Branched-Chain Amino Acid Catabolism Fuels Adipocyte Differentiation and Lipogenesis

Total Page:16

File Type:pdf, Size:1020Kb

Branched-Chain Amino Acid Catabolism Fuels Adipocyte Differentiation and Lipogenesis UC San Diego UC San Diego Previously Published Works Title Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis Permalink https://escholarship.org/uc/item/5hd6t56w Journal Nature Chemical Biology, 12(1) ISSN 1552-4450 Authors Green, CR Wallace, M Divakaruni, AS et al. Publication Date 2016 DOI 10.1038/nchembio.1961 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ARTICLE PUbliShED oNliNE: 16 NoVEmbER 2015 | Doi: 10.1038/NchEmbio.1961 Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis Courtney R Green1, Martina Wallace1, Ajit S Divakaruni2, Susan A Phillips3,4, Anne N Murphy2, Theodore P Ciaraldi3,4 & Christian M Metallo1,5* Adipose tissue plays important roles in regulating carbohydrate and lipid homeostasis, but less is known about the regulation of amino acid metabolism in adipocytes. Here we applied isotope tracing to pre-adipocytes and differentiated adipocytes to quantify the contributions of different substrates to tricarboxylic acid (TCA) metabolism and lipogenesis. In contrast to prolif- erating cells, which use glucose and glutamine for acetyl–coenzyme A (AcCoA) generation, differentiated adipocytes showed increased branched-chain amino acid (BCAA) catabolic flux such that leucine and isoleucine from medium and/or from protein catabolism accounted for as much as 30% of lipogenic AcCoA pools. Medium cobalamin deficiency caused methylmalonic acid accumulation and odd-chain fatty acid synthesis. Vitamin B12 supplementation reduced these metabolites and altered the bal- ance of substrates entering mitochondria. Finally, inhibition of BCAA catabolism compromised adipogenesis. These results quantitatively highlight the contribution of BCAAs to adipocyte metabolism and suggest that BCAA catabolism has a functional role in adipocyte differentiation. dipose tissue has a major role in glucose and lipid homeo- BCAA levels, transplantation of wild-type adipose tissue to Bcat2−/− stasis via the storage of excess nutrients in lipid droplets mice normalizes plasma BCAAs16–18. Finally, treatment of human Aand the release of bioenergetic substrates through lipolysis. subjects and animals with thiazolidinediones (TZDs), clinically Adipocytes, the major cellular constituent of adipose tissue, execute used activators of peroxisome proliferator-activated receptor-γ important regulatory functions through endocrine and paracrine (PPARγ), increases the transcription of BCAA catabolic genes in signaling1. For example, the synthesis and release of lipids and adipose tissue19,20, suggesting that this metabolic activity may have adipokines influence fatty acid metabolism in the liver, appetite, beneficial effects in the context of T2DM. inflammation and insulin sensitivity2–4. Dysfunction in these path- To date, the extent to which oxidation of BCAAs, relative to ways can contribute to insulin resistance5. Beyond these signaling other substrates, contributes to anaplerosis and DNL has not functions, the increased adiposity associated with obesity and type 2 been quantitatively determined in adipocytes. Here we employed diabetes mellitus (T2DM) highlights the need to better understand 13C-labeled isotope tracers, mass spectrometry and isotopomer Nature America, Inc. All rights reserved. Inc. Nature America, metabolic regulation and activity in adipocytes. spectral analysis (ISA) to quantify BCAA utilization in proliferating 5 Insulin stimulates glucose utilization and de novo lipogenesis pre-adipocytes and differentiated adipocytes. Whereas proliferat- (DNL) in the liver and adipose tissue, and glucose and fatty acids ing pre-adipocytes did not appreciably catabolize these substrates, © 201 are considered the primary carbon sources fueling anaplerosis and BCAAs accounted for as much as one-third of the mitochondrial AcCoA generation in these sites6. Beyond carbohydrates and fat, AcCoA in terminally differentiated 3T3-L1 adipocytes as well as in both essential and nonessential amino acids also contribute signifi- adipocytes isolated from human subcutaneous and visceral adipose cantly to AcCoA metabolism in cells. The branched-chain amino tissues. Furthermore, inadequate cobalamin availability in 3T3-L1 acids (BCAAs) leucine, isoleucine, and valine are important keto- cultures perturbed BCAA and fatty acid metabolism and led to genic and/or anaplerotic substrates in a number of tissues7,8. In fact, the non-physiological accumulation of methylmalonate (MMA) clinical metabolomics studies have recently suggested that plasma and synthesis of odd-chain fatty acids (OCFAs). Finally, inhibition levels of BCAAs, their downstream catabolites (such as acylcarniti- of BCAA catabolism negatively influenced 3T3-L1 adipogenesis. nes) and other essential amino acids become elevated in the context These results highlight the complex interplay between cellular of insulin resistance9–11. However, the mechanisms leading to these differentiation and metabolic pathway flux in adipocyte biology. changes and their ultimate consequences in the context of metabolic syndrome are not fully understood. RESULTS Several past studies provide evidence that adipose tissue plays Adipogenesis reprograms amino acid metabolism a role in BCAA homeostasis, though the quantitative contribution To understand how mitochondrial substrate utilization changes of these amino acids to TCA metabolism relative to those of other during adipogenesis, we quantified the sources of lipogenic AcCoA nutrients is not well defined. Enzyme activity, substrate oxidation before and after differentiation. 3T3-L1 adipocytes displayed sub- and systems-based profiling of 3T3-L1 metabolism suggest that stantial lipid accumulation 7 d after induction of differentiation BCAA consumption increases precipitously during differentiation (Supplementary Results, Supplementary Fig. 1a). Palmitate (total to adipocytes12–14. In addition, the transcription of BCAA catabolic from saponified nonpolar extracts) in proliferating and differenti- 15 13 enzymes increases significantly during 3T3-L1 differentiation . ated 3T3-L1 cells cultured with [U- C6]glucose (Supplementary Whereas genetic modulation of Bcat2 in mice alters circulating Fig. 1b) had the expected pattern of labeling arising via pyruvate 1Department of Bioengineering, University of California, San Diego, La Jolla, California, USA. 2Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3Veterans Affairs San Diego Healthcare System, San Diego, California, USA. 4Department of Medicine, University of California, San Diego, La Jolla, California, USA. 5Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, USA. *e-mail: [email protected] NATURE CHEMICAL BIOLOGY | ADVaNCE ONLINE PUBLICaTION | www.nature.com/naturechemicalbiology 1 ARTICLE Nature chemical biOlOGY Doi: 10.1038/NchEmbio.1961 a Other b c a b 13 100 [U- C5]Glutamine Pre-adipocytes Pre-adipocytes 13 13 [U- C6]Leucine [U- C6]Glucose Adipocytes Adipocytes 90 13 L-Valine L-Isoleucine L-Leucine [U- C6]Isoleucine 100 4 80 ** 80 10 80 *** 3 60 Bckdh Bckdh Bckdh CO CO CO 60 * 2 2 2 5 ]glucose (%) CO 2 6 40 2 mg protein) / *** C Citrate labeling from 40 h CO / ** 13 2 AcCoA *** PropCoA AcCoA 0 Contribution to 1 20 mol indicated tracer substrate (%) 20 Total enrichment PropCoA µ ( lipogenic AcCoA (%) M0 M1 M2 M3 M4 M5 M6 from [U- 0 Uptake and secretion fluxes 0 0 Number of isotopes per molecule 143B Serine A549HuH-7 Glycine SAT pre-adipocytes c d ) Glutamine 80 10 SAT adipocytes Glucose uptake Lactate secretion OAT pre-adipocytes 3T3-L1 adipocytes Glutamine uptake *** m 8 Glutamate secretion 60 OAT adipocytes 3T3-L1 pre-adipocytes Pre-adipocytes 6 * ** * d Pre-adipocytes e [15N]Leucine 40 Adipocytes 250 60 15 4 n Adipocytes *** [ N]Valine ) [15N]BCAAs 20 Citrate MPE from 200 Citrate MPE fro 2 40 150 0 indicated tracer substrate (%) 0 *** indicated tracer substrate (% *** 100 *** *** 20 ]Glucose ]Leucine 6 ]Leucine 6 ]Glutamine13 C ]Isoleucine 6 50 13 C 13 C ]Isoleucine 5 C 6 6 13 C 13 13 C specified tracers (% M1 label on AAs from [U- [U- [U- AA uptake and secretio 0 0 [U- [U- [U- fluxes (nmol/h/mg protein) Valine Serine Serine Leucine Alanine Glycine Glycine Isoleucine Aspartate Glutamate Glutamine Figure 2 | BCAA catabolism is initiated upon adipocyte differentiation. Uptake Secretion (a) Summary of BCAA catabolism and carbon-atom transitions from each BCAA tracer. Abbreviations: Bckdh, branched-chain ketoacid Figure 1 | Characterization of metabolic reprogramming during dehydrogenase; AcCoA, acetyl-CoA; PropCoA, propionyl-CoA. adipocyte differentiation. (a) Contribution of [U-13C ]glucose and 13 13 6 (b) Citrate labeling in 3T3-L1 adipocytes from [U- C6]leucine and [U- C6] 13 [U- C5]glutamine to lipogenic AcCoA for palmitate synthesis in 143B, isoleucine. (c) Mole percent enrichment (MPE) of citrate from each tracer A549, HuH-7 cancer cells and 3T3-L1 pre-adipocytes and adipocytes. substrate in 3T3-L1 pre-adipocytes and adipocytes. (d) MPE of citrate from (b) Uptake and secretion fluxes in 3T3-L1 pre-adipocytes and adipocytes. 13 13 [U- C6]leucine and [U- C6]isoleucine in primary human pre-adipocytes (c) Percentage of intracellular glutamine, serine and glycine pools that were and adipocytes isolated from subcutaneous (SAT) or omental adipose 13 newly synthesized (labeled) from [U- C6]glucose in 3T3-L1 pre-adipocytes tissue (OAT) depots. Data in b–d are from three technical replicates and adipocytes. (d) Net amino acid
Recommended publications
  • Effects of Dietary L-Glutamine Or L-Glutamine Plus L-Glutamic Acid
    Brazilian Journal of Poultry Science Revista Brasileira de Ciência Avícola Effects of Dietary L-Glutamine or L-Glutamine Plus ISSN 1516-635X Oct - Dec 2015 / Special Issue L-Glutamic Acid Supplementation Programs on the Nutrition - Poultry feeding additives / 093-098 Performance and Breast Meat Yield Uniformity of http://dx.doi.org/10.1590/1516-635xSpecialIssue 42-d-Old Broilers Nutrition-PoultryFeedingAdditives093-098 Author(s) ABSTRACT Ribeiro Jr VIII This study aimed at evaluating four dietary L-Glutamine (L-Gln) Albino LFTI or L-Gln plus L-Glutamate (L-Glu) supplementation programs on the Rostagno HSI Hannas MII performance, breast yield, and uniformity of broilers. A total of 2,112 Ribeiro CLNIII one-d-old male Cobb 500® broilers were distributed according to a Vieira RAIII randomized block design in a 2 × 4 factorial arrangement (L-Gln or L-Gln Araújo WAG deIV Pessoa GBSII plus L-Glu × 4 supplementation programs), totaling eight treatments Messias RKGIII with 12 replicates of 22 broilers each. The supplementation programs Silva DL daIII consisted of the dietary inclusion or not of 0.4% of L-Gln or L-Gln plus L-Glu for four different periods: 0 days (negative control), 9d, 21d, and 42d. Feed intake (FI, g), body weight gain (BWG, g), feed conversion I Federal University of Viçosa, Department ratio (FCR, kg/kg), coefficient of variation of body weight (CV, %), body of Animal Science, Av PH Rolfs S/N, Viçosa 36570-000, MG, Brazil weight uniformity (UNIF, %), breast weight (BW, g), breast yield (BY, II Ajinomoto do Brasil Ind. e Com. de %), coefficient of variation of breast weight (CVB), breast uniformity Alimentos Ltda.
    [Show full text]
  • Effect of Peptide Histidine Isoleucine on Water and Electrolyte Transport in the Human Jejunum
    Gut: first published as 10.1136/gut.25.6.624 on 1 June 1984. Downloaded from Gut, 1984, 25, 624-628 Alimentary tract and pancreas Effect of peptide histidine isoleucine on water and electrolyte transport in the human jejunum K J MORIARTY, J E HEGARTY, K TATEMOTO, V MUTT, N D CHRISTOFIDES, S R BLOOM, AND J R WOOD From the Department of Gastroenterology, St Bartholomew's Hospital, London, The Liver Unit, King's College Hospital, London, Department ofMedicine, Hammersmith Hospital, London, and Department of Biochemistry, Karolinska Institute, Stockholm, Sweden SUMMARY Peptide histidine isoleucine, a 27 amino acid peptide with close amino acid sequence homology to vasoactive intestinal peptide and secretin, is distributed throughout the mammalian intestinal tract, where it has been localised to intramural neurones. An intestinal perfusion technique has been used to study the effect of intravenous peptide histidine isoleucine (44.5 pmol/kg/min) on water and electrolyte transport from a plasma like electrolyte solution in human jejunum in vivo. Peptide histidine isoleucine infusion produced peak plasma peptide histidine isoleucine concentrations in the range 2000-3000 pmolIl, flushing, tachycardia and a reduction in diastolic blood pressure. Peptide histidine isoleucine caused a significant inhibition of net absorption of water, sodium, potassium and bicarbonate and induced a net secretion of chloride, these changes being completely reversed during the post-peptide histidine isoleucine period. These findings suggest that endogenous peptide histidine isoleucine may participate in the neurohumoral regulation of water and electrolyte transport in the human jejunum. http://gut.bmj.com/ Peptide histidine isoleucine, isolated originally from INTESTINAL PERFUSION mammalian small intestine, is a 27-amino acid After an eight hour fast, each subject swallowed a peptide having close amino acid sequence homology double lumen intestinal perfusion tube, incorpo- to vasoactive intestinal peptide and secretin.
    [Show full text]
  • Workshop 1 – Biochemistry (Chem 160)
    Workshop 1 – Biochemistry (Chem 160) 1. Draw the following peptide at pH = 7 and make sure to include the overall charge, label the N- and C-terminus, the peptide bond and the -carbon. AVDKY Give the overall charge of the peptide at pH = 3 and 12. 2. Draw a titration curve for Arg, make sure to label the different points. Determine the pI for Arg. 3. Nonpolar solute + water = solution a. What is the S of the universe, system and surroundings? The S of the universe would decrease this is why it is not spontaneous, the S of the system would increase but to a lesser extent to which the S of the surrounding would decrease S universe = S system + S surroundings 4. What is the hydrophobic effect and explain why it is thermodynamically favorable. The hydrophobic effect is when hydrophobic molecules tend to clump together burying them and placing hydrophilic molecules on the outside. The reason this is thermodynamically favorable is because it frees caged water molecules when burying clumping the hydrophobic molecules together. 5. Urea dissolves very readily in water, but the solution becomes very cold as the urea dissolves. How is this possible? Urea dissolves in water because when dissolving there is a net increase in entropy of the universe. The heat exchange, getting colder only reflects the enthalpy (H) component of the total energy change. The entropy change is high enough to offset the enthalpy component and to add up to an overall -G 6. A mutation that changes an alanine residue in the interior of a protein to valine is found to lead to a loss of activity.
    [Show full text]
  • Amino Acids, Glutamine, and Protein Metabolism in Very Low Birth Weight Infants
    0031-3998/05/5806-1259 PEDIATRIC RESEARCH Vol. 58, No. 6, 2005 Copyright © 2005 International Pediatric Research Foundation, Inc. Printed in U.S.A. Amino Acids, Glutamine, and Protein Metabolism in Very Low Birth Weight Infants PRABHU S. PARIMI, MARK M. KADROFSKE, LOURDES L. GRUCA, RICHARD W. HANSON, AND SATISH C. KALHAN Department of Pediatrics, Schwartz Center for Metabolism and Nutrition, Case Western Reserve University School of Medicine, MetroHealth Medical Center, Cleveland, Ohio, 44109 ABSTRACT Glutamine has been proposed to be conditionally essential for 5 h (AA1.5) resulted in decrease in rate of appearance (Ra) of premature infants, and the currently used parenteral nutrient phenylalanine and urea, but had no effect on glutamine Ra. mixtures do not contain glutamine. De novo glutamine synthesis Infusion of amino acids at 3.0 g/kg/d for 20 h resulted in increase (DGln) is linked to inflow of carbon into and out of the tricar- in DGln, leucine transamination, and urea synthesis, but had no boxylic acid (TCA) cycle. We hypothesized that a higher supply effect on Ra phenylalanine (AA-Ext). These data show an acute of parenteral amino acids by increasing the influx of amino acid increase in parenteral amino acid–suppressed proteolysis, how- carbon into the TCA cycle will enhance the rate of DGln. Very ever, such an effect was not seen when amino acids were infused low birth weight infants were randomized to receive parenteral for 20 h and resulted in an increase in glutamine synthesis. amino acids either 1.5 g/kg/d for 20 h followed by 3.0 g/kg/d for (Pediatr Res 58: 1259–1264, 2005) 5 h (AA1.5) or 3.0 g/kg/d for 20 h followed by 1.5 g/kg/d for 5 h (AA3.0).
    [Show full text]
  • Catabolism Iii
    Nitrogen Catabolism Glycogenolysis Protein Fat catabolism Catabolism Fatty Acid Amino-acid GlycolysisDegradation catabolism Pyruvate Oxidation Krebs' Cycle Phosphorylation Oxidative CATABOLISM III: Digestion and Utilization of Proteins • Protein degradation • Protein turnover – The ubiquitin pathway – Protein turnover is tightly regulated • Elimination of nitrogen – By fish, flesh and fowl – How is the N of amino acids liberated and eliminated? • How are amino acids oxidized for energy 1 Protein Catabolism Sources of AMINO ACIDS: •Dietary amino acids that exceed body’s protein synthesis needs •Excess amino acids from protein turnover (e.g., proteolysis and regeneration of proteins) •Proteins in the body can be broken down (muscle wasting) to supply amino acids for energy when carbohydrates are scarce (starvation, diabetes mellitus). •Carnivores use amino acids for energy more than herbivores, plants, and most microorganisms Protein Catabolism The Digestion Pathway • Pro-enzymes are secreted (zymogens) and the environment activates them by specific proteolysis. • Pepsin hydrolyzes protein into peptides in the stomach. • Trypsin and chymotrypsin hydrolyze proteins and larger peptides into smaller peptides in the small intestine. • Aminopeptidase and carboxypeptidases A and B degrade peptides into amino acids in the small intestine. 2 Protein Catabolism The Lysosomal Pathway • Endocytosis, either receptor-mediated, phagocytosis, or pinocytosis engulfs extra- cellular proteins into vesicles. • These internal vesicles fuse as an early endosome. • This early endosome is acidified by the KFERQ Substrates vATPase (“v” for vesicular). • Components that are recycled, like receptors, HSPA8 are sequestered in smaller vesicles to create Co-chaperones the multivesicular body (MVB), sometimes called a late endosome. • If set for degradation, it will fuse with a KFERQ primary lysosome (red) which contains many cathepsin-type proteases.
    [Show full text]
  • Effect of Dietary Protein on Lipid and Glucose Metabolism: Implications for Metabolic Health
    Effect of dietary protein on lipid and glucose metabolism: implications for metabolic health Annemarie Rietman 34334 Rietman.indd 1 09-07-15 09:32 Thesis committee Promotors Prof. Dr F.J. Kok Professor of Nutrition and Health Wageningen University Prof. Dr D. Tomé Professor of Nutrition and Protein Metabolism AgroParisTech, France Co-promotor Dr M. Mensink Assistant professor, Division of Human Nutrition Other members Prof. Dr W.H. Hendriks, Wageningen University Prof. Dr E. Blaak, Maastricht University, The Netherlands Prof. L. Tappy, Université de Lausanne, Switzerland Dr R. Heiligenberg, Hospital ‘De Gelderse Vallei’, Ede, The Netherlands This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). 34334 Rietman.indd 2 09-07-15 09:32 Effect of dietary protein on lipid and glucose metabolism: implications for metabolic health Annemarie Rietman Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 11 September 2015 at 4 p.m. in the Aula. 34334 Rietman.indd 3 09-07-15 09:32 Annemarie Rietman Effect of dietary protein on lipid and glucose metabolism: implications for metabolic health 160 pages PhD thesis, Wageningen University, Wageningen, NL (2015) With references, with summaries in English and Dutch ISBN 978-94-6257-348-2 34334 Rietman.indd 4 09-07-15 11:15 Abstract Background: Diet is an important factor in the development of the Metabolic Syndrome (Mets) and type 2 Diabetes Mellitus.
    [Show full text]
  • Amino Acids Amino Acids
    Amino Acids Amino Acids What Are Amino Acids? Essential Amino Acids Non Essential Amino Acids Amino acids are the building blocks of proteins; proteins are made of amino acids. Isoleucine Arginine (conditional) When you ingest a protein your body breaks it down into the individual aminos, Leucine Glutamine (conditional) reorders them, re-folds them, and turns them into whatever is needed by the body at Lysine Tyrosine (conditional) that time. From only 20 amino acids, the body is able to make thousands of unique proteins with different functions. Methionine Cysteine (conditional) Phenylalanine Glycine (conditional) Threonine Proline (conditional) Did You Know? Tryptophan Serine (conditional) Valine Ornithine (conditional) There are 20 different types of amino acids that can be combined to make a protein. Each protein consists of 50 to 2,000 amino acids that are connected together in a specific Histidine* Alanine sequence. The sequence of the amino acids determines each protein’s unique structure Asparagine and its specific function in the body. Asparate Popular Amino Acid Supplements How Do They Benefit Our Health? Acetyl L- Carnitine: As part of its role in supporting L-Lysine: L-Lysine, an essential amino acid, is mental function, Acetyl L-Carnitine may help needed to support proper growth and bone Proteins (amino acids) are needed by your body to maintain muscles, bones, blood, as support memory, attention span and mental development. It can also support immune function. well as create enzymes, neurotransmitters and antibodies, as well as transport and performance. store molecules. N-Acetyl Cysteine: N-Acetyl Cysteine (NAC) is a L-Arginine: L-Arginine is a nonessential amino acid form of the amino acid cysteine.
    [Show full text]
  • Solutions to 7.012 Problem Set 1
    MIT Biology Department 7.012: Introductory Biology - Fall 2004 Instructors: Professor Eric Lander, Professor Robert A. Weinberg, Dr. Claudette Gardel Solutions to 7.012 Problem Set 1 Question 1 Bob, a student taking 7.012, looks at a long-standing puddle outside his dorm window. Curious as to what was growing in the cloudy water, he takes a sample to his TA, Brad Student. He wanted to know whether the organisms in the sample were prokaryotic or eukaryotic. a) Give an example of a prokaryotic and a eukaryotic organism. Prokaryotic: Eukaryotic: All bacteria Yeast, fungi, any animial or plant b) Using a light microscope, how could he tell the difference between a prokaryotic organism and a eukaryotic one? The resolution of the light microscope would allow you to see if the cell had a true nucleus or organelles. A cell with a true nucleus and organelles would be eukaryotic. You could also determine size, but that may not be sufficient to establish whether a cell is prokaryotic or eukaryotic. c) What additional differences exist between prokaryotic and eukaryotic organisms? Any answer from above also fine here. In addition, prokaryotic and eukaryotic organisms differ at the DNA level. Eukaryotes have more complex genomes than prokaryotes do. Question 2 A new startup company hires you to help with their product development. Your task is to find a protein that interacts with a polysaccharide. a) You find a large protein that has a single binding site for the polysaccharide cellulose. Which amino acids might you expect to find in the binding pocket of the protein? What is the strongest type of interaction possible between these amino acids and the cellulose? Cellulose is a polymer of glucose and as such has many free hydroxyl groups.
    [Show full text]
  • Stimulation Effects of Foliar Applied Glycine and Glutamine Amino Acids
    Open Agriculture. 2019; 4: 164–172 Research Article Yaghoub Aghaye Noroozlo, Mohammad Kazem Souri*, Mojtaba Delshad Stimulation Effects of Foliar Applied Glycine and Glutamine Amino Acids on Lettuce Growth https://doi.org/10.1515/opag-2019-0016 received June 27, 2018; accepted January 20, 2019 1 Introduction Abstract: Amino acids have various roles in plant In biology, amino acids have vital roles in cell life. Amino metabolism, and exogenous application of amino acids acids are among the most important primary metabolites may have benefits and stimulation effects on plant growth within the plant cells. However, they are frequently and quality. In this study, the growth and nutrient uptake regarded as secondary metabolites, particularly in the of Romain lettuce (Lactuca sativa subvar Sahara) were case of proline, glycine and betaine amino acids. Many evaluated under spray of glycine or glutamine at different physiochemical characteristics of plant cells, tissues and concentrations of 0 (as control), 250, 500 and 1000 organs are influenced by the presence of amino acids (Rai mg.L-1, as well as a treatment of 250 mg.L-1 glycine+250 2002; Marschner 2011). They are the building units of mg.L-1 glutamine. The results showed that there was proteins, as the main component of living cells that have significant increase in leaf total chlorophyll content under vital roles in many cell metabolic reactions (Kielland 1994; Gly250+Glu250, Gly250 and Glu1000 mg.L-1treatments, and Rainbird et al. 1984; Jones and Darrah 1993). In addition, in leaf carotenoids content under 250 mg.L-1 glutamine amino acids have various important biological functions spray compared with the control plants.
    [Show full text]
  • Feedback Inhibition of Fully Unadenylylated Glutamine
    Proc. Natl. Acad. Sci. USA Vol. 90, pp. 4996-5000, June 1993 Biochemistry Feedback inhibition of fully unadenylylated glutamine synthetase from Salmonella typhimurium by glycine, alanine, and serine (x-ray crystaflography/protein structure/effector binding) SHWU-HUEY LIAW, CLARK PAN, AND DAVID EISENBERG* Molecular Biology Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90024 Contributed by David Eisenberg, December 28, 1992 ABSTRACT Bacterial glutamine synthetase (GS; EC the binding of L-glutamate to GS was measured in the 6.3.1.2) was previously shown to be inhibited by nine end presence of ADP and Pi (6, 9). Citing these studies and products of glutamine metabolism. Here we present four unpublished data, Stadtman and Ginsburg (2) concluded crystal structures ofGS, complexed with the substrate Glu and "there are separate sites on the enzyme for alanine, tryp- with each of three feedback inhibitors. The GS of the present tophan, histidine, AMP, and CTP, whereas mutually exclu- study is from Salmonela typhimurium, with Mn2+ ions bound, sive binding occurs between glycine, serine, and alanine" and is fully unadenylylated. From Fourier difference maps, we (P. Z. Smymiotis and E. R. Stadtman, unpublished data find that L-serine, L-alanine, and glycine bind at the site of the cited in review reference 2). And Rhee et al. (11) reviewed substrate L-glutamate. In our model, these four amino acids further evidence for separate sites of inhibition. In short, bind with the atoms they share in common (the "main chain" feedback inhibition ofGS is a complicated regulatory system, +NH3-CH-COO-) in the same positions.
    [Show full text]
  • Valine and Isoleucine: the Next Limiting Amino Acids in Broiler Diets Vol
    Valine and Isoleucine: The next limiting amino acids in broiler diets Vol. 46 (1), April 2011, Page 59 Valine and Isoleucine: The next limiting amino acids in broiler diets Etienne Corrent (Ajinomoto Eurolysine S.A.S.) and Dr. Jörg Bartelt (Lohmann Animal Health GmbH & Co. KG) Drastic genetic changes have occurred in many commercial broiler lines during the last years with regard to performance. This genetic improvement needs a corresponding adjustment of our knowledge about amino acid nutrition in broilers. Additionally, today broiler feed formulators are not only focused on minimising the costs. They also have to take into consideration environmental issues and the impact of feed on broiler health. Reducing excess dietary crude protein (CP) is an important way of addressing these issues. The least cost formulation of the diet according to the ideal protein concept is the best way to supply an economic and a balanced amino acids feed for broiler, which can help to reduce the nitrogen excretion during the rearing period. What are the next limiting amino acids in broiler diets? To reduce dietary crude protein levels in broiler feed, it is necessary to know which indispensable amino acids become limiting in diets and what the requirement of broilers is. The usage of feed use amino acids (methionine sources, L-Lysine sources, L-Threonine) in broiler feed is well established. Depending on the requirement assumed for each amino acid, Valine, Isoleucine, Tryptophan and Arginine are generally considered as the next limiting amino acids in broiler feed. Indeed, the amino acid composition of protein differs between feedstuffs and can impact the order in which amino acids become limiting in diets.
    [Show full text]
  • Inhibition of Glycine Oxidation in Cultured Fibroblasts by Isoleucine
    Pediat. Res. 7: 945-947 (1973) Glycine isoleucine hyperglycemia Inhibition of Glycine Oxidation in Cultured Fibroblasts by Isoleucine RICHARD E. HILLMAN, [1S1 LUCILLE H. SOWERS, AND JACK L. COHEN Division of Medical Genetics, Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri USA Extract Cultured fibroblasts were shown to oxidize glycine to CO2- Isoleucine (10 HIM) in- hibited glycine oxidation to CO2 by about 60% in a concentration range of from 0.025 to 10 mM glycine in fibroblasts grown from a patient with ^-ketothiolase defi- cienty. Glycine oxidation by control cell lines was not inhibited by isoleucine. These studies demonstrate an interrelation between isoleucine catabolism and glycine oxida- tion in fibroblasts cultured from a patient with the ketotic hyperglycinemia syndrome. Speculation Hyperglycinemia and hyperglycinuria seen in the "ketotic hyperglycinemia" syn- drome would appear to be secondary to accumulation of products of isoleucine catabolism. Thus, the varying levels of glycine reported in the serum and urine of these patients probably reflect differences in protein and isoleucine intake than rather primary blocks in glycine metabolism. Introduction deficiency [6], methylmalonyl-CoA mutase deficiency [8], and /?-ketothiolase deficiency [3]. a-Methyl-/3-hy- Since its original description by Childs et at. [2], the droxybutyrate was found in the patient with /?-keto- "ketotic hyperglycinemia" syndrome has been shown thiolase deficiency [3]. to be associated with three different defects in the pathway from isoleucine to succinyl-CoA. The sister of There has never been a satisfactory explanation of Childs' original patient was demonstrated to have pro- the elevated levels of glycine in serum and urine of pionyl-CoA carboxylase deficiency [4], other cases have patients with these disorders of isoleucine metabolism.
    [Show full text]