Effects of Genetic Polymorphisms of CYP1A1, CYP2E1, GSTM1, and GSTT1 on the Urinary Levels of 1-Hydroxypyrene and 2-Naphthol in Aircraft Maintenance Workers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Studies on CYP1A1, CYP1B1 and CYP3A4 Gene Polymorphisms in Breast Cancer Patients
Ginekol Pol. 2009, 80, 819-823 PRACE ORYGINALNE ginekologia Studies on CYP1A1, CYP1B1 and CYP3A4 gene polymorphisms in breast cancer patients Badania polimorfizmów genów CYP1A1, CYP1B1 i CYP3A4 u chorych z rakiem piersi Ociepa-Zawal Marta1, Rubiś Błażej2, Filas Violetta3, Bręborowicz Jan3, Trzeciak Wiesław H1. 1 Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences 2 Department of Clinical Chemistry and Molecular Diagnostics, 3Department of Tumor Pathology, Poznan University of Medical Sciences Abstract Background: The role of CYP1A1, CYP1B1 and CYP3A4 polymorphism in pathogenesis of breast cancer has not been fully elucidated. From three CYP1A1 polymorphisms *2A (3801T>C), *2C (2455A>G), and *2B variant, which harbors both polymorphisms, the *2A variant is potentially carcinogenic in African Americans and the Taiwanese, but not in Caucasians, and the CYP1B1*2 (355G>T) and CYP1B1*3 (4326C>G) variants might increase breast cancer risk. Although no association of any CYP3A4 polymorphisms and breast cancer has been documented, the CYP3A4*1B (392A>G) variant, correlates with earlier menarche and endometrial cancer secondary to tamoxifen therapy. Objective: The present study was designed to investigate the frequency of CYP1A1, CYP1B1 and CYP3A4 po- lymorphisms in a sample of breast cancer patients from the Polish population and to correlate the results with the clinical and laboratory findings. Material and methods: The frequencies of CYP1A1*2A; CYP1A1*2C; CYP1B1*3; CYP3A4*1B CYP3A4*2 polymorphisms were determined in 71 patients aged 36-87, with primary breast cancer and 100 healthy indi- viduals. Genomic DNA was extracted from the tumor, and individual gene fragments were PCR-amplified. -
Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy 231 _____________________________ _____________________________ Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid Cloning, Expression and Catalytic Properties of CYP4F8 and CYP4F21 BY JOHAN BYLUND ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2000 Dissertation for the Degree of Doctor of Philosophy (Faculty of Pharmacy) in Pharmaceutical Pharmacology presented at Uppsala University in 2000 ABSTRACT Bylund, J. 2000. Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid: Cloning, Expression and Catalytic Properties of CYP4F8 and CYP4F21. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from Faculty of Pharmacy 231 50 pp. Uppsala. ISBN 91-554-4784-8. Cytochrome P450 (P450 or CYP) is an enzyme system involved in the oxygenation of a wide range of endogenous compounds as well as foreign chemicals and drugs. This thesis describes investigations of P450-catalyzed oxygenation of prostaglandins, linoleic and arachidonic acids. The formation of bisallylic hydroxy metabolites of linoleic and arachidonic acids was studied with human recombinant P450s and with human liver microsomes. Several P450 enzymes catalyzed the formation of bisallylic hydroxy metabolites. Inhibition studies and stereochemical analysis of metabolites suggest that the enzyme CYP1A2 may contribute to the biosynthesis of bisallylic hydroxy fatty acid metabolites in adult human liver microsomes. 19R-Hydroxy-PGE and 20-hydroxy-PGE are major components of human and ovine semen, respectively. They are formed in the seminal vesicles, but the mechanism of their biosynthesis is unknown. Reverse transcription-polymerase chain reaction using degenerate primers for mammalian CYP4 family genes, revealed expression of two novel P450 genes in human and ovine seminal vesicles. -
OCA) Is Controlled
DMD Fast Forward. Published on November 5, 2020 as DOI: 10.1124/dmd.120.000240 This article has not been copyedited and formatted. The final version may differ from this version. Title page Regulation of intestinal UGT1A1 by the FXR agonist obeticholic acid (OCA) is controlled by CAR through intestinal maturation Downloaded from André A. Weber1, Elvira Mennillo1, Xiaojing Yang1, Lori W.E. van der Schoor2, Johan W. Jonker2, Shujuan Chen1, Robert H. Tukey1,* dmd.aspetjournals.org 1Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA. at ASPET Journals on September 25, 2021 2Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands. Address correspondence to: Robert H. Tukey, Department of Pharmacology, University of California, San Diego 92093-0722. E-mail: [email protected] 1 DMD Fast Forward. Published on November 5, 2020 as DOI: 10.1124/dmd.120.000240 This article has not been copyedited and formatted. The final version may differ from this version. Running title page Running title: CAR activation by OCA induces UGT1A1 and IEC maturation Corresponding author: Robert H. Tukey, Department of Pharmacology, University of California, San Diego 9500 Gilman Drive, La Jolla, California, 92093-0722. E-mail: [email protected] Text pages: 16 (Abstract – Discussion, not including references and figure legends) Downloaded from Tables: 1 Figures: 7 -
Cholesterol Metabolites 25-Hydroxycholesterol and 25-Hydroxycholesterol 3-Sulfate Are Potent Paired Regulators: from Discovery to Clinical Usage
H OH metabolites OH Review Cholesterol Metabolites 25-Hydroxycholesterol and 25-Hydroxycholesterol 3-Sulfate Are Potent Paired Regulators: From Discovery to Clinical Usage Yaping Wang 1, Xiaobo Li 2 and Shunlin Ren 1,* 1 Department of Internal Medicine, McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA 23249, USA; [email protected] 2 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; [email protected] * Correspondence: [email protected]; Tel.: +1-(804)-675-5000 (ext. 4973) Abstract: Oxysterols have long been believed to be ligands of nuclear receptors such as liver × recep- tor (LXR), and they play an important role in lipid homeostasis and in the immune system, where they are involved in both transcriptional and posttranscriptional mechanisms. However, they are increas- ingly associated with a wide variety of other, sometimes surprising, cell functions. Oxysterols have also been implicated in several diseases such as metabolic syndrome. Oxysterols can be sulfated, and the sulfated oxysterols act in different directions: they decrease lipid biosynthesis, suppress inflammatory responses, and promote cell survival. Our recent reports have shown that oxysterol and oxysterol sulfates are paired epigenetic regulators, agonists, and antagonists of DNA methyl- transferases, indicating that their function of global regulation is through epigenetic modification. In this review, we explore our latest research of 25-hydroxycholesterol and 25-hydroxycholesterol 3-sulfate in a novel regulatory mechanism and evaluate the current evidence for these roles. Citation: Wang, Y.; Li, X.; Ren, S. Keywords: oxysterol sulfates; oxysterol sulfation; epigenetic regulators; 25-hydroxysterol; Cholesterol Metabolites 25-hydroxycholesterol 3-sulfate; 25-hydroxycholesterol 3,25-disulfate 25-Hydroxycholesterol and 25-Hydroxycholesterol 3-Sulfate Are Potent Paired Regulators: From Discovery to Clinical Usage. -
Identification of Novel CYP2E1 Inhibitor to Investigate Cellular and Exosomal CYP2E1-Mediated Toxicity
University of Tennessee Health Science Center UTHSC Digital Commons Theses and Dissertations (ETD) College of Graduate Health Sciences 6-2019 Identification of Novel CYP2E1 Inhibitor to Investigate Cellular and Exosomal CYP2E1-Mediated Toxicity Mohammad Arifur Rahman University of Tennessee Health Science Center Follow this and additional works at: https://dc.uthsc.edu/dissertations Part of the Pharmacy and Pharmaceutical Sciences Commons Recommended Citation Rahman, Mohammad Arifur (0000-0002-5589-0114), "Identification of Novel CYP2E1 Inhibitor to Investigate Cellular and Exosomal CYP2E1-Mediated Toxicity" (2019). Theses and Dissertations (ETD). Paper 482. http://dx.doi.org/10.21007/etd.cghs.2019.0474. This Dissertation is brought to you for free and open access by the College of Graduate Health Sciences at UTHSC Digital Commons. It has been accepted for inclusion in Theses and Dissertations (ETD) by an authorized administrator of UTHSC Digital Commons. For more information, please contact [email protected]. Identification of Novel CYP2E1 Inhibitor to Investigate Cellular and Exosomal CYP2E1-Mediated Toxicity Abstract Cytochrome P450 2E1 (CYP2E1)-mediated hepatic and extra-hepatic toxicity is of significant clinical importance. Diallyl sulfide (DAS) has been shown to prevent xenobiotics such as alcohol- (ALC/ETH), acetaminophen- (APAP) induced toxicity and disease (e.g. HIV-1) pathogenesis. DAS imparts its beneficial effect by inhibiting CYP2E1-mediated metabolism of xenobiotics, especially at high concentration. However, DAS also causes toxicity at relatively high dosages and with long exposure times. The objective of the first project was to find potent ASD analogs which can replace DAS as a research tool or as potential adjuvant therapy in CYP2E1-mediated pathologies. -
Caffeine Metabolism and Cytochrome P450 Enzyme Mrna Expression
Caffeine metabolism and Cytochrome P450 enzyme mRNA expression levels of genetically diverse inbred mouse strains Neal Addicott - CSU East Bay, Michael Malfatti - Lawrence Livermore National Laboratory, Gabriela G. Loots - Lawrence Livermore National Laboratory Metabolic pathways for caffeine 4. Results 1. Introduction (in mice - human overlaps underlined) Metabolites 30 minutes after dose Caffeine is broken down in humans by several enzymes from the Cytochrome Caffeine (1,3,7 - trimethylxanthine) O CH3 (n=6 per strain) CH3 6 N Paraxanthine/Caffeine N 7 Theophylline/Caffeine *Theobromine/Caffeine P450 (CYP) superclass of enzymes. These CYP enzymes are important in Theophylline 1 5 0.06 0.06 0.06 8 (7-N-demethylization) (1,3 - dimethylxanthine) 2 4 9 3 O N 0.05 0.05 0.05 activating or eliminating many medications. The evaluation of caffeine O H N 1,3,7 - trimethyluricacid CH 3 O CH3 N CH eine Peak Area Peak eine eine Peak Area eine Cyp1a2 3 CH 0.04 Area Peak eine 0.04 0.04 f f N f metabolites in a patient has been proposed as a means of estimating the activity 1 7 3 (3-N-demethylization) N Cyp3a4 N1 7 (8-hydrolyzation) 8 OH 0.03 0.03 0.03 of some CYP enzymes, contributing to genetics-based personalized medicine. O 3 N N Cyp1a2 3 O N Paraxanthine (1-N-demethylization) N 0.02 0.02 0.02 CH3 (1,7 - dimethylxanthine) CH3 O CH3 0.01 0.01 0.01 CH3 Theophylline Peak Area / Ca Peak Theophylline Paraxanthine Peak Area / Ca The frequency and distribution of polymorphisms in inbred strains of mice N Area / Ca Peak Theobromine 7 paraxanthine peak area /caffeine peak area /caffeine paraxanthine peak area theophylline peak area /caffeine peak area /caffeine theophylline peak area N1 Theobromine 0 0 peak area /caffeine peak area theobromine 0 0 C57BL/6JC57BL BALB/cJBALB CBA/JCBA/J DBA/2JDBA/2J . -
Genetic Polymorphisms in Steroid Hormone Metabolizing Enzymes In
TurkJMedSci 32(2002)217-221 ©TÜB‹TAK NeslihanAYGÜNKOCABAfi GeneticPolymorphismsinSteroidHormone MetabolizingEnzymesinHumanBreastCancer Abstract: Epidemiologicstudiesindicatethat metabolism(i.e., CYP17,CYP19,CYP1A1, Received:July04,2001 mostriskfactorsforbreastcancerarerelated CYP1B1,MnSOD,COMT,andGST)thatmay toreproductiveandhormonalfactors.The accountforaproportionofenzymatic evaluationofassociationsbetweenbreast variability.Anevaluationofassociations cancerriskandgeneticpolymorphismsin betweenbreastcancerriskandgenetic enzymesinvolvedinhormonemetabolism polymorphismsinenzymesinvolvedin maybeacosteffectivemannerinwhichto hormonemetabolismisdescribedinthisbrief determineindividualbreastcancer review. susceptibility.Anumberofmolecular DepartmentofToxicology,Facultyof epidemiologicstudieshavebeenconductedto evaluateassociationsbetweenpolymorphic KeyWords : Breastcancer,Genetic Pharmacy,GaziUniversity06330Hipodrom polymorphism,Steroidhormonemetabolism Ankara,Turkey genesinvolvedinsteroidhormone Breastcanceristhemostcommonlyoccurringcancer Metabolicactivationof17 β-estradiol(E2)hasbeen amongwomen,andthemorbidityrateofthisdisease postulatedtobeafactorinmammarycarcinogenesis.E2 continuestorise,whereasthemortalityrateisdeclining ismetabolizedviatwomajorpathways:formationof duetomoreadvanceddiagnosisandtreatment catecholestrogens,the2-OHand4-OHderivates;andC- techniques(1).Fewerbreastcancercasescanbe 16α hydroxylation(Figure).The2-OHand4-OHcatechol explainedbyrare,highlypenetrantgenessuchasBRCA1, estrogensareoxidizedtosemiquinonesandquinones. BRCA2 -
Topic 3.1 Interactions of Xenobiotics with the Steroid Hormone Biosynthesis Pathway*
Pure Appl. Chem., Vol. 75, Nos. 11–12, pp. 1957–1971, 2003. © 2003 IUPAC Topic 3.1 Interactions of xenobiotics with the steroid hormone biosynthesis pathway* Thomas Sanderson‡ and Martin van den Berg Institute for Risk Assessment Science, Utrecht University, P.O. Box 8017, 3508 TD Utrecht, The Netherlands Abstract: Environmental contaminants can potentially disrupt endocrine processes by inter- fering with the function of enzymes involved in steroid synthesis and metabolism. Such in- terferences may result in reproductive problems, cancers, and toxicities related to (sexual) differentiation, growth, and development. Various known or suspected endocrine disruptors interfere with steroidogenic enzymes. Particular attention has been given to aromatase, the enzyme responsible for the conversion of androgens to estrogens. Studies of the potential for xenobiotics to interfere with steroidogenic enzymes have often involved microsomal frac- tions of steroidogenic tissues from animals exposed in vivo, or in vitro exposures of steroid- ogenic cells in primary culture. Increasingly, immortalized cell lines, such as the H295R human adrenocortical carcinoma cell line are used in the screening of effects of chemicals on steroid synthesis and metabolism. Such bioassay systems are expected to play an increasingly important role in the screening of complex environmental mixtures and individual contami- nants for potential interference with steroidogenic enzymes. However, given the complexities in the steroid synthesis pathways and the biological activities of the hormones, together with the unknown biokinetic properties of these complex mixtures, extrapolation of in vitro effects to in vivo toxicities will not be straightforward and will require further, often in vivo, inves- tigations. INTRODUCTION There is increasing evidence that certain environmental contaminants have the potential to disrupt en- docrine processes, which may result in reproductive problems, certain cancers, and other toxicities re- lated to (sexual) differentiation, growth, and development. -
Clozapine and Levomepromazine Induce the Cytochrome P450 Isoenzyme CYP3A4, but Not CYP1A1/2, in Human Hepatocytes P
P.3.c.012 Clozapine and levomepromazine induce the cytochrome P450 isoenzyme CYP3A4, but not CYP1A1/2, in human hepatocytes P. Danek, A. Basińska-Ziobroń, W.A. Daniel, J. Wójcikowski Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland Introduction CYP1A1/2 and CYP3A4 are jointly involved in the metabolism of ca. 70% of all the marked drugs. Induction of cytochrome P450 isoenzymes is one of the most common causes of undesired drug–drug interactions. In the case of therapeutic agents active in their parent form, induction increases their elimination rate and reduces the desired pharmacological effect, whereas as regards pro-drugs, the enhanced formation of their active metabolite(s) may produce an increased pharmacological effect. The aim of the present study was to ascertain whether the neuroleptics with different chemical structures and mechanisms of pharmacological action clozapine and levomepromazine may induce CYP1A1/2 and CYP3A4 in human liver. Methods Experiments were performed in vitro using inducible-qualified human cryopreserved hepatocytes from three different donors (Thermo Fisher Scientific, Walthman, MA, USA). For the treatment of cells, the neuroleptics were added to the culture medium at therapeutic concentrations of 0.25, 0.75 and 2.5 μM for levomepromazine and 1, 2.5 and 10 μM for clozapine. Each treatment lasted 72 h and was renewed every 24 h when the culture medium was changed. Afterwards, the culture medium was changed to a medium without the neuroleptics, but containing the CYP isoform-specific substrates, i.e. 1000 μM caffeine (CYP1A1/2) or 200 μM testosterone (CYP3A4). CYP isoenzyme activities were determined in the culture medium using the following CYP isoform- specific reactions: caffeine 3-N-demethylation (CYP1A1/2) and testosterone 6β-hydroxylation (CYP3A4). -
Clean Label Alternatives in Meat Products
foods Review Clean Label Alternatives in Meat Products Gonzalo Delgado-Pando 1 , Sotirios I. Ekonomou 2 , Alexandros C. Stratakos 2 and Tatiana Pintado 1,* 1 Institute of Food Science, Technology and Nutrition (CSIC), José Antonio Novais 10, 28040 Madrid, Spain; [email protected] 2 Centre for Research in Biosciences, Coldharbour Lane, Faculty of Health and Applied Sciences, University of the West of England, Bristol BS16 1QY, UK; [email protected] (S.I.E.); [email protected] (A.C.S.) * Correspondence: [email protected] Abstract: Food authorities have not yet provided a definition for the term “clean label”. However, food producers and consumers frequently use this terminology for food products with few and recognisable ingredients. The meat industry faces important challenges in the development of clean-label meat products, as these contain an important number of functional additives. Nitrites are an essential additive that acts as an antimicrobial and antioxidant in several meat products, making it difficult to find a clean-label alternative with all functionalities. Another important additive not complying with the clean-label requirements are phosphates. Phosphates are essential for the correct development of texture and sensory properties in several meat products. In this review, we address the potential clean-label alternatives to the most common additives in meat products, including antimicrobials, antioxidants, texturisers and colours. Some novel technologies applied for the development of clean label meat products are also covered. Keywords: clean label; meat products; nitrites alternatives; phosphates alternatives Citation: Delgado-Pando, G.; Ekonomou, S.I.; Stratakos, A.C.; Pintado, T. -
Simulation of Physicochemical and Pharmacokinetic Properties of Vitamin D3 and Its Natural Derivatives
pharmaceuticals Article Simulation of Physicochemical and Pharmacokinetic Properties of Vitamin D3 and Its Natural Derivatives Subrata Deb * , Anthony Allen Reeves and Suki Lafortune Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA; [email protected] (A.A.R.); [email protected] (S.L.) * Correspondence: [email protected] or [email protected]; Tel.: +1-224-310-7870 or +1-305-760-7479 Received: 9 June 2020; Accepted: 20 July 2020; Published: 23 July 2020 Abstract: Vitamin D3 is an endogenous fat-soluble secosteroid, either biosynthesized in human skin or absorbed from diet and health supplements. Multiple hydroxylation reactions in several tissues including liver and small intestine produce different forms of vitamin D3. Low serum vitamin D levels is a global problem which may origin from differential absorption following supplementation. The objective of the present study was to estimate the physicochemical properties, metabolism, transport and pharmacokinetic behavior of vitamin D3 derivatives following oral ingestion. GastroPlus software, which is an in silico mechanistically-constructed simulation tool, was used to simulate the physicochemical and pharmacokinetic behavior for twelve vitamin D3 derivatives. The Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) Predictor and PKPlus modules were employed to derive the relevant parameters from the structural features of the compounds. The majority of the vitamin D3 derivatives are lipophilic (log P values > 5) with poor water solubility which are reflected in the poor predicted bioavailability. The fraction absorbed values for the vitamin D3 derivatives were low except for calcitroic acid, 1,23S,25-trihydroxy-24-oxo-vitamin D3, and (23S,25R)-1,25-dihydroxyvitamin D3-26,23-lactone each being greater than 90% fraction absorbed. -
Chemical Basics of Life
© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION CHAPTER 2 Chemical Basics of Life OUTLINE KEY TERMS Atoms, Molecules, and Chemical Bonds Acids: Electrolytes that release hydrogen ions in water. Atomic Structure Activation energy: The amount of energy required to start a Molecules reaction. Chemical Bonds Anions: Ions with a negative charge. Types of Chemical Reactions Atomic number: A whole number representing the number Enzymes of positively charged protons in the nucleus of an atom. Acids, Bases, and the pH Scale Atomic weight: The total number of protons and neutrons in Chemical Constituents of Cells the nucleus of an atom. Inorganic Substances Atoms: The smallest complete units of an element, varying in Organic Substances size, weight, and interaction with other atoms. Summary Bases: Electrolytes that release ions that bond with Learning Goals hydrogen ions. Critical Thinking Questions Carbohydrates: Substances (including sugars) that provide Websites much of the energy required by the body’s cells, as well as Review Questions helping to build cell structures. Catalysts: Atoms or molecules that can change the rate of a OBJECTIVES reaction without being consumed during the process. After studying this chapter, readers should be able to: Cations: Ions with a positive charge. 1. Describe the relationships between atoms and Chemistry: The study of the composition of matter and molecules. changes in its composition. 2. Explain chemical bonds. Compounds: Molecules made up of different bonded atoms. 3. Describe how an atomic number is determined. Decomposition: A reaction that occurs when bonds with a 4. List the major groups of inorganic chemicals reactant molecule break, forming simpler atoms, molecules, common in cells.