Upper Extremity Nerves

Total Page:16

File Type:pdf, Size:1020Kb

Upper Extremity Nerves 1/15/2019 Upper Extremity Nerves Learning Objectives Upper Extremity Nerves At the completion of the course, the learner will be able to 1. describe the neuroanatomy from brain to fingertip. 2. describe current concepts of peripheral nerve biology and healing. 3. collect a good history & exam for common peripheral nerve conditions. 4. educate patients regarding their condition and treatments. 5. participate more effectively in the patients’ care Course Content Meets These AOTA Classification Codes for CE activities Category 1: Domain of OT METHODS Areas of occupation: ADLs Performance skills: motor skills • 12 lectures Activity demands: required actions, body functions and • 2 question and answer sessions structures • networking Category 2: OT Process Develop intervention plan/approaches • some repetition between talks Implement intervention bad news: unavoidable because of multiple speakers Category 3: Professional Issues good news: repetition is a good learning tool OT education: teaching theory and methods Supervision: competence Contemporary issues/trends: professional development/continuing competence Upper Extremity Nerves for OTs and PTs For Your Questions during the Discussion Sessions: Write them on notecards as you think of them Practical Matters Can everybody see? Hear? MACRO ANATOMY Room temperature? Cell phones, beepers From Brain to Fingertips Auditorium’s policy on food/beverage Restrooms Evaluation forms and certificates Naveed Nosrati, MD Ready, set, go…… 1 1/15/2019 Motor Pathways: Major Elements Outline Central Nervous System • Motor pathways (cortex to finger tip) cerebral cortex • Sensory pathways (finger tip to cortex) brain stem • 6 major nerves spinal cord • Anatomic anomalies Peripheral Nervous System • Sympathetic nervous system root plexus branch/periph n. end organ Motor Strip Sensory Strip Motor Impulses • Motor Impulses • travel through the internal capsule • originate in (white matter) parietal cortex gray matter • cross in the brainstem – each • originate in the side of the cortex “motor strip” controls the opposite side of the body spinal cord (CNS) gives off nerve roots (PNS) brachial plexus is formed from: -inferior 4 cervical nerve roots (C5-C8) -superior thoracic nerve root (T1) Anterior: Dorsal: posterior anterior Motor Sensory Roots Roots Cell bodies Cell bodies in anterior In dorsal horn of root ganglia spinal cord 2 1/15/2019 The Brachial Plexus Has 5 Anatomical Parts Bony Landmarks and the Parts of the Brachialroots Plexus Randy Travis Drinks Cold Beer Brachial Plexus Brachial Plexus and Axillary Artery • emerges And between anterior Muscles/Bones and medial scalene muscles Medial, lateral, • passes beneath and posterior clavicle cords • passes deep to •Closely pectoralis major associated with and minor AA •Named for their relationships to the AA The brachial plexus is complicated… Its major components can be learned and drawn as easy as 1,2,3 (x8)… 3 1/15/2019 4 1/15/2019 dorsal scapular c5 suprascapular c5,6 C5 lateral pectoral c5,6,7 musculocutaneous c5,6,7 axillary C6 c5,6 median C7 c678t1 lower subscap c6,7 thoracodorsal c6,7,8 long upper radial c5,6,7,8 thoracic C8 subscap ulnar c8,t1 c5,6 c5,6,7 It is important to know the nerves, their routes medial antebrach cutan c8 through the brachial plexus, AND from which medial brachial cutan t1 T1 spinal roots they arise… medial pectoral c8,t1 How to begin making sense out of which muscles often get innervation from same nerve roots supply which muscles? root that supplies overlying skin 1. Know the sensory dermatomes Start with C6 it works for deltoid Bang! C5 C5 C5 T1 T1 C6 C7 C8 C8 It works for biceps, brachialis How to begin making sense out of which and sort of for triceps nerve roots supply which muscles? 2. Make a “7” with your fingers, wrist and elbow C5 C5 C7: T1 C6 elbow extension C5,6 wrist flexion finger extension C7 C8 C7,8 5 1/15/2019 dorsal scapular c5 suprascapular c5,6 C5 lateral pectoral c5,6,7 Major components labeled musculocutaneous c5,6,7 IN OUT 1. Long Thoracic axillary C6 C5-8 c5,6 2. Musc Cut N. median T1 C7 3. Axillary N. c678t1 lower subscap c6,7 thoracodorsal c6,7,8 long 4. Median N. upper radial c5,6,7,8 thoracic C8 subscap 5. Radial N. ulnar c8,t1 c5,6 c5,6,7 medial antebrach cutan c8 6. Ulnar N. medial brachial cutan t1 T1 medial pectoral c8,t1 1) Long Thoracic Nerve 16 nerves exit the brachial plexus We will look at 6 major ones •courses (more detail to follow later today) inferiorly on anterior lateral 1) Long Thoracic chest wall 2) Axillary •innervates 3) Musculocutaneous SERRATUS 4) Radial ANTERIOR 5) Median 6) Ulnar •prevents scapular Quiz follows! winging 2) Axillary Nerve 3) Musculocutaneous Nerve posterior view •exits brachial plexus •Innervates the “BBC muscles” posteriorly • BICEPS • BRACIHALIS •courses through • CORACOBRACHIALIS “quadrilateral •Continues as the lateral space” antebrachial cutaneous nerve •innervates DELTOID. 6 1/15/2019 4) Radial Nerve 4) Radial Nerve •Leaves brachial plexus Lateral View posteriorly Posterior View Passes medial •Passes laterally behind the to lateral behind humerus the humerus •Crosses anterior to lateral epicondyle •Pierces supinator Passes •Passes along anteriorly over dorsolateral forearm lateral aspect of •Innervates triceps, wrist humerus and finger extensors posterior view 5) Median Nerve 6) Ulnar Nerve • arm: medial, with brachial artery • arm: medial; posterior to median nerve and brachial artery • elbow: central, medial to biceps tendon • elbow: posterior to medial epicondyle • forearm: central, beneath fds innervates fds, ½ fdp, fcr, • forearm: medial, beneath fcu pronator teres innervates fcu and ½ fdp • palm: central, through carpal • palm: Guyon’s canal; innervates tunnel innervates thenar hypothenars, interossei, add muscles, 2 lumbricals pollicis, 2 lumbricals 6) Ulnar Nerve QUIZ! Name that palsy! Posterior Views • passes posterior to medial epicondyle of the humerus 7 1/15/2019 Motor Impulses Terminate at the Sensory Impulses Neuromuscular Junction Nerve • Motor impulses move distally away from CNS • Sensory impulses move proximally toward the CNS Muscle – share nerves with motor system, use different fibers • Sensory nerves innervate skin in the area of their motor counterpart – (i.e. axillary nerve transmits sensory information from the skin of the On to sensory nerves….. shoulder) Sensation in the Hand Differences in Sensory Nerve Pathways • S. nerves enter spinal cord thru Median: palmar aspect of lateral 3 ½ digits + dorsal roots nail beds of same • S. nerves cross to opposite side Ulnar: palmar/dorsal aspects of medial 1 ½ in brain stem or spinal cord fingers + hand continuous with same • Pass through the thalamus • Terminate in the sensory strip Radial: volar aspect of lateral 3 ½ digits and hand continuous with same (excluding nail beds). The Sympathetic Nervous System Stellate in the Upper Extremity Ganglion = Inferior 2 parellel Cervical + chains of Superior GANGLIA Thoracic along sides of spinal cord. Ganglia 8 1/15/2019 References Sympathetic Fibers • Falconer, Spinner: Anatomic variations in the motor in the Upper Extremity and sensory supply of the thumb. Clin Orthop 1985;195:83-96. •pass through stellate ganglion • Russomano et al: Riche-Cannieu anastomosis with partial transection of the median nerve. Muscle •travel along arteries Nerve 1995;18:120-2. • Sachs, Raynor, Shefner: The all ulnar motor hand •control vessel without forearm anastomosis. Muscle Nerve constriction/relaxation; sweat; 1995;18:309-13. piloerection • Meals, R, Shaner: Variations in digital sensory patterns: a study of the ulnar nerve-median nerve •implicated in some chronic palmar communicating ramus. J Hand Surgery, regional pain syndromes 1983;8:411-414 Outline Microanatomy Nerve Micro-Anatomy Biology and Biology Nerve Injuries Physiology Classification Adam Martin, MD UCLA Hand Fellow Nerve response to injury no relevant disclosures Anatomy of Neuron Cell body Dendrites Sensory neuron Receive incoming impulses Axon Conducts outgoing impulses Motor neuron Schwann Cells 9 1/15/2019 Anatomy of a Peripheral Nerve Nerve Fiber (Axon) Counts 1. Axon: basic subunit Electric lamp cord: ~60 copper strands . Nerve fiber = Digital nerve: ~1500 nerve fibers axon + Schwann cell + Median nerve: ~25,000 nerve fibers myelin Brachial plexus: ~145,000 nerve fibers 2. Fascicle: groups of axons 3. Peripheral nerve: groups of fascicles Connective tissue layers Cross-section of peripheral nerve Epineurium 1. Epineurium Cushions nerve 2. Perineurium Nerve gliding 3. Endoneurium Perineurium Surrounds fascicle Vascular supply Tight junctions Intrinsic + extrinsic Fascicle Mitchell adapted from www.CDNPA.com Endoneurium Surrounds axons External epineurium Internal epineurium Fascicle Axon + Endoneurium 10 1/15/2019 Nerve Physiology Nerve Injury Axonal transport Mechanical injuries Secondary injury Protein synthesis in cell body Distance too long for diffusion Compression Infection Products motored along Traction Scarring microtubules Laceration Fracture callus Retrograde transport Combination Ischemia Returns waste products for (e.g. GSWs) recycling Transports growth factors to nucleus Implications with injury Response to Injury Nerve Injury Classification Limited repertoire of responses to nerve Seddon H: Three types of nerve injury. Brain, injury 1943. 1. Mild injury 1. Neurapraxia schwann cells/myelin sheath 2. Axonotmesis Focal demyelination 3. Neurotmesis 2. Severe injury axons Axonal degeneration Neurapraxia Neurapraxia
Recommended publications
  • Ultrasound of Radial, Ulnar, and Median Nerves
    Ultrasound of Radial, Ulnar, Disclosures • Consultant: Bioclinica and Median Nerves • Contractor: POCUS PRO • Advisory Board: Philips Jon A. Jacobson, M.D. • Book Royalties: Elsevier • Not relevant to this lecture Professor of Radiology See www.jacobsonmskus.com for syllabus other educational material Nerve Compression Nerve Entrapment • Experimental model (rat, sciatic nv): • US findings: – Compression causes ischemia – Nerve enlargement proximal to entrapment – First pathologic change: edema • Best appreciated transverse to nerve • Correlated with severity of axonal injury – Abnormally hypoechoic – Mild compression: demyelination • Especially the connective tissue layers – Severe compression: axonal damage – Variable enlargement or flattening at entrapment site Powell, Laboratory Investigation 1986; 55:91 Atrophy Denervation Nerve Entrapment Syndromes • Edema: hyperechoic • Fatty degeneration: • Median: – Hyperechoic – Carpal tunnel syndrome – Echogenic interfaces – Pronator teres syndrome • Atrophy: Asymptomatic – Hyperechoic with • Ulnar: decreased muscle size – Ulnar tunnel syndrome • Compare to other side! – Cubital tunnel syndrome J Ultrasound Med 1993; 2:73 Extensor Muscles: leg 1 Volar Wrist Normal Peripheral Nerve • Ultrasound appearance: – Hypoechoic nerve fascicles – Hyperechoic connective tissue • Transverse: – Honeycomb appearance Silvestri et al. Radiology 1995; 197:291 Median Nerve From: Netter’s Atlas of Human Anatomy Volar Wrist: median nerve & flexors Peripheral Nerves • More coarse compared to tendon T – Fascicular
    [Show full text]
  • Ultrasound of Peripheral Nerve and Muscle
    ULTRASOUND OF PERIPHERAL NERVE AND MUSCLE Steven Shook, MD Cleveland Clinic Cleveland, OH INTRODUCTION Advances in field of ultrasound over the past twenty years have generated increasing interest in utilizing the technology in neuromuscular assessment and diagnosis. High-resolution ultrasound offers a noninvasive, real- time, static and dynamic examination of the peripheral nervous system, yielding information which complements the neurological examination, electrodiagnostic testing (EDX), and other established imaging modalities such as Magnetic Resonance Imaging (MRI). ULTRASOUND BASICS Ultrasonography involves transmitting sound-wave pulses into tissue and analyzing the temporal and acoustic properties of the reflected wave, or echo. Echoes occur at tissue interfaces. Reflected energy is a product of the difference in adjacent tissue densities (acoustic impedance), as well the angle of the ultrasound beam (angle of incidence) relative to the interface.(1) A fraction of a transmitted sound-wave energy is reflected whenever there is a change in acoustic impedance within tissue. Larger differences in acoustic impedance result in more profound reflection. Unreflected sound travels deeper into the tissue, generating echos from layers at a greater depth. A portion of the ultrasound energy never returns to the transducer, either being transformed into heat (absorption), refracted or scattered at nonperpendicular tissue interfaces. When the sound wave encounters a significantly different tissue density, analysis of deeper structures is not possible. For example, ultrasound cannot evaluate structures deep to air- filled cavities or bone due to the acoustic impedance of these regions.(2) An ultrasound probe (transducer) is capable of both emitting and receiving these pulses and converting them into electrical signals for analysis.
    [Show full text]
  • COVID-19 Mrna Pfizer- Biontech Vaccine Analysis Print
    COVID-19 mRNA Pfizer- BioNTech Vaccine Analysis Print All UK spontaneous reports received between 9/12/20 and 22/09/21 for mRNA Pfizer/BioNTech vaccine. A report of a suspected ADR to the Yellow Card scheme does not necessarily mean that it was caused by the vaccine, only that the reporter has a suspicion it may have. Underlying or previously undiagnosed illness unrelated to vaccination can also be factors in such reports. The relative number and nature of reports should therefore not be used to compare the safety of the different vaccines. All reports are kept under continual review in order to identify possible new risks. Report Run Date: 24-Sep-2021, Page 1 Case Series Drug Analysis Print Name: COVID-19 mRNA Pfizer- BioNTech vaccine analysis print Report Run Date: 24-Sep-2021 Data Lock Date: 22-Sep-2021 18:30:09 MedDRA Version: MedDRA 24.0 Reaction Name Total Fatal Blood disorders Anaemia deficiencies Anaemia folate deficiency 1 0 Anaemia vitamin B12 deficiency 2 0 Deficiency anaemia 1 0 Iron deficiency anaemia 6 0 Anaemias NEC Anaemia 97 0 Anaemia macrocytic 1 0 Anaemia megaloblastic 1 0 Autoimmune anaemia 2 0 Blood loss anaemia 1 0 Microcytic anaemia 1 0 Anaemias haemolytic NEC Coombs negative haemolytic anaemia 1 0 Haemolytic anaemia 6 0 Anaemias haemolytic immune Autoimmune haemolytic anaemia 9 0 Anaemias haemolytic mechanical factor Microangiopathic haemolytic anaemia 1 0 Bleeding tendencies Haemorrhagic diathesis 1 0 Increased tendency to bruise 35 0 Spontaneous haematoma 2 0 Coagulation factor deficiencies Acquired haemophilia
    [Show full text]
  • Electrophysiological Features of Ulnar Tunnel Syndrome Caused By
    hysical M f P ed l o ic a in n r e International Journal of Physical u & o R J l e a h n a Nobuta et al., Int J Phys Med Rehabil 2018, 6:6 b o i t i l i a ISSN: 2329-9096t a n r Medicine & Rehabilitation DOI: 10.4172/2329-9096.1000494 t i e o t n n I Research Article Open Access Electrophysiological Features of Ulnar Tunnel Syndrome Caused by Ganglion–A Descriptive Study Shingo Nobuta1*, Kazuaki Sonofuchi2 and Eiji Itoi3 1Department of Orthopaedic Surgery, Tohoku Rosai Hospital, Sendai, Japan 2Goto Orthopaedic Clinic, Sendai, Japan 3Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan *Corresponding author: Shingo Nobuta, MD, PhD, Department of Orthopaedic Surgery, Tohoku Rosai Hospital 4-3-21 Dainohara, Aoba-ku, Sendai, Miyagi 981-8563, Japan, Tel: +81-22-275-1111; Fax: +81-22-275-7541; E mail : [email protected] Received date: October 31, 2018; Accepted date: November 20, 2018; Published date: November 22, 2018 Copyright: ©2018 Nobuta S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Objective: Ulnar tunnel syndrome (UTS) is an uncommon ulnar neuropathy. Clinical and electrophysiological diagnosis of UTS is difficult. The purposes of this study were to assess the diagnostic value of the nerve conduction measurements for UTS caused by ganglion, and to investigate the electrophysiological features of UTS.
    [Show full text]
  • Upper Extremity Compression Neuropathies
    Peripheral Nerve Injury in the Athlete: Upper and Lower Limb Entrapment Neuropathies Greg Moore, MD Sports and Spine Rehabilitation NeuroSpine Institute Outline Review common nerve entrapment and injury syndromes, particularly related to sports Review pertinent anatomy to each nerve Review typical symptoms Discuss pathophysiology Discuss pertinent diagnostic tests and treatment options Neuropathy Mononeuropathies Median Femoral Pronator Teres Intrapelvic Anterior Interosseous Nerve Inguinal Ligament Carpal Tunnel Sciatic Ulnar Piriformis Cubital Tunnel Peroneal Guyon’s Canal Fibular Head Radial Axilla Tibial Spiral Groove Tarsal Tunnel Posterior Interosseous Nerve Sports Medicine Pearls Utilize your athletic trainers Individualize your diagnostic and treatment approach based on multiple factors Age Sport Level of Sport (HS, college, professional) Position Sports Medicine Pearls Time in the season Degree of pain/disability Desire of the patient/parents Coach’s desires/level of concern Cost (rarely discuss with the coach) Danger of a delay in diagnosis Impact to the team Obtaining the History Pain questions- location, duration, type, etc. Presence and location of numbness and paresthesias Exertional fatigue and/or weakness Subjective muscle atrophy Symptom onset- insidious or post-traumatic Exacerbating activities History (continued) Changes in exercise duration, intensity or frequency New techniques or equipment Past medical history and review of systems Diabetes Hypercoaguable state Depression/anxiety
    [Show full text]
  • Ulnarneur.Pdf
    PRACTICE PARAMETER FOR ELECTRODIAGNOSTIC STUDIES IN ULNAR NEUROPATHY AT THE ELBOW SUMMARY STATEMENT Introduction A total of 19 of the 398 articles and abstracts met five or six literature classification criteria; six of these articles were Ulnar neuropathy at the elbow (UNE) is a common excluded from subsequent analysis for various reasons. For peripheral mononeuropathy, second only to carpal tunnel example, some investigators performed ulnar nerve syndrome in incidence. The electrodiagnostic evaluation of conduction studies (NCSs) in the course of looking UNE is frequently complex and challenging to even the most primarily at other phenomena, such as the effects of age on experienced electrodiagnostic medicine consultant. This the conduction properties of multiple nerves, the correlation document defines the standards, guidelines, and options for between clinical and electrodiagnostic findings, or the electrodiagnostic studies of UNE based on a critical review difference between proximal and distal nerve segments; the of the literature. findings therefore have scant or no applicability to the evaluation of the clinical problem of UNE. Studies of normal control subjects met a maximum of five of five Literature Review criteria; studies of patients with UNE met a maximum of six of six criteria. A Medline search was conducted for literature in English from 1983 through 1996 under the Medical Subject The remaining 13 articles formed the basis for the Headings (MeSH) (1) ulnar nerve, (2) electrodiagnosis, (3) recommendations of this report. The findings of these and other additional studies are reviewed in a document nerve compression syndromes, (4) neural conduction, and 1 (5) elbow. The initial search generated 282 article titles with developed by the AAEM.
    [Show full text]
  • Pathological Sonographic Values in Peripheral Nerve Entrapments—A Literature Review
    Published online: 2019-04-15 THIEME Review Article | Artículo de Revisión 29 Pathological Sonographic Values in Peripheral Nerve Entrapments—A Literature Review Valores ecográficos patológicos en los atrapamientos de nervio periférico—Revisión bibliográfica Jesús Miguel Bolívar Gázquez1 Pablo Bellosta-López2 1 Centro de Fisioterapia Jesús Bolívar, Calle Ignasi Ferretjans, Palma de Address for correspondence Jesús Miguel Bolívar Gázquez, MSc, Mallorca, Spain Centro de Fisioterapia Jesús Bolívar, Calle Ignasi Ferretjans, 3, 07004. 2 Facultad de Ciencias de la Salud, Universidad San Jorge, Grupo de Palma de Mallorca, Spain (e-mail: [email protected]). Investigación iPhysio, Zaragoza, Spain Rev Fisioter Invasiva 2019;2:29–38. Abstract Introduction In recent years, musculoskeletal ultrasound has become an important tool for the assessment of peripheral nerve entrapments in human subjects. Objective To research sonographic pathological values of peripheral nerve entrap- ments and to verify the usefulness of ultrasound for the assessment of the same. Material and Methods A literature search was conducted on the EBSCOHost platform between January 2016 and September 2017. Results Fifty-four articles were included in this review. Ultrasound showed good diagnostic values for the ulnar tunnel syndrome at the level of the tunnel (sensitivity Keywords 72–99%; specificity 53–100%) and at the level of the medial epicondyle (sensitivity 72– ► sonography 92%; specificity 75–93%). ► validity Conclusions Sonographic assessments may be considered a valid tool for the ► diagnosis assessment of the peripheral nervous system. High diagnostic precision exists for ► peripheral nerve the cross-sectional area in carpal tunnel syndrome and ulnar tunnel syndrome. There is ► nerve entrapment. a lack of evidence regarding the diagnosis of other neuropathies.
    [Show full text]
  • Is Ulnar Nerve Entrapment at Wrist
    ORIGINAL PAPER International Journal of Occupational Medicine and Environmental Health 2017;30(6):861 – 874 https://doi.org/10.13075/ijomeh.1896.00970 IS ULNAR NERVE ENTRAPMENT AT WRIST FREQUENT AMONG PATIENTS WITH CARPAL TUNNEL SYNDROME OCCUPATIONALLY EXPOSED TO MONOTYPE WRIST MOVEMENTS? MAGDALENA LEWAŃSKA and JOLANTA WALUSIAK-SKORUPA Nofer Institute of Occupational Medicine, Łódź, Poland Department of Occupational Diseases and Environmental Health, Out-patient Clinic of Occupational Diseases Abstract Objectives: Association between carpal tunnel syndrome (CTS) and ulnar nerve entrapment at wrist remains controversial. The aim of the study has been to investigate the prevalence of Guyon’s canal syndrome amongst patients diagnosed with the CTS, occupationally exposed to repetitive wrist movements. Material and Methods: The retrospective analysis of 310 pa- tients (268 females, 42 males) representing the mean age of 52±7 years old hospitalized for the suspected occupational CTS was performed. Results: In the analyzed cohort, 4 patients had undergone decompression of the Guyon’s canal in the right limbs. Nerve conduction studies (NCS) in the ulnar nerves performed during the hospitalization of those patients did not show any abnormalities. Nerve conduction studies revealed signs of the ulnar neuropathy (UN) at the wrist affecting exclusively sen- sory fibers for 6 patients. Only those 4 patients who had undergone the operation suffered from clinical symptoms of the UN before the surgery. In the case of the remaining patients, despite the NCS changes, signs suggestive of the UN at the wrist were not detected. In the case of the patients with the occupational CTS, no signs of the ulnar nerve dysfunction were recorded.
    [Show full text]
  • A Quantitative Evaluation of Sciatic Nerve Stiffness After Compression by Shear Wave Elastography in Diabetic Rats
    682 Original Article Page 1 of 10 A quantitative evaluation of sciatic nerve stiffness after compression by shear wave elastography in diabetic rats Diancheng Li, Jiaan Zhu, Fang Liu, Bing Li, Feifei Liu, Wenxue Li Department of Ultrasound, Peking University People’s Hospital, Beijing, China Contributions: (I) Conception and design: J Zhu, F Liu; (II) Administrative support: J Zhu, F Liu; (III) Provision of study materials: D Li, B Li; (IV) Collection and assembly of data: D Li, B Li, F Liu; (V) Data analysis and interpretation: D Li, F Liu, W Li; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Jiaan Zhu; Fang Liu. Department of Ultrasound, Peking University People’s Hospital, No. 11 Xizhimen South Street, Beijing, China. Email: [email protected]; [email protected]. Background: Our study investigates the feasibility of using quantitative evaluation for nerve entrapment visualization by shear wave elastography (SWE) in diabetic rats. Methods: A total of 24 male Sprague-Dawley (SD) rats were included in this study. Before injection of streptozotocin (STZ), the experimental groups were assigned as the diabetic nerve compression (DNC) group (DNC, n=18) and the control group (CON, n=6). The DNC model was created by wrapping a silicone tube around the nerve, and then the DNC group was divided into the DNC 2-week (DNC2W, n=6), 4-week (DNC4W, n=6), and 8-week (DNC8W, n=6) groups according to the different duration time of sciatic nerve compression. The nerve stiffness was detected by SWE. Meanwhile, motor nerve conduction velocity (MNCV) was detected.
    [Show full text]
  • Electrodiagnosis of Ulnar Nerve Entrapment at the Elbow
    Electrodiagnosis of ulnar nerve entrapment at the elbow Gülbün Yüksel, MD, Geysu Karlıkaya, MD, Kemal Tutkavul, MD, Ayşe Akpınar, MD, Cihat Örken, MD, Hülya Tireli, MD. ABSTRACT m/sn) across the elbow was recorded in 48.4% of the limbs with long segment studies, and 73% of the limbs with short segment studies. In 82% of cases, an amplitude drop of the compound muscle action اﻷهداف: دراسة استعمال طرق فسيولوجية كهربائية مختلفة potential (CMAP) was also recorded. A CMAP لتشخيص انحشار العصب الزندي في املرفق على وجه اخلصوص amplitude drop of 10-30% between the wrist and ومقارنة دراسة القطع الطويلة عند املرفق مقابل القطع الصغيرة. elbow was recorded in 35 limbs (37.6%), while a drop .(of more than 50% was only recorded in 5 limbs (5.4% الطريقة: ُأجري تقييم للمرضى الذين مت حتويلهم إلى مستشفى Conclusions: Short segment studies are sensitive for حيدرباشا نومون ومركز التدريب والبحث بقسم املختبر the electrodiagnosis of UNE, and although a CMAP وفسيولوجية اﻷعصاب – اسطنبول – تركيا، خﻻل الفترة ما بني amplitude drop is recorded in most patients, an 2000م وحتى 2004م، والذين مت تشخيص حالتهم ًأوليا بانحشار amplitude drop consistent with a conduction block العصب الزندي في املرفق )UNE(. قمنا مبقارنة دراسة القطع .is rare (%50>) الطويلة )12cm-8( مقابل القطع القصيرة )3cm(، لتشخيص 93 UNE Neurosciences 2009; Vol. 14 (3): 249-253 انحشار العصب الزندي في املرفق ) ( لـ طرف. From the Department of Neurology (Yüksel, Tutkavul, Akpınar, Örken, Tireli) Haydarpaşa Numune Training and Research Hospital, and النتائج: شملت مجموعة الدراسة 55 أنثى و 31 ذكر. مت 48.4% CV <50m sn Department of Neurology (Karlıkaya), Yeditepe University Hospital, .İstanbul, Turkey تسجيل بطء في ) / ( ) ( نقطة لدى ) ( و )%73( من اﻷطراف مع دراسات القطع الطويلة والقصيرة، على Received 1st January 2009.
    [Show full text]
  • The Biological Basis of Nervous Tissue Repetitive Strain Injuries in Esports Competitors
    University of South Dakota USD RED Honors Thesis Theses, Dissertations, and Student Projects Spring 2019 The Biological Basis of Nervous Tissue Repetitive Strain Injuries in eSports Competitors Katryna Booth-Malnack University of South Dakota Follow this and additional works at: https://red.library.usd.edu/honors-thesis Recommended Citation Booth-Malnack, Katryna, "The Biological Basis of Nervous Tissue Repetitive Strain Injuries in eSports Competitors" (2019). Honors Thesis. 40. https://red.library.usd.edu/honors-thesis/40 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, and Student Projects at USD RED. It has been accepted for inclusion in Honors Thesis by an authorized administrator of USD RED. For more information, please contact [email protected]. THE BIOLOGICAL BASIS OF NERVOUS TISSUE REPETITIVE STRAIN INJURIES IN ESPORTS COMPETITORS by Katryna Booth-Malnack A Thesis Submitted in Partial Fulfillment Of the Requirements for the University Honors Program ________________________________________________________ Department of Biology The University of South Dakota May 2019 The members of the Honors Thesis Committee appointed to examine the thesis of Katryna Booth-Malnack find it satisfactory and recommend that it be accepted. ____________________________________ Dr. Christopher V. Anderson Assistant Professor of Biology Director of the Committee ____________________________________ Dr. Allison Naber Assistant Professor of Occupational Therapy ____________________________________ Dr. Michael Granaas Associate Professor of Psychology ABSTRACT The Biological Basis of Nervous Tissue Repetitive Strain Injuries in eSports Competitors Katryna Booth-Malnack Director: Christopher V. Anderson, Ph.D. Participation in competitive video games, or eSports, is growing. ESports players subject themselves to high-intensity practice sessions over long hours in order to maintain their competitive edge.
    [Show full text]
  • Clinical Differentiation of Upper Extremity Pain Etiologies
    Review Article Clinical Differentiation of Upper Extremity Pain Etiologies Abstract Ravi K. Ponnappan, MD Upper extremity pain can result from many overlapping etiologies. Mustafa Khan, MD These can be categorized into anatomic regions and specific organ systems. Anatomically, pain etiologies are classified into four major Jonas L. Matzon, MD groups: neurologic, musculoskeletal, vascular, and other (eg, tumor, Emran S. Sheikh, MD infection). Knowledge of the characteristic clinical presentation and Bradford S. Tucker, MD physical examination findings of each group can help distinguish the ’ Matthew D. Pepe, MD source of the patient s complaints quickly so that an accurate clinical diagnosis can facilitate appropriate diagnostic measures and Fotios P. Tjoumakaris, MD treatment. A focus on the neurologic causes of upper extremity pain Ahmad N. Nassr, MD (ie, cervical spine pathology, peripheral nerve compression, neuropathy) and musculoskeletal causes of shoulder and elbow pain (eg, adhesive capsulitis, calcific tendinitis, biceps tendinitis, synovitis) and the distinguishing characteristics (eg, periscapular pain, two-point discrimination, signal intensity on T2-weighted MRI) helps determine the appropriate diagnosis. he most common etiologies of Referred Pain From Spondylotic Tupper extremity pain can be Changes categorized into one of four main Intervertebral disks are innervated by groups: neurologic, musculoskeletal, the sinuvertebral nerve, which can refer vascular, and other (eg, tumor, pain to the axial neck and upper infection).
    [Show full text]