Microrna-22 Suppresses DNA Repair and Promotes Genomic

Total Page:16

File Type:pdf, Size:1020Kb

Microrna-22 Suppresses DNA Repair and Promotes Genomic Published OnlineFirst January 27, 2015; DOI: 10.1158/0008-5472.CAN-14-2783 Cancer Molecular and Cellular Pathobiology Research MicroRNA-22 Suppresses DNA Repair and Promotes Genomic Instability through Targeting of MDC1 Jung-Hee Lee1,2, Seon-Joo Park1,3, Seo-Yeon Jeong1, Min-Ji Kim1, Semo Jun1,4, Hyun-Seo Lee1, In-Youb Chang1,5, Sung-Chul Lim6, Sang Pil Yoon7, Jeongsik Yong8, and Ho Jin You1,4 Abstract MDC1 is critical component of the DNA damage response overexpression of constitutively active Akt1, homologous recom- (DDR) machinery and orchestrates the ensuring assembly of the bination was inhibited by miR-22–mediated MDC1 repression. DDR protein at the DNA damage sites, and therefore loss of In addition, during replicative senescence and stress-induced MDC1 results in genomic instability and tumorigenicity. How- premature senescence, MDC1 was downregulated by upregulat- ever, the molecular mechanisms controlling MDC1 expression are ing miR-22 and thereby accumulating DNA damage. Our results currently unknown. Here, we show that miR-22 inhibits MDC1 demonstrate a central role of miR-22 in the physiologic regulation translation via direct binding to its 30 untranslated region, leading of MDC1-dependent DDR and suggest a molecular mechanism to impaired DNA damage repair and genomic instability. We for how aberrant Akt1 activation and senescence lead to increased demonstrated that activated Akt1 and senescence hinder DDR genomic instability, fostering an environment that promotes function of MDC1 by upregulating endogenous miR-22. After tumorigenesis. Cancer Res; 75(7); 1–13. Ó2015 AACR. Introduction DNA double-strand breaks (DSB) activate the DDR by trigger- ing the kinase activity of ataxia telangiectasia mutated (ATM), Repeated exposure to both exogenous and endogenous insults thereby initiating a signaling cascade in which the histone variant challenges the integrity of cellular genomic material. Eukaryotes H2AX (g-H2AX), located at DSB sites, becomes phosphorylated, have evolved a system called the DNA damage response (DDR), and other DDR factors, including the adaptor protein mediator of which allows cells to sense DNA damage and orchestrate the DNA damage checkpoint 1 (MDC1), are recruited. MDC1 ampli- appropriate cell-cycle checkpoints and DNA repair mechanisms fies the ATM signaling activity, leading to a higher percentage of (1). The failure to respond to DNA damage is a characteristic phosphorylated H2AX proteins and contributing to the recruit- associated with genomic instability and with the onset of diseases, ment and retention of additional DDR factors at the sites of DNA including neurodegenerative diseases, immune deficiency, can- damage (3). Thus, MDC1 has been termed a master regulator, cer, and premature aging (2). modulating the specific chromatin microenvironment required to maintain genomic stability. MDC1 knockout mice show chromo- somal instability, defective DNA repair, and radiation sensitivity 1 DNA Damage Response Network Center,Chosun University School of (4). Furthermore, loss of MDC1 is associated with an increased Medicine, Gwangju, Republic of Korea. 2Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, occurrence of tumors in mice (5), and reduction or lack of MDC1 Republic of Korea. 3Division of Natural Medical Sciences, Chosun has been observed in breast and lung carcinoma cells in humans 4 University School of Medicine, Gwangju, Republic of Korea. Depart- (6). Therefore, cellular levels of MDC1 appear to impact genomic ment of Pharmacology, Chosun University School of Medicine, Gwangju, Republic of Korea. 5Department of Anatomy, Chosun Uni- instability and tumorigenicity directly. Although posttranslational versity School of Medicine, Gwangju, Republic of Korea. 6Department modification via small ubiquitin-like modifiers affects the stability of Pathology,Chosun University School of Medicine, Gwangju, Repub- of MDC1 and its function in DDR (7–9), little is known about how lic of Korea. 7Department of Anatomy, School of Medicine, Jeju National University, Jeju-Do, Republic of Korea. 8Department of Bio- the expression of MDC1 is regulated and which pathophysiologic chemistry, Molecular Biology and Biophysics, University of Minnesota conditions are associated with this regulation. Twin Cities, Minneapolis, Minnesota. miRNAs are small noncoding RNAs that suppress protein 0 Note: Supplementary data for this article are available at Cancer Research synthesis, usually by interacting with the 3 -untranslated region Online (http://cancerres.aacrjournals.org/). (30-UTR) of target mRNAs (10). Several lines of evidence suggest Corresponding Authors: Ho Jin You, Chosun University Medical School, 375 that miRNAs negatively regulate the expression of DDR proteins Seosuk-dong, Gwang-ju 501-759, Republic of Korea. Phone: 82-62-230-6337; (11–14). Therefore, miRNAs may play an important role in the Fax: 82-62-233-3720; E-mail: [email protected]; Jung-Hee Lee, Phone: 82-62- regulation of DDR and may contribute to the maintenance of 230-6399; Fax: 82-62-230-6586; E-mail: [email protected]; and Jeongsik genomic integrity. Yong, Phone: 612-626-2420; Fax: 612-625-2163; E-mail: [email protected] To investigate the possibility that some specific miRNA might doi: 10.1158/0008-5472.CAN-14-2783 directly regulate MDC1 expression and its function, we screened Ó2015 American Association for Cancer Research. for miRNAs that could potentially regulate MDC1 expression and www.aacrjournals.org OF1 Downloaded from cancerres.aacrjournals.org on September 30, 2021. © 2015 American Association for Cancer Research. Published OnlineFirst January 27, 2015; DOI: 10.1158/0008-5472.CAN-14-2783 Lee et al. A B 1.5 1.2 0.9 0.6 MDC1 0.3 α-Tubulin 0.0 Normalized luciferase luciferase Normalized activity C HeLa U2OS HEK293T D miR-22 –+ –+ –+ MDC1 HeLa U2OS HEK293T 53BP1 1.2 1.2 1.2 BRCA1 0.9 0.9 0.9 α-Tubulin 0.6 ∗∗ 0.6 ∗∗ 0.6 ∗∗ 30 ∗∗ 15 150 Relative MDC1 0.3 0.3 0.3 ∗∗ ∗∗ mRNA expression 20 10 100 0 0 0 miR-22–+ –+ –+ 10 5 50 expression Relative miR-22 0 0 0 miR-Ctrl E F miR-22 1.6 ∗∗ ns 1.2 0.8 0.4 Normalized luciferase Normalized activity 0 Vector MDC1 MDC1 3′-UTR-wt 3′-UTR-mt Figure 1. miR-22 directly affects MDC1 expression. A, HEK293T cells were cotransfected with the MDC1 30-UTR luciferase reporter vector along with the candidate miRNAs, which were predicted by at least five bioinformatics algorithms, or the miRNA-negative control (miR-Ctrl). Results are shown as mean Æ SD (n ¼ 3). B, the levels of MDC1 protein were measured using Western blotting in HEK293T cells transfected with the indicated miRNAs. C, indicated cells were transfected with control miRNA or miR-22. The levels of indicated proteins were determined using Western blotting (top). miR-22 levels in the indicated cells were determined using real-time qPCR analysis (bottom). Results are shown as mean Æ SD (n ¼ 3). ÃÃ, P < 0.01. D, expression of MDC1 mRNA in miR-22–transfected HeLa, U2OS, and HEK293T cells was quantitated using real-time qPCR. Results are shown as mean Æ SD (n ¼ 3). ÃÃ, P < 0.01. E, a schematic representation of MDC1 30-UTR. Red, the seed sequence of miR-22. F, MDC1 30-UTR-wt and MDC1 30-UTR-mt were cotransfected with miR-22 in HEK293T cells. Luciferase activity was measured 24 hours after the transfection. Data represent mean Æ SD; n ¼ 3; ns, not significant; ÃÃ, P < 0.01. fi fi identi ed miR-22 as an miRNA that could speci cally suppress Materials and Methods MDC1 expression. We show that miR-22–mediated downregula- tion of MDC1 induces impaired DDR activation and genomic Antibodies instability. Further, we demonstrated that this new pathway plays a Polyclonal MDC1 antibody (R2) was raised in rabbit against a crucial role in the regulation of DNA repair in sustained activation glutathione S-transferase fusion protein containing the BRCT of Akt1 and senescence and may represent a new therapeutic target. domain of MDC1 (residues 1882-2089). Anti-MDC1 polyclonal OF2 Cancer Res; 75(7) April 1, 2015 Cancer Research Downloaded from cancerres.aacrjournals.org on September 30, 2021. © 2015 American Association for Cancer Research. Published OnlineFirst January 27, 2015; DOI: 10.1158/0008-5472.CAN-14-2783 miR-22 Impedes DDR Function of MDC1 MDC1 cDNA – – + A miR-22 ++– B MDC1 HA-MDC1 MDC1 cDNA – – + α-Tubulin miR-22 –++ 1.2 ∗∗ miR-Ctrl+control vector MDC1 ∗∗ ∗∗ ∗∗ miR-22+control vector 80 0.9 miR-22+MDC1 cDNA ∗∗ 60 ∗∗ γ-H2AX -H2AX 0.6 ∗∗ γ 40 ∗∗ ∗∗ ∗∗ (%)staining 20 merge Relative 0.3 ∗∗ ∗∗ 0 Relative BrdUrd incoporation (%) incoporation Relative BrdUrd MDC1 cDNA – – + 0.0 DAPI miR-22 –++ 0 2 5 10 20 50 Gy 2 hours after-IR treatment C MDC1 cDNA – – + D MDC1 cDNA –– + E MDC1 cDNA –– + miR-22 –+ + miR-22 –+ + miR-22 –+ + MDC1 MDC1 MDC1 HA-MDC1 HA-MDC1 HA-MDC1 α-Tubulin α-Tubulin α-Tubulin miR-22 –– + miR-control Control vector MDC1 cDNA MDC1 cDNA miR-Ctrl+control vector miR-22 –+ + miR-22+control vector Comet miR-22+MDC1 cDNA tail ∗∗ 100 P = 0.0008 P = 0.0001 15 ∗∗ ∗∗ ∗∗ ∗∗ 75 ∗∗ ∗∗ 10 60 10 45 ∗∗ 30 5 Relative cell survival (%)survival Relative cell 1 15 02510 Gy Comet tail moment (%) Comet tail 2 hours after-IR treatment 0 Number of chromosomal breaks 0 MDC1 cDNA – – + Control-miR Control vector MDC1 cDNA miR-22 –++ miR-22 F Figure 2. miR-22–mediated MDC1 downregulation leads to impaired DNA damage response. A, BrdUrd incorporation was measured using a colorimetric assay after indicated doses of IR, using U2OS cells transfected with indicated combinations of miRNAs and HA-MDC1 constructs. Results are shown as mean Æ SD (n ¼ 3). ÃÃ, P < 0.01. B and C, miR-22–expressing U2OS cells were transfected with miR-22–insensitive MDC1 and irradiated with 10 Gy of IR. Cells were then analyzed by g-H2AX and MDC1 staining 16 hours after IR (B) and by comet assay 3 hours after IR (C).
Recommended publications
  • The Functions of DNA Damage Factor RNF8 in the Pathogenesis And
    Int. J. Biol. Sci. 2019, Vol. 15 909 Ivyspring International Publisher International Journal of Biological Sciences 2019; 15(5): 909-918. doi: 10.7150/ijbs.31972 Review The Functions of DNA Damage Factor RNF8 in the Pathogenesis and Progression of Cancer Tingting Zhou 1, Fei Yi 1, Zhuo Wang 1, Qiqiang Guo 1, Jingwei Liu 1, Ning Bai 1, Xiaoman Li 1, Xiang Dong 1, Ling Ren 2, Liu Cao 1, Xiaoyu Song 1 1. Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China 2. Department of Anus and Intestine Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China Corresponding authors: Xiaoyu Song, e-mail: [email protected] and Liu Cao, e-mail: [email protected]. Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, 110122, China. Tel: +86 24 31939636, Fax: +86 24 31939636. © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2018.12.03; Accepted: 2019.02.08; Published: 2019.03.09 Abstract The really interesting new gene (RING) finger protein 8 (RNF8) is a central factor in DNA double strand break (DSB) signal transduction.
    [Show full text]
  • Mediator of DNA Damage Checkpoint Protein 1 Facilitates V(D)J Recombination in Cells Lacking DNA Repair Factor XLF
    biomolecules Article Mediator of DNA Damage Checkpoint Protein 1 Facilitates V(D)J Recombination in Cells Lacking DNA Repair Factor XLF Carole Beck 1,2, Sergio Castañeda-Zegarra 1,2 , Camilla Huse 1,2, Mengtan Xing 1,2 and Valentyn Oksenych 1,2,3,* 1 Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; [email protected] (C.B.); [email protected] (S.C.-Z.); [email protected] (C.H.); [email protected] (M.X.) 2 St. Olavs Hospital, Trondheim University Hospital, Clinic of Medicine, Postboks 3250 Sluppen, 7006 Trondheim, Norway 3 Department of Biosciences and Nutrition (BioNuT), Karolinska Institutet, 14183 Huddinge, Sweden * Correspondence: [email protected] Received: 27 November 2019; Accepted: 24 December 2019; Published: 30 December 2019 Abstract: DNA double-strand breaks (DSBs) trigger the Ataxia telangiectasia mutated (ATM)-dependent DNA damage response (DDR), which consists of histone H2AX, MDC1, RNF168, 53BP1, PTIP, RIF1, Rev7, and Shieldin. Early stages of B and T lymphocyte development are dependent on recombination activating gene (RAG)-induced DSBs that form the basis for further V(D)J recombination. Non-homologous end joining (NHEJ) pathway factors recognize, process, and ligate DSBs. Based on numerous loss-of-function studies, DDR factors were thought to be dispensable for the V(D)J recombination. In particular, mice lacking Mediator of DNA Damage Checkpoint Protein 1 (MDC1) possessed nearly wild-type levels of mature B and T lymphocytes in the spleen, thymus, and bone marrow. NHEJ factor XRCC4-like factor (XLF)/Cernunnos is functionally redundant with ATM, histone H2AX, and p53-binding protein 1 (53BP1) during the lymphocyte development in mice.
    [Show full text]
  • Polo-Like Kinase 1 in Genomic Instability
    Polo-like Kinase 1 in genomic instability Xiaoqi Liu Department of Toxicology and Cancer Biology University of Kentucky The fate of a single parental chromosome throughout the eukaryotic cell cycle Cytokinesis Activation of cell division Preparation for mitosis The stages of mitosis and cytokinesis in an animal cell MT MT - + kinetochore Centrosome Spindle pole + (MTOC) Spindle pole Centrosome Spindle Nucleus G2 Prophase Prometaphase Metaphase Central spindle Contractile ring Midbody Anaphase Telophase Cytokinesis Control of mitotic entry and exit by Cdc2/cyclin B and APC Anaphase promoting complex (APC) Cdc2 Cyclin B Cdc2 Anaphase inhibitor Cyclin B Cdc2 G2 Prophase Metaphase Anaphase Telophase G1 (Liu & Erikson, PNAS 2002; Liu & Erikson, PNAS 2003; Liu et al, MCB 2005; Liu et al, MCB 2006) The polo-like kinases have a C-terminal polo-box domain M-phase kinase domain polo-box Plk1 603 Plx1 (Xl) 80% 598 polo (Dm) 65% 576 Plo1 (Sp) 50% 683 Cdc5 (Sc) 51% 705 Early phase of cell cycle Plk2 52% 683 Plk3 52% 631 Plk1 localizes to mitotic structures G2/pro Prometa Spindle poles Centrosomes kinetochores Centrosomes Centrosomes kinetochores Meta Telo Spindle poles Midbodies kinetochores Spindle poles Central spindles kinetochores Plk1 in cancer ---Plk1 overexpression is correlated with cell proliferation and carcinogenesis. ---Plk1 is a new diagnostic marker for cancer. ---Plk1 inhibitors are in various clinical trails. ---However, how Plk1 contributes to carcinogenesis is elusive. Does Plk1 elevation contribute to cancer progression? Approach:
    [Show full text]
  • Insights Into Regulation of Human RAD51 Nucleoprotein Filament Activity During
    Insights into Regulation of Human RAD51 Nucleoprotein Filament Activity During Homologous Recombination Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ravindra Bandara Amunugama, B.S. Biophysics Graduate Program The Ohio State University 2011 Dissertation Committee: Richard Fishel PhD, Advisor Jeffrey Parvin MD PhD Charles Bell PhD Michael Poirier PhD Copyright by Ravindra Bandara Amunugama 2011 ABSTRACT Homologous recombination (HR) is a mechanistically conserved pathway that occurs during meiosis and following the formation of DNA double strand breaks (DSBs) induced by exogenous stresses such as ionization radiation. HR is also involved in restoring replication when replication forks have stalled or collapsed. Defective recombination machinery leads to chromosomal instability and predisposition to tumorigenesis. However, unregulated HR repair system also leads to similar outcomes. Fortunately, eukaryotes have evolved elegant HR repair machinery with multiple mediators and regulatory inputs that largely ensures an appropriate outcome. A fundamental step in HR is the homology search and strand exchange catalyzed by the RAD51 recombinase. This process requires the formation of a nucleoprotein filament (NPF) on single-strand DNA (ssDNA). In Chapter 2 of this dissertation I describe work on identification of two residues of human RAD51 (HsRAD51) subunit interface, F129 in the Walker A box and H294 of the L2 ssDNA binding region that are essential residues for salt-induced recombinase activity. Mutation of F129 or H294 leads to loss or reduced DNA induced ATPase activity and formation of a non-functional NPF that eliminates recombinase activity. DNA binding studies indicate that these residues may be essential for sensing the ATP nucleotide for a functional NPF formation.
    [Show full text]
  • RNF168 Ubiquitylates 53BP1 and Controls Its Response to DNA Double-Strand Breaks
    RNF168 ubiquitylates 53BP1 and controls its response to DNA double-strand breaks Miyuki Bohgakia,b,1, Toshiyuki Bohgakia,b,1, Samah El Ghamrasnia,b, Tharan Srikumara,b, Georges Mairec, Stephanie Panierd, Amélie Fradet-Turcotted, Grant S. Stewarte, Brian Raughta,b, Anne Hakema,b, and Razqallah Hakema,b,2 aOntario Cancer Institute, University Health Network and bDepartment of Medical Biophysics, University of Toronto, Toronto, M5G 2M9 ON, Canada; cThe Hospital for Sick Children, Toronto, M5G 2L3 ON, Canada; dDepartment of Molecular Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8; and eCancer Research UK, Institute for Cancer Studies, Birmingham University, Birmingham B15 2TT, United Kingdom Edited* by Stephen J. Elledge, Harvard Medical School, Boston, MA, and approved November 14, 2013 (received for review October 30, 2013) Defective signaling or repair of DNA double-strand breaks has X–MDC1–RNF8 axis, RNF168 also functions in DSB signaling been associated with developmental defects and human diseases. independently of this pathway. Therefore, we postulated that The E3 ligase RING finger 168 (RNF168), mutated in the human RNF168 also might regulate DSB signaling through direct radiosensitivity, immunodeficiency, dysmorphic features, and modulation of 53BP1 functions. learning difficulties syndrome, was shown to ubiquitylate H2A- In the present study, we demonstrate that RNF168 associates γ – – type histones, and this ubiquitylation was proposed to facilitate with 53BP1 independently of the -H2A.X MDC1 RNF8 sig- the recruitment of p53-binding protein 1 (53BP1) to the sites of naling axis. RNF168 ubiquitylates 53BP1 before its localization DNA double-strand breaks. In contrast to more upstream proteins to DSB sites, and this ubiquitylation is important for the initial signaling DNA double-strand breaks (e.g., RNF8), deficiency of recruitment of 53BP1 to DSB sites and its function in non- homologous end joining (NHEJ) and activation of checkpoints.
    [Show full text]
  • MDC1 and RNF8 Function in a Pathway That Directs BRCA1
    Research Article 6049 MDC1 and RNF8 function in a pathway that directs BRCA1-dependent localization of PALB2 required for homologous recombination Fan Zhang1, Gregory Bick1, Jung-Young Park1 and Paul R. Andreassen1,2,* 1Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Research Foundation, Cincinnati, OH 45229, USA 2Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA *Author for correspondence ([email protected]) Accepted 6 September 2012 Journal of Cell Science 125, 6049–6057 ß 2012. Published by The Company of Biologists Ltd doi: 10.1242/jcs.111872 Summary The PALB2 protein is associated with breast cancer susceptibility and Fanconi anemia. Notably, PALB2 is also required for DNA repair by homologous recombination (HR). However, the mechanisms that regulate PALB2, and the functional significance of its interaction with the BRCA1 breast cancer susceptibility protein, are poorly understood. Here, to better understand these processes, we fused PALB2, or the PALB2(L21P) mutant which cannot bind to BRCA1, with the BRCT repeats that are present in, and which localize, BRCA1. Our results yield important insights into the regulation of PALB2 function. Both fusion proteins can bypass BRCA1 to localize to sites of DNA damage. Further, the localized fusion proteins are functional, as determined by their ability to support the assembly of RAD51 foci, even in the absence of the capacity of PALB2 to bind BRCA1. Strikingly, the localized fusion proteins mediate DNA double-strand break (DSB)-initiated HR and resistance to mitomycin C in PALB2-deficient cells. Additionally, we show that the BRCA1–PALB2 heterodimer, rather than the PALB2–PALB2 homodimer, mediates these responses.
    [Show full text]
  • Mdmx Promotes Genomic Instability Independent of P53 and Mdm2
    Oncogene (2015) 34, 846–856 © 2015 Macmillan Publishers Limited All rights reserved 0950-9232/15 www.nature.com/onc ORIGINAL ARTICLE Mdmx promotes genomic instability independent of p53 and Mdm2 AM Carrillo1, A Bouska2, MP Arrate1 and CM Eischen1 The oncogene Mdmx is overexpressed in many human malignancies, and together with Mdm2, negatively regulates the p53 tumor suppressor. However, a p53-independent function of Mdmx that impacts genome stability has been described, but this function is not well understood. In the present study, we determined that of the 13 different cancer types evaluated, 6–90% of those that had elevated levels of Mdmx had concurrent inactivation (mutated or deleted) of p53. We show elevated levels of Mdmx-inhibited double-strand DNA break repair and induced chromosome and chromatid breaks independent of p53, leading to genome instability. Mdmx impaired early DNA damage-response signaling, such as phosphorylation of the serine/threonine-glutamine motif, mediated by the ATM kinase. Moreover, we identified Mdmx associated with Nbs1 of the Mre11-Rad50-Nbs1 (MRN) DNA repair complex, and this association increased upon DNA damage and was detected at chromatin. Elevated Mdmx levels also increased cellular transformation in a p53-independent manner. Unexpectedly, all Mdmx-mediated phenotypes also occurred in cells lacking Mdm2 and were independent of the Mdm2-binding domain (RING) of Mdmx. Therefore, Mdmx-mediated inhibition of the DNA damage response resulted in delayed DNA repair and increased genome instability and transformation independent of p53 and Mdm2. Our results reveal a novel p53- and Mdm2-independent oncogenic function of Mdmx that provides new insight into the many cancers that overexpress Mdmx.
    [Show full text]
  • Characterization of Histone H2A Functional Domains Important for Regulation of the DNA Damage Response Elizabeta Gjoneska
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2010 Characterization of Histone H2A Functional Domains Important for Regulation of the DNA Damage Response Elizabeta Gjoneska Follow this and additional works at: http://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons Recommended Citation Gjoneska, Elizabeta, "Characterization of Histone H2A Functional Domains Important for Regulation of the DNA Damage Response" (2010). Student Theses and Dissertations. Paper 267. This Thesis is brought to you for free and open access by Digital Commons @ RU. It has been accepted for inclusion in Student Theses and Dissertations by an authorized administrator of Digital Commons @ RU. For more information, please contact [email protected]. CHARACTERIZATION OF HISTONE H2A FUNCTIONAL DOMAINS IMPORTANT FOR REGULATION OF THE DNA DAMAGE RESPONSE A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Elizabeta Gjoneska June 2010 © Copyright by Elizabeta Gjoneska 2010 CHARACTERIZATION OF HISTONE H2A DOMAINS IMPORTANT FOR REGULATION OF THE DNA DAMAGE RESPONSE Elizabeta Gjoneska, Ph.D. The Rockefeller University 2010 DNA double strand breaks represent deleterious lesions which can either be caused by environmental or endogenous sources of DNA damage. Efficient DNA damage response which ensures repair of these lesions is therefore critical for maintenance of genomic stability. The repair happens in the context of chromatin, a three-dimensional nucleoprotein complex consisting of DNA, histones and associated proteins. As such, mechanisms that modulate chromatin structure, many of which involve the histone component of chromatin, have been shown to play a role in regulation of the DNA damage response.
    [Show full text]
  • NFBD1/MDC1 Regulates Cav1 and Cav2 Independently of DNA Damage and P53
    Author Manuscript Published OnlineFirst on May 6, 2011; DOI: 10.1158/1541-7786.MCR-10-0317 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. NFBD1/MDC1 regulates Cav1 and Cav2 independently of DNA damage and p53 Kathleen A. Wilson1,2,*, Sierra A. Colavito1,*, Vincent Schulz1, Patricia Wakefield1, William Sessa3, David Tuck1, and David F. Stern1 1Department of Pathology, 2Graduate Program in Genetics, 3Department of Pharmacology; Yale University School of Medicine; New Haven, Connecticut USA, *K.A.W. and S.A.C. contributed equally to this work Running title: NFBD1/MDC1 regulates Cav1 Keywords: NFBD1, MDC1, Cav1, Cav2, caveolin 1 Downloaded from mcr.aacrjournals.org on October 2, 2021. © 2011 American Association for Cancer Research. Author Manuscript Published OnlineFirst on May 6, 2011; DOI: 10.1158/1541-7786.MCR-10-0317 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Abstract NFBD1 (nuclear factor with BRCT domains 1) is involved in DNA damage checkpoint signaling and DNA repair. NFBD1 binds to the chromatin component γH2AX at sites of DNA damage, causing amplification of ATM pathway signaling and recruitment of DNA repair factors. Residues 508-995 of NFBD1 possess transactivation activity, suggesting a possible role of NFBD1 in transcription. Furthermore, NFBD1 influences p53-mediated transcription in response to adriamycin. We sought to determine the role of NFBD1 in ionizing radiation (IR)-responsive transcription and if NFBD1 influences transcription independently of p53. Using microarray analysis, we identified genes altered upon NFBD1 knockdown. Surprisingly, most NFBD1 regulated genes are regulated in both the absence and presence of IR, thus pointing toward a novel function for NFBD1 outside of the DNA damage response.
    [Show full text]
  • Chromatin and Nucleosome Dynamics in DNA Damage and Repair
    Downloaded from genesdev.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Chromatin and nucleosome dynamics in DNA damage and repair Michael H. Hauer1,2,3 and Susan M. Gasser1,2 1Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland; 2Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland Chromatin is organized into higher-order structures that In yeast, nucleosome remodelers indeed promote long- form subcompartments in interphase nuclei. Different range chromatin movement and the relocation of genomic categories of specialized enzymes act on chromatin and loci to specific sites of anchorage or repair (Dion et al. regulate its compaction and biophysical characteristics 2012; Neumann et al. 2012; Seeber et al. 2013a; Horigome in response to physiological conditions. We present an et al. 2014; Strecker et al. 2016). Intriguingly, the subnu- overview of the function of chromatin structure and its clear mobility of chromatin in yeast, as monitored by dynamic changes in response to genotoxic stress, focusing time-lapse microscopy, increases both at sites of induced on both subnuclear organization and the physical mobili- double-strand breaks (DSBs) and genome-wide; that is, at ty of DNA. We review the requirements and mechanisms undamaged sites in response to widespread damage. In that cause chromatin relocation, enhanced mobility, and both cases, the increase depends on both the INO80 chromatin unfolding as a consequence of genotoxic le- remodeler and checkpoint kinase activation (Dion et al. sions. An intriguing link has been established recently be- 2012; Mine-Hattab and Rothstein 2012; Seeber et al. tween enhanced chromatin dynamics and histone loss.
    [Show full text]
  • Cantharidin Induces DNA Damage and Inhibits DNA Repair-Associated Protein Expressions in TSGH8301 Human Bladder Cancer Cell
    ANTICANCER RESEARCH 35: 795-804 (2015) Cantharidin Induces DNA Damage and Inhibits DNA Repair-associated Protein Expressions in TSGH8301 Human Bladder Cancer Cell JEHN-HWA KUO1,2, TING-YING SHIH3, JING-PIN LIN4, KUANG-CHI LAI5,6, MENG-LIANG LIN7, MEI-DUE YANG8* and JING-GUNG CHUNG3,9* 1Special Class of Healthcare, Industry Management, Central Taiwan University of Science and Technology, Taichung, Taiwan, R.O.C.; 2Department of Urology, Jen-Ai Hospital, Taichung, Taiwan, R.O.C.; 3Department of Biological Science and Technology, 4School of Chinese Medicine, and 5School of Medicine, China Medical University, Taichung, Taiwan, R.O.C.; 6Department of Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan, R.O.C.; 7Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan, R.O.C.; 8Department of Surgery, China Medical University Hospital, Taichung, Taiwan, R.O.C.; 9Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan, R.O.C. Abstract. Cantharidin is an active component of mylabris, protein kinase, poly-ADP ribose polymerase, phosphate- which has been used as a traditional Chinese medicine. ataxia-telangiectasia and RAD3-related, O-6-methylguanine- Cantharidin has been shown to have antitumor activity against DNA methyltransferase, breast cancer susceptibility protein 1, several types of human cancers in vitro and in animal models mediator of DNA damage checkpoint protein 1, phospho- in vivo. We investigated whether cantharidin induces DNA histone H2A.X, but increased that of phosphorylated p53 damage and affects DNA damage repair-associated protein following 6 and 24 h treatment. Confocal laser microscopy levels in TSGH8301 human bladder cancer cells. Using flow was used to examine the protein translocation; cantharidin cytometry to measure viable cells, cantharidin was found to suppressed the levels of p-H2A.X and MDC1 but increased the reduce the number of viable cells in a dose-dependent manner.
    [Show full text]
  • Variants in Activators and Downstream Targets of ATM, Radiation Exposure, and Contralateral Breast Cancer Risk in the WECARE Study
    RESEARCH ARTICLE OFFICIAL JOURNAL Variants in Activators and Downstream Targets of ATM, Radiation Exposure, and Contralateral Breast Cancer Risk www.hgvs.org in the WECARE Study Jennifer D. Brooks,1∗ Sharon N. Teraoka,2 Anne S. Reiner,1 Jaya M. Satagopan,1 Leslie Bernstein,3 Duncan C. Thomas,4 Marinela Capanu,1 Marilyn Stovall,5 Susan A. Smith,5 Shan Wei,6 Roy E. Shore,7,8 John D. Boice, Jr.,9,10 Charles F. Lynch,11 Lene Mellemkjær,12 Kathleen E. Malone,13 Xiaolin Liang,1 the WECARE Study Collaborative Group,14 Robert W. Haile,4 Patrick Concannon,2 and Jonine L. Bernstein1 1Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York; 2Center for Public Health Genomics and the Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia; 3Division of Cancer Etiology, Department of Population Sciences, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, California; 4Department of Preventive Medicine, University of Southern California, Los Angeles, California; 5Department of Radiation Physics, M.D. Anderson Cancer Center, University of Texas, Houston, Texas; 6Benaroya Research Institute at Virginia Mason, Seattle, Washington; 7Department of Environmental Medicine, New York University, New York, New York; 8Radiation Effects Research Foundation, Hiroshima, Japan; 9International Epidemiology Institute, Rockville, Maryland; 10Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt School of Medicine, Nashville, Tennessee; 11Department of Epidemiology, University of Iowa, Iowa City, Iowa; 12Institute of Cancer Epidemiology, Danish Cancer Society, Copenhagen, Denmark; 13Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington; 14WECARE Study Collaborative Group members are listed in the Acknowledgments Communicated by Peter J.
    [Show full text]