Feasibility Analysis of the Use of Hybrid Solar PV-Wind Power Systems for Grid Integrated Mini-Grids in India
Total Page:16
File Type:pdf, Size:1020Kb
EXAMENSARBETE INOM ELEKTROTEKNIK, AVANCERAD NIVÅ, 30 HP STOCKHOLM, SVERIGE 2017 Feasibility Analysis of the use of Hybrid Solar PV-Wind Power Systems for Grid Integrated Mini-grids in India CRISTINA MATA YANDIOLA KTH SKOLAN FÖR INDUSTRIELL TEKNIK OCH MANAGEMENT Feasibility Analysis of the use of Hybrid Solar PV-Wind Power Systems for Grid Integrated Mini-grids in India Cristina Mata Yandiola Master of Science Thesis KTH School of Industrial Engineering and Management Energy Technology EGI-2017-0090-MSC EKV1212 Division of Energy Engineering SE-100 44 STOCKHOLM Master of Science Thesis EGI -2017-0090- MSC EKV1212 Feasibility Analysis of the Use of Hybrid Solar PV-Wind Power Systems for Grid Integrated Mini-grids in India Cristina Mata Yandiola Approved Examiner Supervisor 2017-09-26 Anders Malmquist Anders Malmquist Commissioner Contact person Abstract Reliable electricity supply remains a major problem in rural India nowadays. Renewable off-grid solutions have been applied in the last decades to increase power supply reliability but often failed to be feasible due to their high energy costs compared to the national grid. Grid Integrated Mini-grids with Storage (GIMS) can provide reliable power supply at an affordable price by combining mini-grids and national grid facilities. However, research on the techno-economic feasibility of these systems in the country is very limited and unavailable in the public sphere. This research project analysed three different aspects of the GIMS feasibility. First, the feasibility of the use of hybrid wind and solar Photovoltaic (PV) systems in GIMS was analysed by comparing the Levelised Cost of Electricity (LCOE) and Net Present Cost (NPC) of solar PV and hybrid PV/Wind GIMS systems. Second, the potential savings GIMS can offer due to the possibility of selling power to the grid were quantified by comparing the LCOE and NPC of the system with and without grid export. Lastly, the cost of reliability of the power supply was represented by the influence of the allowed percentage of capacity shortage on the total cost of the system. The analysis was carried out by means of the software HOMER and was based on three case studies in India. The results of this analysis showed that the use of hybrid systems could generate savings of up to 17% of the LCOE of the GIMS system in comparison to solar mini-grids. Moreover, power sales to the grid enabled LCOE savings up to 35% with respect to mini-grid without power sell-back possibility. In addition, the LCOE could be reduced in between 28% and 40% in all cases by enabling up to a 5% of capacity shortage in the system. Sammanfattning En tillförlitlig elförsörjning är ett stort problem på landsbygden i Indien. Elnätslösningar baserade på förnybara energikällor har undersökts under de senaste decennierna för att öka tillförlitligheten men har ofta misslyckats i genomförandefasen på grund av höga energikostnader jämfört med i det nationella nätet. Nätintegrerade mini-grids med energilagring (GIMS) kan ge tillförlitlig strömförsörjning till ett överkomligt pris genom att kombinera mini-grids och nationella elnätsanläggningar. Forskningen om den teknisk- ekonomiska genomförbarheten av dessa system i landet är emellertid mycket begränsad och otillgänglig inom den offentliga sfären. I den här studien analyseras tre olika aspekter av GIMS-genomförbarheten. För det första analyserades genomförbarheten av att använda hybrida vind- och solcellssystem i GIMS genom att jämföra ”Levelised Cost of Electricity” (LCOE) nivån och nuvärdeskostnaden (NPC) för solcellssystem (PV) och hybrid PV/Vind GIMS-system. För det andra kan de potentiella besparingar GIMS erbjuder, genom möjligheten att sälja elenergi till nätet, kvantifieras genom att jämföra LCOE och NPC i systemet med och utan ”nätexport”. Slutligen studeras kostnaden för tillförlitligheten hos strömförsörjningen i förhållande till accepterad kapacitetsbrist med avseende på systemets totala kostnad. Analysen har utförts med hjälp av mjukvaran HOMER och grundas på tre fallstudier i Indien. Resultaten av denna analys visar att användningen av hybridsystem skulle kunna generera besparingar på upp till 17% av LCOE i GIMS-systemet i jämförelse med enbart PV-baserade mini-grids. Försäljning av elenergi till nätet möjliggör LCOE-besparingar på upp till 35% med i förhållande till mini-grids utan möjlighet till export. Slutligen: LCOE kunde reduceras mellan 28% och 40% i samtliga fall genom att tillåta upp till 5% kapacitetsbrist i systemet. In collaboration with: SELCO Foundation Table of contents List of figures ........................................................................................................................ 1 List of tables .......................................................................................................................... 3 Abbreviations........................................................................................................................ 4 1 Introduction ................................................................................................................. 6 2 Literature review ......................................................................................................... 8 3 Background ............................................................................................................... 10 3.1 Energy and climate situation in India ........................................................................... 10 3.2 Grid Integrated Mini-grids with Storage (GIMS) ......................................................... 14 Benefits of GIMS ........................................................................................................ 15 Challenges associated to GIMS ................................................................................... 16 GIMS solution by SELCO Foundation ........................................................................ 19 3.3 Hybrid solar and wind power systems.......................................................................... 21 Solar photovoltaic systems .......................................................................................... 21 Wind power systems.................................................................................................... 24 Combination of PV and wind power ............................................................................ 26 Hybrid System Simulation ........................................................................................... 27 3.4 HOMER ...................................................................................................................... 28 Economic analysis ....................................................................................................... 28 Technical assessment................................................................................................... 29 4 Methods ..................................................................................................................... 32 4.1 Harobelavadi ............................................................................................................... 33 4.2 DS Halli ...................................................................................................................... 43 4.1 Amasebail ................................................................................................................... 50 5 Results and discussion ............................................................................................... 59 5.1 Discussion of the results .............................................................................................. 59 Harobelavadi ............................................................................................................... 59 DS Halli ...................................................................................................................... 64 Amasebail ................................................................................................................... 68 5.2 Discussion of the simulation model ............................................................................. 72 6 Conclusion and outlook ............................................................................................. 74 Acknowledgements ............................................................................................................. 77 Appendix ............................................................................................................................. 78 References ........................................................................................................................... 90 List of figures 1 List of figures Figure 1: Greenhouse gas emissions per country in kt of CO2 equivalent. ........................... 11 Figure 2: Typical ranges and weighted averages for the total installed costs of utility-scale renewable power generation by region in 2014 [15]. .......................................................... 12 Figure 3: Levelised Cost of Electricity (LCOE) by region and technology in 2014 ............. 13 Figure 4: Schematic representation of a GIMS with AC coupling ....................................... 14 Figure 5: Presence of the SELCO group in India ................................................................ 20 Figure 6: Schematic representation of a solar photovoltaic cell ........................................... 22 Figure 7: Electric circuit diagram of a solar cell.................................................................