Effective Propagation of Selaginella Tamariscina Through Optimized Medium Composition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Selaginellaceae: Traditional Use, Phytochemistry and Pharmacology
MS Editions BOLETIN LATINOAMERICANO Y DEL CARIBE DE PLANTAS MEDICINALES Y AROMÁTICAS 19 (3): 247 - 288 (2020) © / ISSN 0717 7917 / www.blacpma.ms-editions.cl Revisión | Review Selaginellaceae: traditional use, phytochemistry and pharmacology [Selaginellaceae: uso tradicional, fitoquímica y farmacología] Fernanda Priscila Santos Reginaldo, Isabelly Cristina de Matos Costa & Raquel Brandt Giordani College of Pharmacy, Pharmacy Department. University of Rio Grande do Norte, Natal, RN, Brazil. Contactos | Contacts: Raquel Brandt GIORDANI - E-mail address: [email protected] Abstract: Selaginella is the only genus from Selaginellaceae, and it is considered a key factor in studying evolution. The family managed to survive the many biotic and abiotic pressures during the last 400 million years. The purpose of this review is to provide an up-to-date overview of Selaginella in order to recognize their potential and evaluate future research opportunities. Carbohydrates, pigments, steroids, phenolic derivatives, mainly flavonoids, and alkaloids are the main natural products in Selaginella. A wide spectrum of in vitro and in vivo pharmacological activities, some of them pointed out by folk medicine, has been reported. Future studies should afford valuable new data on better explore the biological potential of the flavonoid amentoflavone and their derivatives as chemical bioactive entities; develop studies about toxicity and, finally, concentrate efforts on elucidate mechanisms of action for biological properties already reported. Keywords: Selaginella; Natural Products; Overview. Resumen: Selaginella es el único género de Selaginellaceae, y se considera un factor clave en el estudio de la evolución. La familia logró sobrevivir a las muchas presiones bióticas y abióticas durante los últimos 400 millones de años. -
Evidence-Based Medicinal Potential and Possible Role of Selaginella in the Prevention of Modern Chronic Diseases: Ethnopharmacological and Ethnobotanical Perspective
REVIEW ARTICLE Rec. Nat. Prod. X:X (2021) XX-XX Evidence-Based Medicinal Potential and Possible Role of Selaginella in the Prevention of Modern Chronic Diseases: Ethnopharmacological and Ethnobotanical Perspective Mohd Adnan 1*, Arif Jamal Siddiqui 1, Arshad Jamal 1, Walid Sabri Hamadou 1, Amir Mahgoub Awadelkareem 2, Manojkumar Sachidanandan 3 and Mitesh Patel 4 1Department of Biology, College of Science, University of Ha’il, Ha’il, P O Box 2440, Saudi Arabia 2Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail PO Box 2440, Saudi Arabia 3Department of Oral Radiology, College of Dentistry, University of Hail, Hail, PO Box 2440, Saudi Arabia 4Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat, India (Received November 26, 2020; Revised January 29, 2021; Accepted January 31, 2021) Abstract: Different species of the genus Selaginella are exploited for various ethnomedicinal purposes around the globe; mainly to cure fever, jaundice, hepatic disorders, cardiac diseases, cirrhosis, diarrhea, cholecystitis, sore throat, cough of lungs, promotes blood circulation, removes blood stasis and stops external bleeding after trauma and separation of the umbilical cord. Though, high content of various phytochemicals has been isolated from Selaginella species, flavonoids have been recognized as the most active component in the genus. Crude extract and different bioactive compounds of this plant have revealed various in vitro bioactivities such as, antimicrobial, antiviral, anti-diabetic, anti-mutagenic, anti-inflammatory, anti-nociceptive, anti-spasmodic, anticancer and anti-Alzheimer. However, more studies into the pharmacological activities are needed, since none of the professed bioactivity of this plant have ever been fully evaluated. -
Plastid Genomes of the Early Vascular Plant Genus Selaginella Have Unusual Direct Repeat Structures and Drastically Reduced Gene Numbers
International Journal of Molecular Sciences Article Plastid Genomes of the Early Vascular Plant Genus Selaginella Have Unusual Direct Repeat Structures and Drastically Reduced Gene Numbers Hyeonah Shim 1, Hyeon Ju Lee 1, Junki Lee 1,2, Hyun-Oh Lee 1,2, Jong-Hwa Kim 3, Tae-Jin Yang 1,* and Nam-Soo Kim 4,* 1 Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; [email protected] (H.S.); [email protected] (H.J.L.); [email protected] (J.L.); [email protected] (H.-O.L.) 2 Phyzen Genomics Institute, Seongnam 13558, Korea 3 Department of Horticulture, Kangwon National University, Chuncheon 24341, Korea; [email protected] 4 Department of Molecular Bioscience, Kangwon National University, Chuncheon 24341, Korea * Correspondence: [email protected] (T.-J.Y.); [email protected] (N.-S.K.); Tel.: +82-2-880-4547 (T.-J.Y.); +82-33-250-6472 (N.-S.K.) Abstract: The early vascular plants in the genus Selaginella, which is the sole genus of the Selaginel- laceae family, have an important place in evolutionary history, along with ferns, as such plants are valuable resources for deciphering plant evolution. In this study, we sequenced and assembled the plastid genome (plastome) sequences of two Selaginella tamariscina individuals, as well as Se- laginella stauntoniana and Selaginella involvens. Unlike the inverted repeat (IR) structures typically found in plant plastomes, Selaginella species had direct repeat (DR) structures, which were confirmed by Oxford Nanopore long-read sequence assembly. -
Sustainable Sourcing : Markets for Certified Chinese
SUSTAINABLE SOURCING: MARKETS FOR CERTIFIED CHINESE MEDICINAL AND AROMATIC PLANTS In collaboration with SUSTAINABLE SOURCING: MARKETS FOR CERTIFIED CHINESE MEDICINAL AND AROMATIC PLANTS SUSTAINABLE SOURCING: MARKETS FOR CERTIFIED CHINESE MEDICINAL AND AROMATIC PLANTS Abstract for trade information services ID=43163 2016 SITC-292.4 SUS International Trade Centre (ITC) Sustainable Sourcing: Markets for Certified Chinese Medicinal and Aromatic Plants. Geneva: ITC, 2016. xvi, 141 pages (Technical paper) Doc. No. SC-2016-5.E This study on the market potential of sustainably wild-collected botanical ingredients originating from the People’s Republic of China with fair and organic certifications provides an overview of current export trade in both wild-collected and cultivated botanical, algal and fungal ingredients from China, market segments such as the fair trade and organic sectors, and the market trends for certified ingredients. It also investigates which international standards would be the most appropriate and applicable to the special case of China in consideration of its biodiversity conservation efforts in traditional wild collection communities and regions, and includes bibliographical references (pp. 139–140). Descriptors: Medicinal Plants, Spices, Certification, Organic Products, Fair Trade, China, Market Research English For further information on this technical paper, contact Mr. Alexander Kasterine ([email protected]) The International Trade Centre (ITC) is the joint agency of the World Trade Organization and the United Nations. ITC, Palais des Nations, 1211 Geneva 10, Switzerland (www.intracen.org) Suggested citation: International Trade Centre (2016). Sustainable Sourcing: Markets for Certified Chinese Medicinal and Aromatic Plants, International Trade Centre, Geneva, Switzerland. This publication has been produced with the financial assistance of the European Union. -
Natural Products from Genus Selaginella (Selaginellaceae)
ISSN: 2087-3948 (print) Vol. 3, No. 1, Pp.: 44-58 ISSN: 2087-3956 (electronic) March 2011 Review: Natural products from Genus Selaginella (Selaginellaceae) AHMAD DWI SETYAWAN♥ Department of Biology, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta 57126. Jl. Ir. Sutami 36A Surakarta 57126, Tel./fax. +62-271-663375, email: [email protected] Manuscript received: 28 Augustus 2010. Revision accepted: 4 October 2010. Abstract. Setyawan AD. 2011. Natural products from Genus Selaginella (Selaginellaceae). Nusantara Bioscience 3: 44-58. Selaginella is a potent medicinal-stuff, which contains diverse of natural products such as alkaloid, phenolic (flavonoid), and terpenoid. This species is traditionally used to cure several diseases especially for wound, after childbirth, and menstrual disorder. Biflavonoid, a dimeric form of flavonoids, is the most valuable natural products of Selaginella, which constituted at least 13 compounds, namely amentoflavone, 2',8''-biapigenin, delicaflavone, ginkgetin, heveaflavone, hinokiflavone, isocryptomerin, kayaflavone, ochnaflavone, podocarpusflavone A, robustaflavone, sumaflavone, and taiwaniaflavone. Ecologically, plants use biflavonoid to response environmental condition such as defense against pests, diseases, herbivory, and competitions; while human medically use biflavonoid especially for antioxidant, anti- inflammatory, and anti carcinogenic. Selaginella also contains valuable disaccharide, namely trehalose that has long been known for protecting from desiccation and allows surviving severe environmental stress. The compound has very prospects as molecular stabilizer in the industries based bioresources. Key words: natural products, biflavonoid, trehalose, Selaginella. Abstrak. Setyawan AD. 2011. Bahan alam dari Genus Selaginella (Selaginellaceae). Nusantara Bioscience 3: 44-58. Selaginella adalah bahan baku obat yang potensial, yang mengandung beragam metabolit sekunder seperti alkaloid, fenolik (flavonoid), dan terpenoid. -
Discovery of Lignin in Seaweed Reveals Convergent Evolution of Cell-Wall Architecture
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology 19, 169–175, January 27, 2009 ª2009 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2008.12.031 Report Discovery of Lignin in Seaweed Reveals Convergent Evolution of Cell-Wall Architecture Patrick T. Martone,1,2,7,8,* Jose´ M. Estevez,3,7,9 walls and lignin in red algae raises many questions about the Fachuang Lu,4,5,7 Katia Ruel,6 Mark W. Denny,1,2 convergent or deeply conserved evolutionary history of Chris Somerville,2,3,10 and John Ralph4,5 these traits, given that red algae and vascular plants prob- 1Hopkins Marine Station of Stanford University ably diverged more than 1 billion years ago. 120 Ocean View Boulevard Pacific Grove, CA 93950 Results and Discussion USA 2Department of Biological Sciences The goal of this study was to explore the ultrastructure and Stanford University chemical composition of cell walls in the coralline alga Calliar- Stanford, CA 94305 thron cheilosporioides (Corallinales, Rhodophyta), which USA thrives in wave-exposed rocky intertidal habitats along the 3Carnegie Institution California coast. Unlike fleshy seaweeds, Calliarthron fronds Stanford University calcify, encasing cells in CaCO3 [10], but have decalcified Stanford, CA 94305 joints, called genicula, that allow calcified fronds to bend USA and avoid breakage when struck by incoming waves (Figure 1) 4Department of Biochemistry [10, 11]. Early studies of genicula noted that as they decalcify University of Wisconsin–Madison and mature, genicular cells elongate up to 10-fold and their Madison, WI 53706 cell walls expand slightly [10, 12]. -
The Unique Evolutionary Trajectory and Dynamic Conformations of DR and IR/DR-Coexisting Plastomes of the Early Vascular Plant Selaginellaceae (Lycophyte)
GBE The Unique Evolutionary Trajectory and Dynamic Conformations of DR and IR/DR-Coexisting Plastomes of the Early Vascular Plant Selaginellaceae (Lycophyte) Hong-Rui Zhang1,2, Qiao-Ping Xiang1,*, and Xian-Chun Zhang1,* 1State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, China 2University of Chinese Academy of Sciences, Beijing, China *Corresponding authors: E-mails: [email protected];[email protected]. Accepted: March 30, 2019 Data deposition: All the plastomes have been deposited at GenBank under accession numbers MG272483–MG272484, MH598531– MH598537, and MK156800. Abstract Both direct repeats (DR) and inverted repeats (IR) are documented in the published plastomes of Selaginella species indicating the unusual and diverse plastome structure in the family Selaginellaceae. In this study, we newly sequenced complete plastomes of seven species from five main lineages of Selaginellaceae and also resequenced three species (Selaginella tamariscina, Selaginella uncinata, and Selaginella moellendorffii) to explore the evolutionary trajectory of Selaginellaceae plastomes. Our results showed that the plastomes of Selaginellaceae vary remarkably in size, gene contents, gene order, and GC contents. Notably, both DR and IR structures existed in the plastomes of Selaginellaceae with DR structure being an ancestral state. The occurrence of DR structure was at 257 Ma and remained in most subgenera of Selaginellaceae, whereas IR structure only reoccurred in Selaginella sect. Lepidophyllae (143 Ma) and Selaginella subg. Heterostachys (19 Ma). The presence of a pair of large repeats psbK-trnQ, together with DR/IR region in Selaginella bisulcata, Selaginella pennata, S. uncinata,andSelaginella hainanensis, could frequently mediate diverse homologous recombination and create approximately equal stoichiometric isomers (IR/DR-coexisting) and subgenomes. -
Discovery of Lignin in Seaweed Reveals Convergent Evolution of Cell-Wall Architecture
Current Biology 19, 169–175, January 27, 2009 ª2009 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2008.12.031 Report Discovery of Lignin in Seaweed Reveals Convergent Evolution of Cell-Wall Architecture Patrick T. Martone,1,2,7,8,* Jose´ M. Estevez,3,7,9 walls and lignin in red algae raises many questions about the Fachuang Lu,4,5,7 Katia Ruel,6 Mark W. Denny,1,2 convergent or deeply conserved evolutionary history of Chris Somerville,2,3,10 and John Ralph4,5 these traits, given that red algae and vascular plants prob- 1Hopkins Marine Station of Stanford University ably diverged more than 1 billion years ago. 120 Ocean View Boulevard Pacific Grove, CA 93950 Results and Discussion USA 2Department of Biological Sciences The goal of this study was to explore the ultrastructure and Stanford University chemical composition of cell walls in the coralline alga Calliar- Stanford, CA 94305 thron cheilosporioides (Corallinales, Rhodophyta), which USA thrives in wave-exposed rocky intertidal habitats along the 3Carnegie Institution California coast. Unlike fleshy seaweeds, Calliarthron fronds Stanford University calcify, encasing cells in CaCO3 [10], but have decalcified Stanford, CA 94305 joints, called genicula, that allow calcified fronds to bend USA and avoid breakage when struck by incoming waves (Figure 1) 4Department of Biochemistry [10, 11]. Early studies of genicula noted that as they decalcify University of Wisconsin–Madison and mature, genicular cells elongate up to 10-fold and their Madison, WI 53706 cell walls expand slightly [10, 12]. A recent histological analysis USA found that after elongation ceases, genicular cell walls 5U.S. -
V·M·I University Microfilms International a Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor, M148106-1346 USA 313:761-4700 800.'521-0600
INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adverselyaffect reproduction. In the unlikely. event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sectionswith small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. V·M·I University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor, M148106-1346 USA 313:761-4700 800.'521-0600 Order Number 9429622 Residential gardens in urban Honolulu, Hawai'i: Neighborhood, ethnicity, and ornamental plants Ikagawa, Toshihiko, Ph.D. University of Hawaii, 1994 Copyright @1994 by Ikagawa, Toshihiko. -
The Substitution of Materia Medica in Tibetan Medicine: an Inquiry Into Traditional Tibetan Treatises*
EASTM 46 (2017): 119-212 The Substitution of Materia Medica in Tibetan Medicine: An Inquiry into Traditional Tibetan Treatises* Olaf Czaja [Olaf Czaja received his PhD in Tibetan studies from Leipzig University in 2007. His research interests are Tibetan history, art and medicine. He is currently working on Tibetan pharmacology. Contact: [email protected]] * * * Abstract: The substitution of materia medica in Tibetan medicine was an important issue in the past, and still is today. This article will offer a brief survey of references found in Tibetan written sources, and discuss the only three Tibetan treatises that deal exclusively with the subject. It will explore the underlying modes of substitution, and provide insights into the criteria that are used to determine suitable substitutes. Ultimately it will be demonstrated that one can distinguish seven criteria—namely the taste, healing potential, type, substance, name, shape, and smell—that are used to determine an appropriate substitute for rare or expensive materia medica in the Tibetan medical tradition. * I am grateful to the anonymous reviewers for their careful reading of the manuscript and their insightful comments and suggestions. Moreover, I would also like to thank William McGrath for his help proofreading. 119 Downloaded from Brill.com09/29/2021 06:51:14AM via free access 120 EASTM 46 (2017) 1. Introduction During an interview with Dr. Sonam Wangdu Changbhar from the Tibetan Herbal Clinic, Calcutta, in 1998, he was asked about the costs of Tibetan drugs. In his answer he touched on an issue that is highly relevant for Tibetan doctors all over the globe: Another important aspect is the high cost of the ingredients of Tibetan medicine and the difficulty in procuring them, like musk, gall stone of elephants, bear’s bile, etc. -
Annual Review of Pteridological Research - 1996
Annual Review of Pteridological Research - 1996 Annual Review of Pteridological Research - 1996 Literature Citations All Citations 1. Abbelaez, A. A. L. 1996. The tribe Pterideae (Pteridaceae). Flora de Colombia 18: 10-106. 2. Abe, S., Y. Ito, H. Doi, K. Shibata, K. Azama & E. Davies. 1996. Distribution of actin and tubulin in the cytoskeletal fraction from a variety of plant and animal tissues. Memoirs of the College of Agriculture Ehime University 41: 1-10. 3. Ahlenslager, K. & P. Lesica. 1996. Observations of Botrychium X watertonense and its putative parent species, B. hesperium and B. paradoxum. American Fern Journal 86: 1-7. 4. Alonso-Amelot, M. E. & U. Castillo. 1996. Bracken ptaquiloside in milk. Nature 382: 587. [Pteridium aquilinum] 5. Alonso-Amelot, M. E. & S. Rodulfo-Baechler. 1996. Comparative spatial distribution, size, biomass and growth rate of two varieties of bracken fern (Pteridium aquilinum L. Kuhn) in a neotropical montane habitat. Vegetatio 125: 137- 147. 6. Alverson, E. R. & P. F. Zika. 1996. Botrychium diversity in the Wallowa Mountains, Oregon. American Journal of Botany 83 Suppl. 6: 123. 7. Amonoo-Neizer, E. H., D. Nyamah & S. B. Bakiamoh. 1996. Mercury and arsenic pollution in soil and biological samples around the mining town of Obuasi, Ghana. Water Air and Soil Pollution 91: 363-373. [Ceratopteris cornuta] 8. Amoroso, C. B., V. B. Amoroso & V. O. Guipitacio. 1996. In vitro culture of Cyathea contaminans (Hook.) Copel. American Journal of Botany 83 Suppl. 6: 134. 9. Amoroso, V. B., F. M. Acma & H. P. Pava. 1996. Diversity, status and ecology of pteridophytes in three forests in Mindanao, Philippines. -
A Review of the Species Diversity of Selaginella in Fujian Province of China 1LI Zhen-Ji 2Benito C
植 物 分 类 学 报 43(1): 50–59(2005) Acta Phytotaxonomica Sinica A review of the species diversity of Selaginella in Fujian Province of China 1LI Zhen-Ji 2Benito C. TAN * 1(School of Life Sciences, Xiamen University, Xiamen 361005, China) 2(Department of Biological Sciences, National University of Singapore, Singapore 119260, Singapore) Abstract Examination of some 80 historical herbarium specimens preserved in a number of institutions in Fujian Province and our recent collections made from Mt. Wuyi Shan area shows that there are 18 species and one variety of Selaginella in the province, of which, Selaginella albociliata, S. braunii and S. ciliaris are three new records for the provincial flora. A new key to the species of this genus in the province is given. Pertinent taxonomic notes and phytogeographical discussion of the species diversity of Fujian Selaginella are also provided. Key words Selaginella, taxonomy, Fujian, China. Selaginella Beauv. is a speciose and difficult genus to catalogue taxonomically because it includes a large number of species that are polymorphic morphologically. To date, there are more than 750 recognized species around the world divided into five subgenera (Jermy, 1990). Species of Selaginella are used in traditional medicine in many countries to treat a variety of diseases, such as cancer, cardiovascular problems, diabetes, gastritis, hepatitis, skin diseases, and urinary tract infections (Silva et al., 1995). In fact, Selaginella tamariscina, S. tamariscina var. pulvinata, S. doederleinii, S. moellendorffii, S. uncinata and S. involvens, among others, have been reported as cures for a variety of diseases in China (Chang et al., 2000; Lin et al., 1991; Wang & Wang, 2001).