.21873/anticanres.11501 Caspase-6 Induces 7A6 Antigen Localization to Mitochondria During FAS-induced Apoptosis of Jurkat Cells HIROAKI SUITA, TAKAHISA SHINOMIYA and YUKITOSHI NAGAHARA Division of Life Science and Engineering, School of Science and Engineering, Tokyo Denki University, Hatoyama, Japan Abstract. Background: Mitochondria are central to caspases (caspase-8 and -9) that activate effector caspases (1). apoptosis. However, apoptosis progression involving Caspases are constructed of a pro-domain, a large subunit, and mitochondria is not fully understood. A factor involved in a small subunit. Upon caspase activation, cleavage of the mitochondria-mediated apoptosis is 7A6 antigen. 7A6 caspase occurs. Caspase-6 and -7, which are effector caspases, localizes to mitochondria from the cytosol during apoptosis, each have a large subunit that is 20 kDa (p20) and a small which seems to involve ‘effector’ caspases. In this study, we subunit that is 10 kDa (p10), but caspase-3, which is also an investigated the precise role of effector caspases in 7A6 effector caspase, has a large subunit of 17 kDa and a small localization to mitochondria during apoptosis. Materials and subunit of 12 kDa (p12) (2-4). Moreover, the large and small Methods: Human T-cell lymphoma Jurkat cells were treated subunits of caspase-6 and -7 are connected by a linker, but with an antibody against FAS. 7A6 localization was analyzed caspase-3 does not have a linker (Figure 1). The difference by confocal laser scanning microscopy and flow cytometry. between effector and initiator caspases is that the pro-domain Caspases activation was determined by western blot of an initiator caspase is long and that the pro-domain of an analysis.
    [Show full text]
  • Caspase-9 and Apaf-1 Are Expressed and Functionally Active in Human Neuroblastoma Tumor Cell Lines with 1P36 LOH and Ampli®Ed MYCN
    Oncogene (2002) 21, 1848 ± 1858 ã 2002 Nature Publishing Group All rights reserved 0950 ± 9232/02 $25.00 www.nature.com/onc Caspase-9 and Apaf-1 are expressed and functionally active in human neuroblastoma tumor cell lines with 1p36 LOH and ampli®ed MYCN Tal Teitz1,3, Tie Wei1,2,3, Dong Liu1, Virginia Valentine1, Marcus Valentine1, Jose Grenet1, Jill M Lahti1 and Vincent J Kidd*,1 1Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, TN 38105, USA Important roles have been suggested for caspase-8, Introduction caspase-9 and Apaf-1 in controlling tumor development and their sensitivity to chemotherapeutic agents. Methy- Neuroblastoma is one of the most common pediatric lation and deletion of Apaf-1 and CASP8 results in the solid tumors, and it is commonly classi®ed by the stage loss of their expression in melanoma and neuroblastoma, of tumor development (Brodeur et al., 1992). Early respectively, while CASP9 localization to 1p36.1 stage neuroblastoma tumors (i.e., stages I, II and III) suggests it is a good candidate tumor suppressor. The are readily treatable with chemotherapeutic drugs and status of CASP9 and Apaf-1 expression in numerous irradiation, and many will even spontaneously regress. neuroblastoma cell lines with/without ampli®ed MYCN However, the prognosis for late stage tumors, es- and chromosome 1p36 loss-of-heterozygosity (LOH) was pecially stage IV tumors, and stage IV tumors that therefore examined to test the hypothesis that one or overexpress the oncoprotein N-Myc due to ampli®ca- both of these genes are tumor suppressors in neuro- tion of the corresponding MYCN gene, is not favorable blastoma.
    [Show full text]
  • Caspase Substrates and Inhibitors
    Downloaded from http://cshperspectives.cshlp.org/ on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Caspase Substrates and Inhibitors Marcin Pore˛ba1, Aleksandra Stro´z˙yk1, Guy S. Salvesen2, and Marcin Dra˛g1 1Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, 50-370 Wrocław, Poland 2Program in Cell Death Research, Sanford-Burnham Medical Research Institute, La Jolla, California 92024 Correspondence: [email protected] Caspases are proteases at the heart of networks that govern apoptosis and inflammation. The past decade has seen huge leaps in understanding the biology and chemistry of the caspases, largely through the development of synthetic substrates and inhibitors. Such agents are used to define the role of caspases in transmitting life and death signals, in imaging caspases in situ and in vivo, and in deconvoluting the networks that govern cell behavior. Additionally, focused proteomics methods have begun to reveal the natural substrates of caspases in the thousands. Together, these chemical and proteomics technologies are setting the scene for designing and implementing control of caspase activity as appropriate targets for disease therapy. WHAT IT TAKES TO BE A CASPASE group, known as cysteine protease clan CD that he need to recycle scarce amino acids in early also contains the plant metacaspases (Vercam- Tbiotic environments required that proteases men et al. 2004), and mammalian and plant were among the first proteins to appear in the proteases of the legumain family (involved in most primitive replicating organisms. Since that specific processing events), the eukaryotic pro- distant origin, proteases have diversified into tease separase (required for sisterchromatid sep- every biological niche, occupied every cellular aration during mitosis), and the bacterial prote- and extracellular compartment, and are encod- ases clostripain and gingipain (Chen et al.
    [Show full text]