Carla Curran Et Al

Total Page:16

File Type:pdf, Size:1020Kb

Carla Curran Et Al Carla Curran et al. Savannah State University The effect of the bopyrid isopod parasite Probopyrus pandalicola and/or the trematode Microphallus turgidus on the behavior of Palaemonetes pugio 100 High Tide 4.0 80 Abundance 3.6 Shrimp length (cm) Ovigerity 60 Length 3.2 The effect of seasonality and tidal stage on the abundance 40 2.8 of the grass shrimp Palaemonetes pugio and P. vulgaris 20 2.4 0 2.0 and their parasites. Mar Apr May June July Shaiane Pinto Abiotic influences on the abundance of juvenile flatfishes Jennie Wiggins 2018 Purpose Results • To determine which abiotic factors (e.g., salinity, • The bay whiff Citharichthys spilopterus, blackcheek tonguefish temperature, wind speed/direction), if any, had an effect Symphurus plagiusa, and fringed flounder Etropus crossotus on the seasonal abundance of flatfish species in small were collected every season, while the other 4 species were tidally influenced creek near Savannah, GA only collected in the winter and spring • Salinity was generally Materials and Methods consistent from season • Monthly sampling using a 1 m wide beam trawl to season, but temperature • 3 sequential tows conducted at 2 min each varied seasonally ranging • Temperature and salinity recorded using thermometer from 14.1 ± 2.56 °C to and refractometer, respectively • Flatfishes counted, measured (1 mm TL), and identified 29.0 ± 1.79°C to species How well can you LISTEN to the data on mean abundance (you will hear 12 musical notes – one for each month) Higher pitch means more fish All Flatfish Transform: Square root Resemblance: S17 Bray-Curtis similarity 25 2D Stress: 0.18 Season Blackcheek Tonguefish Fall Winter Bay Whiff Spring 20 Summer Fringed Flounder Ocellated Flounder 15 Southern Flounder Summer Flounder 10 Mean Abundance 5 20 Blackcheek Tonguefish 0 15 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Blackcheek Tonguefish Contact information 10 30+ K-12 activities 5 Carla Curran Mean Abundance [email protected] 0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec.
Recommended publications
  • Pleuronectidae, Poecilopsettidae, Achiridae, Cynoglossidae
    1536 Glyptocephalus cynoglossus (Linnaeus, 1758) Pleuronectidae Witch flounder Range: Both sides of North Atlantic Ocean; in the western North Atlantic from Strait of Belle Isle to Cape Hatteras Habitat: Moderately deep water (mostly 45–330 m), deepest in southern part of range; found on mud, muddy sand or clay substrates Spawning: May–Oct in Gulf of Maine; Apr–Oct on Georges Bank; Feb–Jul Meristic Characters in Middle Atlantic Bight Myomeres: 58–60 Vertebrae: 11–12+45–47=56–59 Eggs: – Pelagic, spherical Early eggs similar in size Dorsal fin rays: 97–117 – Diameter: 1.2–1.6 mm to those of Gadus morhua Anal fin rays: 86–102 – Chorion: smooth and Melanogrammus aeglefinus Pectoral fin rays: 9–13 – Yolk: homogeneous Pelvic fin rays: 6/6 – Oil globules: none Caudal fin rays: 20–24 (total) – Perivitelline space: narrow Larvae: – Hatching occurs at 4–6 mm; eyes unpigmented – Body long, thin and transparent; preanus length (<33% TL) shorter than in Hippoglossoides or Hippoglossus – Head length increases from 13% SL at 6 mm to 22% SL at 42 mm – Body depth increases from 9% SL at 6 mm to 30% SL at 42 mm – Preopercle spines: 3–4 occur on posterior edge, 5–6 on lateral ridge at about 16 mm, increase to 17–19 spines – Flexion occurs at 14–20 mm; transformation occurs at 22–35 mm (sometimes delayed to larger sizes) – Sequence of fin ray formation: C, D, A – P2 – P1 – Pigment intensifies with development: 6 bands on body and fins, 3 major, 3 minor (see table below) Glyptocephalus cynoglossus Hippoglossoides platessoides Total myomeres 58–60 44–47 Preanus length <33%TL >35%TL Postanal pigment bars 3 major, 3 minor 3 with light scattering between Finfold pigment Bars extend onto finfold None Flexion size 14–20 mm 9–19 mm Ventral pigment Scattering anterior to anus Line from anus to isthmus Early Juvenile: Occurs in nursery habitats on continental slope E.
    [Show full text]
  • Copy of Summer Flounder/Fluke Fast Facts
    YOFUISTH EERDUIECSATION FLUKE (SUMMER FLOUNDER) Poor Paralichthys dentatus Conservation Status "Poor" in NYS Range Map (fishbase.org) FACT ONE FACT TWO Fluke is a species of flatfish also known as The way to distinguish fluke and winter summer flounder. Some other names include flounder is by knowing if they are right or northern fluke or hirame. Fluke is a type of left - eyed. Fluke face left when their mouth flounder but this name helps distinguish it from points up and winter flounder face right the very similar Winter Flounder. when their mouth points up. FACT THREE FACT FOUR Like other flounder, fluke hide at the bottom Fluke is a valuable food fish and has remained a to catch prey. They are a lighter, more popular commercial and recreational catch for dappled brown than winter flounder. They hundreds of years. CCE Marine Program conducts also have “eye” spots patterned along their important applied research on fluke including body. They can change color to match dark discard mortality (how many fish survive after or light sediment they are lying in, too! being caught and thrown back). For more information about F.I.S.H. Initiative: https://www.localfish.org/ FISHERIES Overview Status Fluke are found in inshore and offshore Summer flounder are not overfished and are not waters from Nova Scotia, Canada, to the east subject to overfishing, according to the Atlantic coast of Florida along the East Coast of the States Marine Fisheries Commission (ASMFC). United States. It is a left-eyed flatfish that However, the population of Fluke has decreased over lives 12 to 14 years.
    [Show full text]
  • Food Choice of Different Size Classes of Flounder (Platichthys Flesus ) In
    Food choice of different size classes of flounder ( Platichthys flesus ) in the Baltic Sea Jennie Ljungberg Degree project in biology, Master of science (2 years), 2014 Examensarbete i biologi 30 hp till masterexamen, 2014 Biology Education Centre Supervisor: Bertil Widbom Table of Contents ABSTRACT ............................................................................................................................................ 3 INTRODUCTION ................................................................................................................................... 4 Flounders in the Baltic Sea .................................................................................................................. 5 The diet of flounders ........................................................................................................................... 6 Blue mussel (Mytilus edulis) ............................................................................................................... 7 Blue mussels in the Baltic Sea............................................................................................................. 8 The nutritive value of blue mussels ..................................................................................................... 9 The condition of flounders in the Baltic Sea ....................................................................................... 9 Aims .................................................................................................................................................
    [Show full text]
  • For Summer Flounder Is Defined As
    FISHERY MANAGEMENT PLAN FOR THE SUMMER FLOUNDER FISHERY October 1987 Mid-Atlantic Fishery Management Council in cooperation with the National Marine Fisheries Service, the New England Fishery Management Council, and the South Atlantic Fishery Management Council Draft adopted by MAFMC: 29 October 1987 Final adopted by MAFMC: 16 April1988 Final approved by NOAA: 19 September 1988 3.14.89 FISHERY MANAGEMENT PLAN FOR THE SUMMER FLOUNDER FISHERY October 1987 Mid-Atlantic Fishery Management Council in cooperation with the National Marine Fisheries Service, the New England Fishery Management Council, and the South Atlantic Fishery Management Council See page 2 for a discussion of Amendment 1 to the FMP. Draft adopted by MAFMC: 21 October 1187 final adopted by MAFMC: 16 April1988 final approved by NOAA: 19 September 1988 1 2.27 91 THIS DOCUMENT IS THE SUMMER FLOUNDER FISHERY MANAGEMENT PLAN AS ADOPTED BY THE COUNCIL AND APPROVED BY THE NATIONAL MARINE FISHERIES SERVICE. THE REGULATIONS IN APPENDIX 6 (BLUE PAPER) ARE THE REGULATIONS CONTROLLING THE FISHERY AS OF THE DATE OF THIS PRINTING (27 FEBRUARY 1991). READERS SHOULD BE AWARE THAT THE COUNCIL ADOPTED AMENDMENT 1 TO THE FMP ON 31 OCTOBER 1990 TO DEFINE OVERFISHING AS REQUIRED BY 50 CFR 602 AND TO IMPOSE A 5.5" (DIAMOND MESH) AND 6" (SQUARE MESH) MINIMUM NET MESH IN THE TRAWL FISHERY. ON 15 FEBRUARY 1991 NMFS APPROVED THE OVERFISHING DEFINITION AND DISAPPROVED THE MINIMUM NET MESH. OVERFISHING FOR SUMMER FLOUNDER IS DEFINED AS FISHING IN EXCESS OF THE FMAX LEVEL. THIS ACTION DID NOT CHANGE THE REGULATIONS DISCUSSED ABOVE. 2 27.91 2 2.
    [Show full text]
  • Winter Flounder
    Maine 2015 Wildlife Action Plan Revision Report Date: January 13, 2016 Pseudopleuronectes americanus (Winter Flounder) Priority 2 Species of Greatest Conservation Need (SGCN) Class: Actinopterygii (Ray-finned Fishes) Order: Pleuronectiformes (Flatfish) Family: Pleuronectidae (Righteye Flounders) General comments: Maine DMR jurisdiction; W Atlantic specialist = LB-GA No Species Conservation Range Maps Available for Winter Flounder SGCN Priority Ranking - Designation Criteria: Risk of Extirpation: NA State Special Concern or NMFS Species of Concern: NA Recent Significant Declines: Winter Flounder is currently undergoing steep population declines, which has already led to, or if unchecked is likely to lead to, local extinction and/or range contraction. Notes: ASMFC Stock Assess, 30yr, and DFO. 2012. Assessment of winter flounder (Pseudopleuronectes americanus) in the southern Gulf of St. Lawrence (NAFO Div. 4T). DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2012/016. Regional Endemic: NA High Regional Conservation Priority: Atlantic States Marine Fisheries Commission Stock Assessments: Status: Unstable/Decreasing, Status Comment: Reference: High Climate Change Vulnerability: NA Understudied rare taxa: NA Historical: NA Culturally Significant: NA Habitats Assigned to Winter Flounder: Formation Name Subtidal Macrogroup Name Subtidal Coarse Gravel Bottom Habitat System Name: Coarse Gravel **Primary Habitat** Notes: adult spawning Habitat System Name: Kelp Bed Notes: juvenile Macrogroup Name Subtidal Mud Bottom Habitat System Name: Submerged Aquatic
    [Show full text]
  • Citharichthys Uhleri Jordan in Jordan and Goss, 1889 Cyclopsetta Fimbriata
    click for previous page Pleuronectiformes: Paralichthyidae 1917 Citharichthys uhleri Jordan in Jordan and Goss, 1889 En - Voodoo whiff. Maximum size to 11 cm standard length. Poorly known species. Similar to other Citharichthys. Visually orient- ing ambush predator feeding on various invertebrates and small fishes. Apparently rare. Taxonomic status needs further investigation. Sourthern Gulf of Mexico to Costa Rica; Haiti. from Gutherz, 1967 Cyclopsetta fimbriata (Goode and Bean, 1885) En - Spotfin flounder; Fr - Perpeire à queue tachetée; Sp - Lenguado rabo manchado. Maximum size 33 cm, commonly to 25 cm. Soft bottom habitats between 20 to 230 m. Taken as bycatch in in- dustrial trawl fisheries for shrimps. Marketed fresh. Continental shelf off Atlantic and Gulf coasts of the USA from North Carolina to Yucatán, Mexico; Greater Antilles; Caribbean Sea from Mexico to Trinidad; Atlantic coast of South America to Ilha dos Búzios, São Paulo, Brazil. Etropus crossotus Jordan and Gilbert, 1882 UCO En - Fringed flounder; Fr - Rombou petite gueule; Sp - Lenguado boca chica. Maximum size 20 cm, commonly to 15 cm total length. On very shallow, soft bottoms, from the coastline to depths of 30 m, occasionally to 65 m. Caught with beach seines. Artisanal fishery; of minor commercial impor- tance because of its small average size. Virginia to Gulf of Mexico, Caribbean Islands and Atlantic and Pacific coasts of Central America; Tobago; to Tramandí, Rio Grande do Sul, Brazil. Etropus intermedius Norman, 1933 is a junior synonym of E. crossotus. 1918 Bony Fishes Etropus cyclosquamus Leslie and Stewart, 1986 En - Shelf flounder. Maximum size to about 10 cm standard length, commonly 5 to 8 cm standard length.
    [Show full text]
  • Chapter 5: Commercial and Recreational Fisheries
    Ocean Special Area Management Plan Chapter 5: Commercial and Recreational Fisheries Table of Contents 500 Introduction.............................................................................................................................9 510 Marine Fisheries Resources in the Ocean SAMP Area.....................................................12 510.1 Species Included in this Chapter ..........................................................................12 510.1.1 Species important to commercial and recreational fisheries.....................12 510.1.2 Forage fish ................................................................................................15 510.1.3 Threatened and endangered species and species of concern ....................15 510.2 Life History, Habitat, and Fishery of Commercially and Recreationally Important Species............................................................................................................17 510.2.1 American lobster.......................................................................................17 510.2.2 Atlantic bonito ..........................................................................................19 510.2.3 Atlantic cod...............................................................................................20 510.2.4 Atlantic herring .........................................................................................21 510.2.5 Atlantic mackerel......................................................................................23 510.2.6 Atlantic
    [Show full text]
  • NOAA Technical Report NMFS SSRF-691
    % ,^tH^ °^Co NOAA Technical Report NMFS SSRF-691 Seasonal Distributions of Larval Flatfishes (Pleuronectiformes) on the Continental Shelf Between Cape Cod, Massachusetts, and Cape Lookout, North Carolina, 1965-66 W. G. SMITH, J. D. SIBUNKA, and A. WELLS SEATTLE, WA June 1975 ATMOSPHERIC ADMINISTRATION / Fisheries Service NOAA TECHNICAL REPORTS National Marine Fisheries Service, Special Scientific Report—Fisheries Series The majnr responsibilities of the National Marine Fisheries Service (NMFS) are to monitor and assess the abundance and geographic distribution of fishery resources, to understand and predict fluctuations in the quantity and distribution of these resources, and to establish levels for optimum use of the resources. NMFS is also charged with the development and implementation of policies for managing national fishing grounds, development and enforcement of domestic fisheries regulations, surveillance of foreign fishing off United States coastal waters, and the development and enforcement of international fishery agreements and policies. NMFS also assists the fishing industry through- marketing service and economic analysis programs, and mortgage insurance and vessel construction subsidies. It collects, analyzes, and publishes statistics on various phases of the industry. The Special Scientific Report—Fisheries series was established in 1949. The series carries reports on scientific investigations that document long-term continuing programs of NMFS. or intensive scientific reports on studies of restricted scope. The reports may deal with applied fishery problems. The series is also used as a medium for the publica- tion of bibliographies of a specialized scientific nature. NOAA Technical Reports NMFS SSRF are available free in limited numbers to governmental agencies, both Federal and State. They are also available in exchange for other scientific and technical publications in the marine sciences.
    [Show full text]
  • Pictorial Guide to the Gill Arches of Gadids and Pleuronectids in The
    Alaska Fisheries Science Center National Marine Fisheries Service U.S. DEPARTMENT OF COMMERCE AFSC PROCESSED REPORT 91.15 Pictorial Guide to the G¡ll Arches of Gadids and Pleuronectids in the Eastern Bering Sea May 1991 This report does not const¡Ute a publicalion and is for lnformation only. All data herein are to be considered provisional. ERRATA NOTICE This document is being made available in .PDF format for the convenience of users; however, the accuracy and correctness of the document can only be certified as was presented in the original hard copy format. Inaccuracies in the OCR scanning process may influence text searches of the .PDF file. Light or faded ink in the original document may also affect the quality of the scanned document. Pictorial Guide to the ciII Arches of Gadids and Pleuronectids in the Eastern Beri-ng Sea Mei-Sun Yang Alaska Fisheries Science Center National Marine Fisheries Se:nrice, NoAÀ 7600 Sand Point Way NE, BIN C15700 Seattle, lÍA 98115-0070 May 1991 11I ABSTRÀCT The strrrctures of the gill arches of three gadids and ten pleuronectids were studied. The purPose of this study is, by using the picture of the gill arches and the pattern of the gi[- rakers, to help the identification of the gadids and pleuronectids found Ín the stomachs of marine fishes in the eastern Bering Sea. INTRODUCTION One purjose of the Fish Food Habits Prograrn of the Resource Ecology and FisherY Managenent Division (REF![) is to estimate predation removals of cornmercially inportant prey species by predatory fish (Livingston et al. 1986).
    [Show full text]
  • Identification of the Sole Resources of the Gambia
    Identification of the Sole Resources of The Gambia Gambia-Senegal Sustainable Fisheries Program (Ba Nafaa) December 2011 This publication is available electronically on the Coastal Resources Center’s website at http://www.crc.uri.edu. For more information contact: Coastal Resources Center, University of Rhode Island, Narragansett Bay Campus, South Ferry Road, Narragansett, Rhode Island 02882, USA. Tel: 401) 874-6224; Fax: 401) 789-4670; Email: [email protected] The BaNafaa project is implemented by the Coastal Resources Center of the University of Rhode Island and the World Wide Fund for Nature-West Africa Marine Ecoregion (WWF-WAMER) in partnership with the Department of Fisheries and the Ministry of Fisheries, Water Resources and National Assembly Matters. Citation: Coastal Resources Center, 2011. Identification of the Sole Resources of The Gambia. Coastal Resources Center, University of Rhode Island, pp.11 Disclaimer: This report was made possible by the generous support of the American people through the United States Agency for International Development (USAID). The contents are the responsibility of the authors and do not necessarily reflect the views of USAID or the United States Government. Cooperative Agreement # 624-A-00-09- 00033-00. Cover Photo: Coastal Resources Center/URI Fisheries Center Photo Credit: Coastal Resources Center/URI Fisheries Center 2 The Sole Resources Proper identification of the species is critical for resource management. There are four major families of flatfish with representative species found in the Gambian nearshore waters: Soleidae, Cynoglossidae, Psettododae and Paralichthyidae. The species below have been confirmed through literature review, and through discussions with local fishermen, processors and the Gambian Department of Fisheries.
    [Show full text]
  • Differences in Juvenile Plaice and Flounder Otolith Microchemistry from the Inner Danish Waters Elliot J
    Differences in juvenile plaice and flounder otolith microchemistry from the Inner Danish Waters Elliot J. Brown Patrick Reis-Santos Bronwyn M. Gillanders Josianne G. Støttrup Introduction – the wider project Describing juvenile habitat quality for recreationally important fish species of the Inner Danish Waters. 1. [Presence/Absence, Density, Growth] ~ [Physical Factors] + [Biological Factors] VS [Presence/Absence, Density, Growth] ~ [Physical Factors] 2. [Presence/Absence, Density, Growth] ~ [Physical Factors] 3. Apply models to identify potential juvenile habitats European Flounder European Plaice Platichthys flesus Pleuronectes platessa 2 DTU Aqua, Technical University of Denmark Juvenile plaice and flounder otolith 12-11-2017 microchemistry from the IDW Introduction – this specific project 4. Can otolith microchemistry be used to correctly assign individuals back to juvenile growth regions across contiguous areas? Vasconcelos et al, 2007 Bailey et al, 2015 Beck et al, 2001 3 DTU Aqua, Technical University of Denmark Juvenile plaice and flounder otolith 12-11-2017 microchemistry from the IDW Introduction – this specific project Question 1. • Is there a difference in the levels of different elemental components of sagittal otoliths between hybridising(?) con-familials (flounder and plaice) where they are living together? Question 2. • Is it possible to differentiate between contiguous coastal juvenile habitat areas for plaice using otolith microchemistry? 4 DTU Aqua, Technical University of Denmark Juvenile plaice and flounder otolith 12-11-2017 microchemistry from the IDW n = 113 Field Collections n = 37 n = 36 5 DTU Aqua, Technical University of Denmark Juvenile plaice and flounder otolith 12-11-2017 microchemistry from the IDW Field Collections • Fish killed benzocaine at 250g/mL in aerated seawater.
    [Show full text]
  • Flounders Are Flat Fish Which Live on the Sand at the Bottom of the Ocean, Usually in Inlets and Estuaries
    Fall 2013 Newsletter That Time of Year The word autumn first came to be used in the fourteenth century, and it’s usually associated with an end of things, such as the saying, “the autumn of life”. Around here, autumn is the second best season (after all, summer just can’t be beat). During the first part of fall we can still wear flip flops and shorts, and the ocean water is still warm, but the evenings start getting a pleasant chill in the air, and the drive down Ocean Isle Beach Road is ablaze with color. There’s also the OIB Ghost Walk, and the Longwood Haunted Trail to look forward to. For you fishermen out there, the spots and flounder will soon be running. There’s also the Annual OIB Oyster Festival, which will run October 19 and 20. Fall is also the start of the football season. It doesn’t get much better than that. Flounder Flounders are flat fish which live on the sand at the bottom of the ocean, usually in inlets and estuaries. They’re also called Flukes, or Flatfish. They don’t have an air bladder, like most fish, so they can stay on the bottom very easily. They tend to “hide” in the sand by camouflaging their body the color of the sand surrounding them. They do this so well, that a predator could be swimming right next to one and not see it. Flounders are carnivorous, feasting mainly on shrimp and small crabs. The male flounder can grow up to about twelve inches long, but the female can sometimes reach 25 inches.
    [Show full text]