Page 1 Nov 19, 2008 1 Deutsche Telekom Laboratories the W3C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Multilingual Aspects in Speech and Multimodal Interfaces
Multilingual Aspects in Speech and Multimodal Interfaces Paolo Baggia Director of International Standards 1 Outline Loquendo Today Do we need multilingual applications? Voice is different from text? Current Solutions – a Tour: Speech Interface Framework Today Voice Applications Speech Recognition Grammars Speech Prompts Pronunciation Lexicons Discussion Points 2 Company Profile . Privately held company (fully owned by Telecom Italia), founded in 2001 as spin-off from Telecom Italia Labs, capitalizing on 30yrs experience and expertise in voice processing. Global Company, leader in Europe and South America for award-winning, high quality voice technologies (synthesis, recognition, authentication and identification) available in 30 languages and 71 voices. Multilingual, proprietary technologies protected Munich over 100 patents worldwide London . Financially robust, break-even reached in 2004, revenues and earnings growing year on year Paris . Offices in New York. Headquarters in Torino, Madrid local representative sales offices in Rome, Torino New York Madrid, Paris, London, Munich Rome . Flexible: About 100 employees, plus a vibrant ecosystem of local freelancers. 3 International Awards Market leader-Best Speech Engine Speech Industry Award 2007, 2008, 2009, 2010 2010 Speech Technology Excellence Award CIS Magazine 2008 Frost & Sullivan European Telematics and Infotainment Emerging Company of the Year Award Loquendo MRCP Server: Winner of 2008 IP Contact Center Technology Pioneer Award Best Innovation in Automotive Speech Synthesis Prize AVIOS- SpeechTEK West 2007 Best Innovation in Expressive Speech Synthesis Prize AVIOS- SpeechTEK West 2006 Best Innovation in Multi-Lingual Speech Synthesis Prize AVIOS- SpeechTEK West 2005 4 Do We Need Multilingual Applications? Yes, because … . We live in a Multicultural World . Movement of students/professionals, migration, tourism . -
Bibliography of Erik Wilde
dretbiblio dretbiblio Erik Wilde's Bibliography References [1] AFIPS Fall Joint Computer Conference, San Francisco, California, December 1968. [2] Seventeenth IEEE Conference on Computer Communication Networks, Washington, D.C., 1978. [3] ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, Los Angeles, Cal- ifornia, March 1982. ACM Press. [4] First Conference on Computer-Supported Cooperative Work, 1986. [5] 1987 ACM Conference on Hypertext, Chapel Hill, North Carolina, November 1987. ACM Press. [6] 18th IEEE International Symposium on Fault-Tolerant Computing, Tokyo, Japan, 1988. IEEE Computer Society Press. [7] Conference on Computer-Supported Cooperative Work, Portland, Oregon, 1988. ACM Press. [8] Conference on Office Information Systems, Palo Alto, California, March 1988. [9] 1989 ACM Conference on Hypertext, Pittsburgh, Pennsylvania, November 1989. ACM Press. [10] UNIX | The Legend Evolves. Summer 1990 UKUUG Conference, Buntingford, UK, 1990. UKUUG. [11] Fourth ACM Symposium on User Interface Software and Technology, Hilton Head, South Carolina, November 1991. [12] GLOBECOM'91 Conference, Phoenix, Arizona, 1991. IEEE Computer Society Press. [13] IEEE INFOCOM '91 Conference on Computer Communications, Bal Harbour, Florida, 1991. IEEE Computer Society Press. [14] IEEE International Conference on Communications, Denver, Colorado, June 1991. [15] International Workshop on CSCW, Berlin, Germany, April 1991. [16] Third ACM Conference on Hypertext, San Antonio, Texas, December 1991. ACM Press. [17] 11th Symposium on Reliable Distributed Systems, Houston, Texas, 1992. IEEE Computer Society Press. [18] 3rd Joint European Networking Conference, Innsbruck, Austria, May 1992. [19] Fourth ACM Conference on Hypertext, Milano, Italy, November 1992. ACM Press. [20] GLOBECOM'92 Conference, Orlando, Florida, December 1992. IEEE Computer Society Press. http://github.com/dret/biblio (August 29, 2018) 1 dretbiblio [21] IEEE INFOCOM '92 Conference on Computer Communications, Florence, Italy, 1992. -
Orchestration Server Developer's Guide
Orchestration Server Developer's Guide SCXML Language Reference 10/2/2021 Contents • 1 SCXML Language Reference • 1.1 Usage • 1.2 Syntax and Semantics • 1.3 Extensions and Deviations • 1.4 SCXML Elements • 1.5 Event Extensions • 2 Logging and Metrics • 2.1 Supported URI Schemes • 2.2 Supported Profiles • 2.3 Examples Orchestration Server Developer's Guide 2 SCXML Language Reference SCXML Language Reference Click here to view the organization and contents of the SCXML Language Reference. SCXML stands for State Chart XML: State Machine Notation for Control Abstraction. Orchestration Server utilizes an internally developed SCXML engine which is based on, and supports the specifications outlined in the W3C Working Draft 7 May 2009 [1]. There are, however, certain changes and/or notable differences (see Extensions and Deviations) between the W3C specification and the implementation in Orchestration Server which are described on this page. Only the ECMAScript profile is supported (the minimal and XPath profiles are not supported). Usage SCXML documents are a means of defining control behaviour through the design of state machines. The SCXML engine supports a variety of control flow elements as well as methods to manipulate and send/receive data, thus enabling users to create complex mechanisms. For example, Orchestration, which is a consumer of the SCXML engine, uses SCXML documents to execute strategies. A simple strategy may involve defining different call routing behaviours depending on the incoming caller, however, the SCXML engine facilitates a wide variety of applications beyond simple call routing. Authoring SCXML documents can be done using any text editor or by leveraging the Genesys Composer tool. -
IT Acronyms.Docx
List of computing and IT abbreviations /.—Slashdot 1GL—First-Generation Programming Language 1NF—First Normal Form 10B2—10BASE-2 10B5—10BASE-5 10B-F—10BASE-F 10B-FB—10BASE-FB 10B-FL—10BASE-FL 10B-FP—10BASE-FP 10B-T—10BASE-T 100B-FX—100BASE-FX 100B-T—100BASE-T 100B-TX—100BASE-TX 100BVG—100BASE-VG 286—Intel 80286 processor 2B1Q—2 Binary 1 Quaternary 2GL—Second-Generation Programming Language 2NF—Second Normal Form 3GL—Third-Generation Programming Language 3NF—Third Normal Form 386—Intel 80386 processor 1 486—Intel 80486 processor 4B5BLF—4 Byte 5 Byte Local Fiber 4GL—Fourth-Generation Programming Language 4NF—Fourth Normal Form 5GL—Fifth-Generation Programming Language 5NF—Fifth Normal Form 6NF—Sixth Normal Form 8B10BLF—8 Byte 10 Byte Local Fiber A AAT—Average Access Time AA—Anti-Aliasing AAA—Authentication Authorization, Accounting AABB—Axis Aligned Bounding Box AAC—Advanced Audio Coding AAL—ATM Adaptation Layer AALC—ATM Adaptation Layer Connection AARP—AppleTalk Address Resolution Protocol ABCL—Actor-Based Concurrent Language ABI—Application Binary Interface ABM—Asynchronous Balanced Mode ABR—Area Border Router ABR—Auto Baud-Rate detection ABR—Available Bitrate 2 ABR—Average Bitrate AC—Acoustic Coupler AC—Alternating Current ACD—Automatic Call Distributor ACE—Advanced Computing Environment ACF NCP—Advanced Communications Function—Network Control Program ACID—Atomicity Consistency Isolation Durability ACK—ACKnowledgement ACK—Amsterdam Compiler Kit ACL—Access Control List ACL—Active Current -
Multimodal Input Fusion for Companion Technology a Thesis Submitted to Attain the Degree of Dr
Ulm University | 89069 Ulm | Germany Faculty of Engineering, Computer Sciences and Psychology Institute of Media Informatics Multimodal Input Fusion for Companion Technology A thesis submitted to attain the degree of Dr. rer. nat. of the Faculty of Engineering, Computer Sciences and Psychology at Ulm University Author: Felix Schüssel from Erlangen 2017 Version of November 28, 2017 c 2017 Felix Schüssel This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA. Typeset: PDF-LATEX 2" Date of Graduation: November 28, 2017 Dean: Prof. Dr. Frank Kargl Advisor: Prof. Dr.-Ing. Michael Weber Advisor: Prof. Dr. Dr.-Ing. Wolfgang Minker A Note on Copyrighted Material: [citation] For added clarity, literally adopted parts from own work published elsewhere are emphasized with markings in the page margins as exemplified on the left. These markings are made generously to minimize impacts on layout and readability. In consequence, they may occasionally contain information obviously not stemming from the original publication that are not exempted from the marking (headings, references within this thesis, etc.). The above applies to parts of this thesis that have already been published in the following articles given by bibliography reference and copyright notice as mandated by the respective publisher: [144]: Multimodal Pattern Recognition of Social Signals in Human-Computer-Interaction. Using the Transferable Belief Model for Multimodal Input Fusion in Companion Systems, vol. -
A State-Transfer-Based Open Framework for Internet of Things Service Composition
Doctoral Dissertation Academic Year 2018 A State-Transfer-based Open Framework for Internet of Things Service Composition Keio University Graduate School of Media Design Ruowei Xiao A Doctoral Dissertation submitted to Keio University Graduate School of Media Design in partial fulfillment of the requirements for the degree of Ph.D of Media Design Ruowei Xiao Thesis Advisor: Associate Professor Kazunori Sugiura (Principal Advisor) Professor Akira Kato (Co-advisor) Professor Keiko Okawa (Co-advisor) Thesis Committee: Professor Akira Kato (Principal Advisor) Professor Keiko Okawa (Member) Professor Kai Kunze (Member) Senior Assistant Professor Takeshi Sakurada (Member) Abstract of Doctoral Dissertation of Academic Year 2018 A State-Transfer-based Open Framework for Internet of Things Service Composition Category: Science / Engineering Summary Current Internet-of-Things (IoT) applications are built upon multiple architec- tures, standards and platforms, whose heterogeneity leads to domain specific tech- nology solutions that cannot interoperate with each other. It generates a growing need to develop and experiment with technology solutions that break and bridge the barriers. This research introduces an open IoT development framework that offers gen- eral, platform-agnostic development interfaces, and process. It allows IoT re- searchers and developers to (re-)use and integrate a wider range of IoT and Web services. A Finite State Machine (FSM) model was adopted to provide a uniform service representation as well as an entry point for swift and flexible service com- position under Distributed Service Architecture (DSA). Leveraging this open IoT service composition framework, value-added, cross-domain IoT applications and business logic can be developed, deployed, and managed in an on-the-fly manner. -
3GPP TR 22.977 Version 6.0.0 Release 6)
ETSI TR 122 977 V6.0.0 (2002-09) Technical Report Universal Mobile Telecommunications System (UMTS); Feasibility study for speech-enabled services (3GPP TR 22.977 version 6.0.0 Release 6) 3GPP TR 22.977 version 6.0.0 Release 6 1 ETSI TR 122 977 V6.0.0 (2002-09) Reference DTR/TSGS-0122977v600 Keywords UMTS ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission. -
W3C Standards for Multimodal Interaction
W3C Japan Day - 14th November 2003 WW33CC ssttaannddaarrddss ffoorr MMuullttiimmooddaall IInntteerraaccttiioonn Dave Raggett W3C/Canon W3C Activity lead for Voice & Multimodal Copyright © 2003 W3C Introduction o 10 years ago, the Mosaic browser unleashed the Web, stimulating massive growth on an unprecedented scale o Today the Web is pervasive and enables an incredible range of services o Mobile networks and falling hardware costs make in-car systems increasingly attractive o W3C is developing the vision and core technical standards for the multimodal Web 14 November 2003 2/20 Copyright © 2003 W3C The Need for Standards Bluetooth headset SonyEricsson P800 Lexus console 14 November 2003 3/20 Copyright © 2003 W3C Multimodal – Our Dream o Adapting the Web to allow multiple modes of interaction: – GUI, Speech, Vision, Pen, Gestures, Haptic interfaces o Augmenting human to computer and human to human interaction – Communication services involving multiple devices and multiple people o Anywhere, Any device, Any time – Services that dynamically adapt to the device, user preferences and environmental conditions o Accessible to all 14 November 2003 4/20 Copyright © 2003 W3C W3C Multimodal Interaction Working Group o Initial requirements study in W3C Voice Browser working group, followed by a joint workshop with the WAP Forum in 2000 o Working Group was formed in February 2002, and the following organizations are participating: Access, Alcatel, Apple, Aspect, AT&T, Avaya, BeVocal, Canon, Cisco, Comverse, EDS, Ericsson, France Telecom, Fraunhofer -
Download As A
Client-Side State-based Control for Multimodal User Interfaces David Junger <[email protected]> Supervised by Simon Dobnik and Torbjörn Lager of the University of Göteborg Abstract This thesis explores the appeal and (ease of) use of an executable State Chart language on the client-side to design and control multimodal Web applications. A client-side JavaScript implementation of said language, created by the author, is then discussed and explained. Features of the language and the implementation are illustrated by constructing, step-by-step, a small multimodal Web application. Table of Contents Acknowledgments Introduction 1. More and more modality components 1.1 Multimodal Output 1.2 Multimodal Input 2. Application Control 2.1 Multimodal Architecture and Interfaces 2.2 Internal application logic 2.3 Harel State Charts 2.4 SCXML 2.5 Benefits of decentralized control 3. JSSCxml 3.1 Web page and browser integration 3.2 Implementation details 3.3 Client-side extras 3.4 Performance 4. Demonstration 4.1 The event-stream 4.2 The user interface 4.3 Implementing an output modality component 4.4 Where is the “mute” button? 5. The big picture 5.1 Related work 5.2 Original contribution 6. Future Work References Acknowledgments I learned about SCXML (the aforementioned State Chart language) thanks to Torbjörn Lager, who taught the Speech and Dialogue course in my first year in the Master in Language Technology. Blame him for getting me into this. Implementing SCXML was quite a big project for me. I would never have considered starting it on my own, as I have a record of getting tired of long projects and I was afraid that would happen again. -
A Framework for the Declarative Implementation of Native Mobile Applications
A Framework for the Declarative Implementation of Native Mobile Applications Patricia Miravet∗, Ignacio Marin∗, Francisco Ortiny, Javier Rodriguez∗ June 28, 2013 Abstract The development of connected mobile applications for a broad au- dience is a complex task due to the existing device diversity. In order to soothe this situation, device-independent approaches are aimed at im- plementing platform-independent applications, hiding the differences among the diverse families and models of mobile devices. Most of the existing approaches are based on the imperative definition of applica- tions, which are either compiled to a native application, or executed in a Web browser. The client and server sides of applications are im- plemented separately, using different mechanisms for data synchroniza- tion. In this paper we propose DIMAG, a framework for defining native device-independent client-server applications based on the declarative specification of application workflow, state and data synchronization, user interface, and data queries. We have designed DIMAG consider- ing the dynamic addition of new types of devices, and facilitating the generation of applications for new target platforms. DIMAG has been implemented taking advantage of existing standards. Keywords: Device fragmentation, mobile applications, data and state syn- chronization, dynamic code generation, client-server applications 1 Introduction The development of connected mobile applications is a promising field for companies and researchers. Around 6 billion cellular connection subscrip- -
Automatic Method for Testing Struts-Based Application
AUTOMATIC METHOD FOR TESTING STRUTS-BASED APPLICATION A Paper Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Shweta Tiwari In Partial Fulfillment for the Degree of MASTER OF SCIENCE Major Department: Computer Science March 2013 Fargo, North Dakota North Dakota State University Graduate School Title Automatic Method For Testing Strut Based Application By Shweta Tiwari The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of MASTER OF SCIENCE SUPERVISORY COMMITTEE: Kendall Nygard Chair Kenneth Magel Fred Riggins Approved: 4/4/2013 Brian Slator Date Department Chair ABSTRACT Model based testing is a very popular and widely used in industry and academia. There are many tools developed to support model based development and testing, however, the benefits of model based testing requires tools that can automate the testing process. The paper propose an automatic method for model-based testing to test the web application created using Strut based frameworks and an effort to further reduce the level of human intervention require to create a state based model and test the application taking into account that all the test coverage criteria are met. A methodology is implemented to test applications developed with strut based framework by creating a real-time online shopping web application and using the test coverage criteria along with automated testing tool. This implementation will demonstrate feasibility of the proposed method. iii ACKNOWLEDGEMENTS I would like to sincerely thank Dr. Kendall Nygard, Dr. Tariq M. King for the support and direction. -
Stephen M. Watt 25 October 2010
Stephen M. Watt 25 October 2010 Professional Address Department of Computer Science MC 375 [email protected] University of Western Ontario http://www.csd.uwo.ca/~watt London Ontario, canada n6a 5b7 Tel. +1 519 661-4244 Fax. +1 519 661-3515 Personal Address 56 Doncaster Place [email protected] London Ontario, canada n6g 2a5 Tel. +1 519 471-1688 Fax. +1 519 204-9288 Table of Contents General Career and Education . 2 Professional Biography . 2 Prizes, Awards, Honours . .3 Leadership . 4 Research Research Summary . 6 Publications . 8 Major Software Productions . 20 Invited Presentations . 21 Research Grants . .27 Technology Transfer . 30 Teaching Teaching Philosophy . .31 Program Development . 31 Courses Taught . .32 Training of Highly Qualified Personnel . .34 Outreach and Coaching . .39 Service Institutional Service . 40 Professional Boards and Committees . 42 Conference Organization . 43 Evaluation . 47 Stephen M. Watt 2 1 Career and Education 1997-date Professor, Department of Computer Science, University of Western Ontario, canada Department Chair (1997-2002) Cross appointments to departments of Applied Mathematics and Mathematics 2001-date Member, Board of Directors, Descartes Systems Group (nasdaq dsgx, tse dsg) Chairman of the Board (2003-2007) 1998-2009 Member, Board of Directors, Maplesoft 1996-1998 Responsable Scientifique (Scientific Director), Projet safir Institut National de Recherche en Informatique et en Automatique, france 1995-1997 Professeur, Dept. d’Informatique, Universit´ede Nice–Sophia Antipolis, france Titularisation (tenure) awarded January 1996. 1984-1997 Research Staff Member, IBM T.J. Watson Research Center, Yorktown Heights ny, usa 1982-1984 Lecturer (during PhD), Dept. of Computer Science, University of Waterloo, canada 1981-1986 PhD, Computer Science, University of Waterloo, canada 1979-1981 MMath, Applied Mathematics, University of Waterloo, canada 1976-1979 BSc, Honours Mathematics and Honours Physics, U.