Uniform Distribution Theory 5 (2010), No.1, 1–12 Distribution Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Guide to Proper Names and References in Gödel's “Protokolle
Guide to proper names and references in Gödel’s “Protokolle” notebook People Abel Othenio Abel (1875-1946) professor of paleontology and paleobiology at the University of Vienna. Founder of the group of professors known as the “Bärenhöhle” that blocked the appointment and promotion of Jews Adele Adele Nimbursky, née Porkert (1899–1981), Gödel’s girlfriend, separated from her first husband; she and Gödel would marry in September 1938 Bachmann Friedrich Bachmann (1909–1982), mathematician, doctoral student of Scholz’s at Münster, where he received his Ph.D. in 1933; from 1935 at University of Marburg, as assistant then Privatdozent Behmann Heinrich Behmann (1891–1970), German mathematician; his reply to Perelman’s criticism of Gödel’s result had appeared in the journal Mind in April 1937. He was dismissed from his position at the University of Halle after the war for his Nazi Party activities Beer Gustav Beer, member of the Vienna Circle and Menger’s Mathematical Colloquium Benjamin Abram Cornelius Benjamin (1897–1968), American philosopher of science on the University of Chicago faculty 1932 to 1945 Bernays Paul Bernays (1888–1977), Swiss mathematician and logician; close collaborator with David Hilbert on the foundations of mathematics and the axiomatization of set theory Brentano Franz Brentano (1838-1917), resigned as priest, Professor of Philosophy at the University of Vienna, founder of Gestalt Brunsvick Egon Brunswik (1903–1955), Hungarian-born psychologist, assistant to Karl Bühler in Vienna, active member of Otto Neurath’s “Unity of Science” movement Bühler Karl Bühler (1879–1963), professor of psychology at the University of Vienna. He led an effort to reorganize Vienna’s city schools by incorporating scientific findings from child psychology. -
Doctoral Program DISCRETE MATHEMATICS Supplement 1
Doctoral Program DISCRETE MATHEMATICS Supplement 1 Speaker: Univ.-Prof. Dipl.-Ing. Dr. Wolfgang Woess Institut für Mathematische Strukturthorie, TU Graz Steyrergasse 30 / III, A-8010 GRAZ, AUSTRIA Tel.: ++43 316 873 7130, Fax.: ++43 316 873 4507 email: [email protected] Deputy Speaker: Ao.Univ.-Prof. Dipl.-Ing. Mag. Dr. Alfred Geroldinger Institut für Mathematik und Wissenschafliches Rechnen, Universität Graz Heinrichstraße 36, A-8010 GRAZ, AUSTRIA Tel.: ++43 316 380 5154 , Fax.: ++43 316 380 9815 email: [email protected] Deputy Speaker: Ao.Univ.-Prof. Dipl.-Ing. Dr. Jörg Thuswaldner Institut für Mathematik und Informationstechnologie, Montanuniversität Leoben Franz-Josef-Strasse 18, A-8700 Leoben, AUSTRIA Tel.: ++43 3842 402 3805, Fax.: ++43 3842 402 3802 email: [email protected] Secretary of the Speaker: Christine Stelzer Institut für Mathematische Strukturthorie, Technische Universität Graz Steyrergasse 30 / III, A-8010 GRAZ, AUSTRIA Tel.: ++43 316 873 7131, Fax.: ++43 316 873 4507 email: [email protected] 57 Supplement 1 (Beilage 1) Description of the Achievements and Goals of the Researchers Contents 1. Project 01: Random walk models on graphs and groups 59 2. Project 02: Probabilistic methods in combinatorial number theory 70 3. Project 03: Additive group theory, zero-sum theory and non-unique factorizations 77 4. Project 04: Fractal analysis and combinatorics of digital expansions 83 5. Project 05: Digital expansions with applications in cryptography 90 6. Project 06: Polynomial diophantine equations - combinatorial and number theoretic aspects 97 7. Project 07: Structural investigations on combinatorial optimization problems 104 8. Project 08: Number systems and fractal structures 115 9. -
Index Figures in Bold Refer to the Biographies and / Or Illustrations A
Index Figures in bold refer to the biographies Kenneth Arrow 406 Beau 87 and / or illustrations H.C. Artmann 418, 481,481 Gottfried Bechtold 190, 221,356, 362, Boris Arvatov 61 362, 418, 498, 499, W.R. Ashby 328 499 a Michael Atiyah 255 Johannes R. Becker 58 Karl Abraham 522, 523, 528, 530- Carl Aub6ck 68 Konrad Becker 294, 364, 364 532 Augustine 209 Otto Beckmann 294, 357, 357, 546, Raimund Abraham 546, 574, 575, 574, Amadeo Avogadro 162 580 575 R. Axelrod 408 Richard Beer-Hoffmann 448 Antal Abt 241 Alfred Julius Ayer 456 Adolf Behne 67 Friedrich Achleitner 418, 481,481,483, Peter Behrens 66 484, 485, 488, 570 b L~szl6 Beke 504 J~nos Acz~l 251 Johannes Baader 59 Man6 Beke 245 Andor Adam 61 Baader-Meinhof group 577 GySrgy von B~k~sy 32, 122, 418, 431, Alfred Adler 66, 518, 521,521, Mihaly Babits 513 433, 433, 434 529, 533 G~bor Bachman 546, 559, 559, 560, John Bell 189, 212-217, 218 Bruno Adler 71 561 Therese Benedek 522 Raissa Adler 521 Ernst Bachrich 67 Tibor Benedek 522 Theodor W. Adorno 26, 142, 402, 447, Ron Baecker 343 Otto Benesch 473 478 Roger Bacon 185 Walter Benjamin 70, 476 Marc Adrian 106, 106, 142, 146, Alexander Bain 352 Gottfried Benn 589 148, 148, 355 BEla Bal&sz 66, 84, 338-341, 418, Max Bense 108 Robert Adrian X 363,363 444-447,446, 44 7, Jeremy Bentham 405 Endre Ady 442, 444 449-454, 513, 529 Vittorio Benussi 23-26, 24, 25, 29 August Aichhorn 521,524, 527, 528 Nandor Balasz 238 Sophie Benz 525 Howard Aiken 323 Alice B~lint 514, 515, 517-519, Bal&zs BeSthy 418, 504, 505, 504, Alciphon 166 521,521,522 505 Josef Albers 123 Mihaly Balint 513-516, 518, 522, (:tienne BEothy 55, 57, 69, 368, 384, David Albert 188 522 385, 384-386 Leon Battista Alberti 166, 354 Hugo Ball 525 Anna B~othy-Steiner 55, 384 Bernhard Alexander 521 Giacomo Balla 19,41 Gyula Benczur 71 Franz Gabriel Alexander 521,522 Richard Baltzer 242 Max Benirschke 38 J.W. -
Peter M. Gruber (28.08.1941 – 7.03.2017)
Peter M. Gruber (28.08.1941 – 7.03.2017) Peter M. Gruber wurde 1942 in Klagenfurt geboren und wuchs dort auf. Seine Eltern waren beide Gymnasialprofessoren für Mathematik und Physik. 1959 ging er zum Studium der Mathematik mit Physik an die Universität Wien und promovierte 1966 bei Nikolaus Hofreiter mit einem Thema aus der geometrischen Zahlentheorie, Zweitgutachter war Edmund Hlawka. Etwa 2 Jahrzehnte blieb Gruber diesem Gebiet treu und erzielte bedeutende Beiträge. 1987 schrieb er zusammen mit Gerrit Lekkerkerker das Standardwerk Geometry of Numbers. Auch das detailreiche Büchlein Lattice points, 1989 zusammen mit Paul Erdös und Joseph Hammer geschrieben, gehört hierher. Inzwischen hatte sich Gruber aber der konvexen und diskreten Geometrie zugewandt, wo er bis zuletzt mit großem internationalen Erfolg arbeitete. Bereits 1983 hatte er zusammen mit Jörg Wills den Band Convexity and its applications herausgegeben, 1993 folgte mit dem gleichen Coautor das einflußreiche Handbook of Convex Geometry in 2 Bänden. Sein Opus magnum, die Monographie Convex and Discrete Geometry, erschien 2007. Hier wird das Gebiet gemeinsam mit der Geometrie der Zahlen in großer Liebe und Sorgfalt aus seiner Sicht vorgestellt. Gruber wirkte von 1971 bis 1976 als ordentlicher Professor an der Universität Linz, 1976 bis 2009 an der TU Wien. Er war ein begeisternder Lehrer, mehr als 20.000 Studierende gingen durch seine Schule. Es ist hier nicht der Platz, seine zahlreichen Auszeichnungen, Ehrendoktorate und Akademiemitgliedschaften zu nennen, ebenso kann nicht auf seine fruchtbare aktive Tätigkeit in der Organisation von Hochschule, Fachzeitschriften und Fachgesellschaften eingegangen werden. Peter Gruber starb am 7. März 2017. Wir haben einen äußerst liebenswerten, lebensfrohen, weitvernetzten und klugen Kollegen verloren. -
SPHERE COVERINGS, LATTICES, and TILINGS (In Low Dimensions)
Technische Universitat¨ Munchen¨ Zentrum Mathematik SPHERE COVERINGS, LATTICES, AND TILINGS (in Low Dimensions) FRANK VALLENTIN Vollstandiger¨ Abdruck der von der Fakultat¨ fur¨ Mathematik der Technischen Universitat¨ Munchen¨ zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. PETER GRITZMANN Prufer¨ der Dissertation: 1. Univ.-Prof. Dr. JURGEN¨ RICHTER-GEBERT 2. Priv.-Doz. Dr. THORSTEN THEOBALD 3. o. Univ.-Prof. Dr. Dr. h.c. PETER MANFRED GRUBER Technische Universitat¨ Wien / Osterreich¨ (schriftliche Beurteilung) Prof. Dr. CHRISTINE BACHOC Universite´ de Bordeaux 1 / Frankreich (schriftliche Beurteilung) Die Dissertation wurde am 18. Juni 2003 bei der Technischen Universitat¨ Munchen¨ eingereicht und durch die Fakultat¨ fur¨ Mathematik am 26. November 2003 angenommen. Acknowledgements I want to thank everyone who helped me to prepare this thesis. This includes ALEXANDER BELOW,REGINA BISCHOFF,KLAUS BUCHNER,MATHIEU DUTOUR,CHRISTOPH ENGEL- HARDT,SLAVA GRISHUKHIN,JOHANN HARTL,VANESSA KRUMMECK,BERND STURMFELS, HERMANN VOGEL,JURGEN¨ WEBER. I would like to thank the research groups M10 and M9 at TU Munchen,¨ the Gremos at ETH Zurich,¨ and the Institute of Algebra and Geometry at Univer- sity of Dortmund for their cordial hospitality. Especially, I want to thank JURGEN¨ RICHTER-GEBERT for many interesting and helpful discus- sions, for being a constant source of motivation, and for showing me pieces and slices of his high-minded world of “Geometrie und Freiheit”; RUDOLF SCHARLAU for the kind introduction into the subject and for proposing this research topic; ACHILL SCHURMANN¨ for reading (too) many versions of the manuscript very carefully and for many, many discussions which give now the final(?) view on VORONO¨I’s reduction theory. -
Hrsg.): Auf Der Suche Nach Authentischem Philosophieren
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PhilPapers Erschienen in: M. Benedikt, R. Knoll, F. Schwediauer, C. Zehetner 1 (Hrsg.): Auf der Suche nach authentischem Philosophieren. Philosophie PREPRINT in Österreich 1951–2000. Verdrängter Humanismus - verzögerte Aufklärung. Bd. VI. Wien: WUV 2010. Pp. 1041-1056. Daniel Kuby∗ Paul Feyerabend in Wien 1946-1955. Das Österreichische College und der Kraft- Kreis 1. Einführung: Studium an der Universität Wien Die Darstellungen Feyerabends über das akademische Klima an der Universität Wien decken sich weitgehend mit der historischen Aufarbeitung der Zeit nach dem II. Weltkrieg1. Feyerabends Studium der Geschichte, Philosophie und Kunstgeschichte im Wintersemester 19462, sein Wechsel ab dem folgenden Sommersemester zur Physik und Astronomie ("Der Kontrast war gewaltig – es war, als sei ich aus feuchten, dunklen und endlos widerhallenden Gewölben ans helle Tageslicht getreten"3), sein andauerndes Interesse für Philosophie und Psychologie4 geben ihm die Möglichkeit, Erfahrungen in unterschiedlichen Kontexten im akademischen Betrieb zu sammeln. Am Institut für Physik hört er u.a. Vorlesungen bei den Physikern Felix Ehrenhaft, Adalbert Prey, Karl Przibram, Theodor Sexl und Hans Thirring und den Mathematikern Edmund Hlawka, Nikolaus Hofreiter und Johann Radon. Auch studiert er Astronomie bei Kasimir Graff. Neben Thirring, dessen Vorlesung "Die Psychologie der Weltfriedenidee" er besucht5, ist es vor allem der 1947 wieder aus dem USA-Exil zurückgekehrte Physiker Felix Ehrenhaft, der durch seine unkonventionellen Ideen bei Feyerabend einen starken Eindruck hinterlässt. Über Ehrenhafts Aufsehen erregende Wiener Antrittsvorlesung, im Sommersemester 1947 gehalten, wissen wir gut Bescheid, da Feyerabend eine Mitschrift und – in Zusammenarbeit mit Ehrenhaft – ein Skriptum davon anfertigt6. -
The Story of the N-Fold Integrals
The story of the n-fold integrals Werner Kuich This story shows that the solution of some mathematical problems can determine one's mathematical life although these problems have nothing to do with one's later mathematical research. In winter semester 1959/60 I started to study mathematics at the Universit¨at Wien. One year later I attended the Hochschulkurs fur¨ moderne Rechentechnik\ at the Technische Hochschule Wien " (nowadays that would be a bachelor's study of informatics). In my fifth semester, in winter semester 1961/62, I visited a seminar of Prof. Nikolaus Hofreiter on Cassels' book \An Introduction to the Geometry of Numbers" [1]. In this seminar each student had to lecture one hour on the contents of about one page of this book. Before lecturing the student had to submit a written report of his talk to the professor. On my page appeared the harmless looking line, which turned out to be an n-fold integral: Z ( ) X −1 −1 ( u + t) dt ; P u≡Λ where P is a fundamental parallelopiped of Λ. In my studies only double integrals were dealt with. After one week I finished around ten pages of my written report including all necessary proofs by induction. To lecture on these ten pages would have needed much more than one hour and therefore Prof. Hofreiter told me to skip the proof of the integral. But he acknowledged my proof and I got the best grade. It is remarkable that this seminar was attended by four students who became lifelong friends and later-on full professors: Peter Gruber (Universit¨at Linz, Technische Universit¨at Wien), Wilfried Imrich (Montanuniversit¨at Leoben), Werner Kuich (Technische Universit¨at Wien), Hermann Maurer (University of Calgary, Universit¨at Karlsruhe, Technische Universit¨at Graz). -
Vorwort Heft 4-09
Vorwort Heft 4-09 Hans-Christoph Grunau Was macht mathematisches Arbeiten aus?“, fragen Kristina Reiss und Stefan Ufer. ” Die M ¨oglichkeit, Erkenntnisse durch Beweisen zu gewinnen, ist ein Alleinstellungsmerk- mal der Mathematik. Die Autoren definieren zun ¨achst sorgf ¨altig ihre zentralen Begriffe Argumentieren, Begr unden,¨ Beweisen“ und reflektieren deren Rolle in den Bildungsstan- ” dards und beim Lehren und Lernen in Schule und Hochschule. Der Schwerpunkt dieses Ubersichtsartikels¨ liegt auf empirischen Untersuchungen, inwieweit verschiedene Formen von Wissen und Probleml ¨osungsstrategien die F ¨ahigkeit zum Argumentieren, Begr unden,¨ Beweisen beeinflussen. Der Beitrag von Kristina Reiss und Stefan Ufer l ¨adt ein, die ei- gene und auch die allgemein gepflegte Unterrichtspraxis mit dem Ziel zu uberdenken,¨ dass Sch ulerinnen¨ und Sch uler,¨ Studentinnen und Studenten mehr Freude am und mehr Kompetenz beim Argumentieren, Begr unden¨ und Beweisen entwickeln. Knoten im R3 sind ganz anschauliche Objekte, die Berechnung von Knoteninvarian- ten wie etwa deren Geschlecht oder Gefasertheit jedoch Gegenstand aktueller topologi- scher Forschung. Der Ubersichtsartikel¨ Knot invariants: Low dimensional topology and ” combinatorics“ von Andr´asI. Stipsicz f uhrt¨ zun ¨achst in einige Grundbegriffe der Kno- tentheorie ein, um dann mit dem Alexander-Polynom eine klassische und der Knoten- Floer-Homologie eine erst wenige Jahre alte Knoteninvariante vorzustellen. Ganz aktuell ist das Ergebnis, dass die Knoten-Floer-Homologie rein kombinatorisch behandelt werden kann. Damit wird – zumindest grunds ¨atzlich – eine rein algorithmische Bestimmung die- ser Knoteninvariante und damit z.B. auch des Knotengeschlechts oder der Gefasertheit erm ¨oglicht. Am 19. Februar dieses Jahres verstarb mit Edmund Hlawka einer der bedeutendsten ¨osterreichischen Mathematiker des 20. Jahrhunderts, der durch sein Werk und seine zahl- reichen Sch uler¨ weltweit große Wirkung entfaltet hat. -
Austrian Academy of Sciences
JOHANN RADON INSTITUTE FOR COMPUTATIONAL AND APPLIED MATHEMATICS ANNUAL REPORT 2007 Johann Radon Institute for Computational and Applied Mathematics AUSTRIAN ACADEMY OF SCIENCES Annual Report 2007 PERIOD: 1.1.2007- 31.12.2007 DIRECTOR: Prof. Heinz W. Engl ADDRESS: Altenbergerstr. 69 A-4040 Linz 1/193 JOHANN RADON INSTITUTE FOR COMPUTATIONAL AND APPLIED MATHEMATICS ANNUAL REPORT 2007 C o n t e n t 1. INTRODUCTION ....................................................................................................................................... 4 2. THE DEVELOPMENT OF THE INSTITUTE IN GENERAL.............................................................. 4 2.1 THE MISSION ................................................................................................................................................ 4 2.2 THE RESEARCH GROUPS: DEVELOPMENT, PLANS......................................................................................... 5 2.3 SCIENTIFIC PERSONNEL................................................................................................................................ 7 2.4 THE ADVISORY BOARDS............................................................................................................................. 10 2.5 AWARDS, PUBLICITY .................................................................................................................................. 11 2.6 RICAM AND MATHEMATICAL SCIENCES IN LINZ...................................................................................... 12 2.7 -
Springer Book Archives Seite 399 Extragalactic Astronomy 1982
Springer Book Archives Extragalactic Astronomy Lecture notes from Córdoba J.L. Sérsic 1982 Extragalactic Radio Sources R. Ekers; C. Fanti; L. Padrielli 1996 Extragalactic Radio Sources D.S. Heeschen; C.M. Wade 1982 Extrakorporale Stoßwellentherapie und C.E. Bachmann; Gerd Gruber; Werner Sonographie der Stütz- und Konermann; Astrid Arnold; G.M. Gruber; Friedrich Bewegungsorgane Ueberle 1999 Extremal Families and Systems of Sufficient Statistics Steffen L. Lauritzen 1988 Proceedings of a Conference held in Extreme Value Theory Oberwolfach, Dec. 6-12, 1987 Jürg Hüsler; Rolf-Dieter Reiss 1989 Extreme Value Theory and Applications J. Galambos; James Lechner; Emil Simiu 1994 Extremes and Related Properties of Random Sequences and Processes M. R. Leadbetter; G. Lindgren; H. Rootzen 1983 Extremitätenverlängerung, Deformitätenkorrektur, Pseudarthrosenbehandlung Joachim Pfeil; Franz Grill; Reinhard Graf 1996 Extremophiles in Deep-Sea Environments K. Horikoshi; K. Tsujii 1999 Extruder Principles and Operation M.J. Stevens; J.A. Covas 1995 Extruding Plastics D.V. Rosato 1998 Eye Movement Disorders E.A.C.M. Sanders; R.J. de Keizer; D. Zee 1987 Eye Movements and Visual Cognition Scene Perception and Reading Keith Rayner 1992 Eyes on the Universe The Story of the Telescope Patrick Moore 1997 Faba Bean Improvement G. Hawtin; Colin Webb 1982 Fabrication, Properties and Applications of Low-Dimensional Semiconductors M. Balkanski; Ivan Yanchev 1995 Face Detection and Gesture Recognition for Human-Computer Interaction Ming-Hsuan Yang; Narendra Ahuja 2001 Face Image Analysis by Unsupervised Learning Marian Stewart Bartlett 2001 Faces of Medicine A Philosophical Study W.J. van der Steen; P.J. Thung 1988 Facet Theory Approaches to Social Research D. -
Scientific Report for 2003
The Erwin Schr¨odinger International Boltzmanngasse 9/2 ESI Institute for Mathematical Physics A-1090 Vienna, Austria Scientific Report for 2003 Impressum: Eigent¨umer, Verleger, Herausgeber: The Erwin Schr¨odinger International Institute for Math- ematical Physics, Boltzmanngasse 9, A-1090 Vienna. Redaktion: Joachim Schwermer, Jakob Yngvason Supported by the Austrian Federal Ministry for Education, Science and Culture. A PREFACE BY THE PRESIDENT 1 A preface by the President The Erwin Schr¨odinger International Institute for Mathematical Physics (ESI) was officially opened in April 1983 and is now in its 11th year of operation. Within these eleven years the ESI has established itself as a research centre of international excellence in the mathematical sciences. To date well over 2400 scientists have visited the Institute, many of them repeatedly, and most of the leading researchers in mathematics and mathematical physics have worked here at some stage during this period. The research activities of the ESI are documented in almost 1500 ESI preprints, the overwhelming majority of which were subsequently published in leading international journals. Far from having been a routine year for the Institute, 2003 saw some important developments and changes at the ESI. The first and most alarming of these was a significant cut in the basic funding of ESI (and of practically all comparable Austrian research institutions) by the Ministry of Science: in June 2003 we were notified of a 14.3% reduction in our recurrent grant for 2003. Since our recurring costs are fairly constant, this meant an effective reduction of our scientific budget by well over 25%. Although this forced us to take quite harsh emergency measures we were able to maintain all our scientific activities, albeit at a somewhat reduced level, by using reserves. -
Combinatorial Sequences: Non-Holonomicity and Inequalities
Combinatorial Sequences: Non-Holonomicity and Inequalities Stefan Gerhold Ph.D. Thesis Advisor: Peter Paule Examiners: Peter Paule Philippe Flajolet Johannes-Kepler-Universit¨atLinz August 30, 2005 ii meiner Großmutter Gertrud Hofreiter , y meiner Großtante Margarete Hofreiter, meinem Großonkel Nikolaus Hofreiter y iv Abstract Holonomic functions (respectively sequences) satisfy linear ordinary differential equa- tions (respectively recurrences) with polynomial coefficients. This class can be gener- alized to functions of several continuous or discrete variables, thus encompassing most special functions that occur in applications, for instance in mathematical physics. In particular, all hypergeometric functions are holonomic. This work makes several contributions to the theory of holonomic functions and se- quences. In the first part, new methods are introduced to show that a given function or sequence is not holonomic. First, number-theoretic methods are applied, and con- nections to the theory of transcendental numbers are pointed out. A new application of the saddle point method from asymptotic analysis to a concrete function is given, which proves its non-holonomicity. The second part addresses questions of positivity of holonomic (and more general) sequences. First, two new methods for proving positivity of sequences algorithmically are presented. The first one is limited to holonomic sequences and is based on the signs of the recurrence coefficients. The second method is applicable to a class much larger than the holonomic sequences. Its main idea is the construction of an inductive proof. To perform the induction step, the involved sequences and their shifts are replaced by real variables. The induction step is thus reduced to a (sufficient) system of polynomial equations and inequalities over the reals.