Aquatic Macroinvertebrate Response to Shifts in Hydroclimatic

Total Page:16

File Type:pdf, Size:1020Kb

Aquatic Macroinvertebrate Response to Shifts in Hydroclimatic AQUATIC MACROINVERTEBRATE RESPONSE TO SHIFTS IN HYDROCLIMATIC VARIABILITY AND ECOHYDROLOGICAL CONDITIONS IN PRAIRIE-POTHOLE WETLANDS: IMPLICATIONS FOR BIODIVERSITY CONSERVATION A Dissertation Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Kyle Ian McLean In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Program: Environmental and Conservation Sciences August 2020 Fargo, North Dakota North Dakota State University Graduate School Title AQUATIC MACROINVERTEBRATE RESPONSE TO SHIFTS IN HYDROCLIMATIC VARIABILITY AND ECOHYDROLOGICAL CONDITIONS IN PRAIRIE POTHOLE WETLANDS: IMPLICATIONS FOR BIODIVERSITY CONSERVATION By Kyle I. McLean The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of DOCTOR OF PHILOSOPHY SUPERVISORY COMMITTEE: Jon N. Sweetman, PhD Chair David M. Mushet, PhD Craig A. Stockwell, PhD E. Shawn DeKeyser, PhD Approved: 8/14/2020 Craig A. Stockwell, PhD Date Program Chair ABSTRACT Ecosystem degradation and subsequent biodiversity loss has plagued freshwater environments globally. Wetland ecosystems, such as the depressional wetlands found in the Prairie Pothole Region of North America, have been heavily impacted by historical land-use change and continue to be vulnerable to continued landscape modifications and climate change. Using existing literature, I summarized how recent shifts in climate coupled with historic and contemporary landscape modifications have driven a shift in wetland ecohydrological variability. However, clear trends in biodiversity were often limited by the spatial and temporal resolution of published research. I used 24 years (1992–2015) of hydrologic and aquatic-macroinvertebrate data from a complex of 16 prairie-pothole wetlands located in North Dakota to relate wetland ecohydrological variability to biodiversity. I used structural equation modeling techniques to test a set of causal hypotheses linking a wetland’s hydrogeologic setting and local climate conditions (i.e., the Wetland Continuum) to changes in hydrology, water chemistry, and biology, with an emphasis on aquatic-macroinvertebrate community response. I then examined the temporal synchrony of aquatic-macroinvertebrate populations to examine the relative importance of landscape-scale controls (e.g., climate, metacommunity dynamics) and wetland-specific controls on community assembly. Using this information, I then quantified among-wetland and among- year changes in aquatic-macroinvertebrate beta diversity to investigate patterns of biotic homogenization. I found that spatial and temporal variability in aquatic-macroinvertebrate composition was strongly influenced by ponded-water dynamics. In addition to hydrologic controls, the high levels of temporal coherence of aquatic-macroinvertebrate compositional turnover supported the iii hypothesis that wetland biodiversity is also dependent on metacommunity dynamics. Analyses of spatio-temporal patterns in beta diversity did not reveal climate driven homogenization of aquatic-macroinvertebrate taxa among wetlands. However, shifts towards more permanently ponded water regimes corresponded with lasting shifts in aquatic-macroinvertebrate community composition. The communities of temporarily ponded wetlands maintained high levels of both temporal and spatial beta diversity. My collective findings indicate that the conservation of aquatic-macroinvertebrate diversity is dependent on the conservation of heterogenous, well- connected, wetland complexes. iv ACKNOWLEDGMENTS This work has greatly benefited from the support and previous efforts of numerous individuals and agencies. Without their support none of the work presented here would be possible. I thank North Dakota State University (NDSU) Graduate School, the Department of Biological Sciences, and the Environmental and Conservation Sciences (ECS) graduate program for the opportunity to pursue a PhD and for their continued support and assistance during my time as a graduate student. I especially thank my advisor Dr. Jon N. Sweetman for his guidance, patience, and willingness to accommodate my occasionally hectic schedule. I thank the US Geological Survey’s (USGS) Northern Prairie Wildlife Research Center (NPWRC) for their financial and logistical support, especially my acceptance into the USGS Pathways Internship Program. I am especially grateful for the years of guidance and mentorship given to me by my NPWRC supervisor, Dr. David M. Mushet. His direction has been critical in helping me navigate life as both a graduate student and USGS Ecologist. In addition to Dr. Mushet and Dr. Sweetman, I also thank Dr. Craig A. Stockwell and Dr. E. Shawn DeKeyser for serving on my graduate committee, challenging me to think about my research in different ways, and their willingness to help whenever needed. I additionally thank Dr. Stockwell for his support as ECS program director and his previous years of guidance as my master’s advisor. I am indebted to the efforts of George Swanson (deceased) and Dr. Ned Euliss, Jr. (USGS retired) for starting and maintaining the long-term data collection efforts at the Cottonwood Lake Study Area, which provided the source data for my analysis. The pioneering research of these scientists also provide a solid foundation for my dissertation work to expand upon. I also thank the numerous field technicians and ecologists who have worked hard over the years to collect v and catalogue the Study Area’s data assets. I especially thank Matt Solensky who manages, coordinates, and actively participates in the collecting, formatting, and cataloging of Cottonwood Lake Study Area data. Matt’s efforts have provided a great resource for me and numerous other scientists. I thank my colleagues at NPWRC for their support over the years and their part in making NPWRC a great place to work. I additionally thank Dr. Owen McKenna for the many brainstorming sessions over the last few years. I thank my current and former NDSU labmates Nate Williams, Kui Hu, and Christine Cornish for their support, scientific discussion, and familiarizing me with diatoms, pesticides, and many other once unfamiliar aspects of wetland ecology. I thank my friends and family for their love and support. I thank my mother Lilli McLean and father Scott McLean for always being there for me. I especially thank my wife Emily for her love, support, patience, and additional patience. Finally, I thank my daughter Cheltzie and son Ira for all the love and smiles they bring to my life every day. They have been and will continue to be that constant reminder to challenge myself to always do better. vi TABLE OF CONTENTS ABSTRACT ................................................................................................................................... iii ACKNOWLEDGMENTS .............................................................................................................. v LIST OF TABLES ......................................................................................................................... xi LIST OF FIGURES ..................................................................................................................... xiii LIST OF APPENDIX TABLES ................................................................................................ xviii LIST OF APPENDIX FIGURES.................................................................................................. xx CHAPTER 1. INTRODUCTION ................................................................................................... 1 1.1. Thesis Objectives ................................................................................................................. 2 1.2. Thesis Approach ................................................................................................................... 3 1.3. Thesis Structure .................................................................................................................... 5 1.4. References ............................................................................................................................ 7 CHAPTER 2. CLIMATE AND LAND USE DRIVEN ECOSYSTEM HOMOGENIZATION IN THE PRAIRIE POTHOLE REGION ................................................ 13 2.1. Abstract .............................................................................................................................. 13 2.2. Introduction ........................................................................................................................ 14 2.2.1. Prairie-pothole Wetland Ecosystem Variability and Function .................................... 16 2.3. Ecosystem Homogenization ............................................................................................... 19 2.3.1. Conceptual Model for Ecosystem Homogenization .................................................... 20 2.3.2. Mechanisms for Ecosystem Homogenization in the PPR ........................................... 21 2.4. Evidence for Ecosystem Homogenization ......................................................................... 23 2.5. Consequences of Ecosystem Homogenization ................................................................... 32 2.6. Potential Impacts of Continued Climate Change ............................................................... 33 2.7. Conclusions .......................................................................................................................
Recommended publications
  • Assessing the Importance of Potholes in the Canadian Prairie Region Under Future Climate Change Scenarios
    water Article Assessing the Importance of Potholes in the Canadian Prairie Region under Future Climate Change Scenarios Ameer Muhammad 1,*, Grey R. Evenson 2, Tricia A. Stadnyk 1 , Alaba Boluwade 3, Sanjeev Kumar Jha 4 and Paulin Coulibaly 5 1 Department of Civil Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; [email protected] 2 Department of Water Environment, Agricultural and Biological Engineering, The Ohio State University, Columbus, OH 43210, USA; [email protected] 3 Department of Soils, Water & Agricultural Engineering College of Agricultural & Marine Sciences Sultan Qaboos University, P.O. Box 34, Al-Khod 123, Oman; [email protected] 4 Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Bhauri Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India; [email protected] 5 Department of Civil Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada; [email protected] * Correspondence: [email protected] Received: 20 October 2018; Accepted: 12 November 2018; Published: 14 November 2018 Abstract: The Prairie Pothole Region (PPR) of Canada contains millions of small isolated wetlands and is unique to North America. The goods and services of these isolated wetlands are highly sensitive to variations in precipitation and temperature. We evaluated the flood proofing of isolated wetlands (pothole wetlands) under various climate change scenarios in the Upper Assiniboine River Basin (UARB) at Kamsack, a headwater catchment of the Lake of the Prairies in the Canadian portion of the PPR. A modified version of the Soil Water Assessment Tool (SWAT) model was utilized to simulate projected streamflow under the potential impacts of climate change, along with changes to the distribution of pothole wetlands.
    [Show full text]
  • Water Beetles
    Ireland Red List No. 1 Water beetles Ireland Red List No. 1: Water beetles G.N. Foster1, B.H. Nelson2 & Á. O Connor3 1 3 Eglinton Terrace, Ayr KA7 1JJ 2 Department of Natural Sciences, National Museums Northern Ireland 3 National Parks & Wildlife Service, Department of Environment, Heritage & Local Government Citation: Foster, G. N., Nelson, B. H. & O Connor, Á. (2009) Ireland Red List No. 1 – Water beetles. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland. Cover images from top: Dryops similaris (© Roy Anderson); Gyrinus urinator, Hygrotus decoratus, Berosus signaticollis & Platambus maculatus (all © Jonty Denton) Ireland Red List Series Editors: N. Kingston & F. Marnell © National Parks and Wildlife Service 2009 ISSN 2009‐2016 Red list of Irish Water beetles 2009 ____________________________ CONTENTS ACKNOWLEDGEMENTS .................................................................................................................................... 1 EXECUTIVE SUMMARY...................................................................................................................................... 2 INTRODUCTION................................................................................................................................................ 3 NOMENCLATURE AND THE IRISH CHECKLIST................................................................................................ 3 COVERAGE .......................................................................................................................................................
    [Show full text]
  • Crossness Sewage Treatment Works Nature Reserve & Southern Marsh Aquatic Invertebrate Survey
    Commissioned by Thames Water Utilities Limited Clearwater Court Vastern Road Reading RG1 8DB CROSSNESS SEWAGE TREATMENT WORKS NATURE RESERVE & SOUTHERN MARSH AQUATIC INVERTEBRATE SURVEY Report number: CPA18054 JULY 2019 Prepared by Colin Plant Associates (UK) Consultant Entomologists 30a Alexandra Rd London N8 0PP 1 1 INTRODUCTION, BACKGROUND AND METHODOLOGY 1.1 Introduction and background 1.1.1 On 30th May 2018 Colin Plant Associates (UK) were commissioned by Biodiversity Team Manager, Karen Sutton on behalf of Thames Water Utilities Ltd. to undertake aquatic invertebrate sampling at Crossness Sewage Treatment Works on Erith Marshes, Kent. This survey was to mirror the locations and methodology of a previous survey undertaken during autumn 2016 and spring 2017. Colin Plant Associates also undertook the aquatic invertebrate sampling of this previous survey. 1.1.2 The 2016-17 aquatic survey was commissioned with the primary objective of establishing a baseline aquatic invertebrate species inventory and to determine the quality of the aquatic habitats present across both the Nature Reserve and Southern Marsh areas of the Crossness Sewage Treatment Works. The surveyors were asked to sample at twenty-four, pre-selected sample station locations, twelve in each area. Aquatic Coleoptera and Heteroptera (beetles and true bugs) were selected as target groups. A report of the previous survey was submitted in Sept 2017 (Plant 2017). 1.1.3 During December 2017 a large-scale pollution event took place and untreated sewage escaped into a section of the Crossness Nature Reserve. The primary point of egress was Nature Reserve Sample Station 1 (NR1) though because of the connectivity of much of the waterbody network on the marsh other areas were affected.
    [Show full text]
  • Prairie Pothole Water Quality and Wildlife Program Iowa
    Prairie Pothole Water Quality and Wildlife Program Iowa Background pothole region. This new program may actually provide a more positive return on investment Eligibility Water-saturated portions of cropland fields for producers. can cause environmental issues and financial To be eligible for the losses for Iowa farmers in the Prairie Pothole Prairie Pothole Water Region. To help overcome these issues, Quality and Wildlife USDA’s Natural Resources Conservation Program, wetlands Service (NRCS) is offering the Prairie must be: Pothole Water Quality and Wildlife Program to farmers in this area. The new program (Levels 1, 2 and 3) provides farmers an opportunity to implement conservation practices on wet areas. • Cropped Wetlands (Levels 2 and 3) Pothole Region • Two acres in size The Prairie Pothole Region extends from or less as identified Canada south and east, and through parts on the National of Montana, North Dakota, South Dakota, Wetlands Inventory Minnesota and Iowa. In Iowa, many potholes New Opportunity are found in the Des Moines Lobe, an area The Prairie Pothole Water Quality and • Intact Hydrology that spans the north-central part of the state, Wildlife Program is a new funding opportunity ending around the Polk-Story county line and available through the Environmental Quality Monitoring the vast majority of potholes are farmed. Incentives Program (EQIP). When enrolled, producers are eligible for payment on cropped Examples of wetlands. monitoring include Prairie Pothole Farming but are not limited Water Quality to: photo points Standing water from farmed potholes are often How It Works with comparisons to drained through tiling, field or road ditching, In Iowa, farmers may choose from three levels.
    [Show full text]
  • During the Course of the Past Three Years, Collecting in Bri Tish
    SOME HETEROPT ER A NEW TO BRITISH COLUMBIA G . G. E. SCUDDER ' During the course of the past three torms a nd those from Penticton are years, collecting in Bri tish Co l urn bi a pale. Ashlock records A. eoriaeipennis and examination of existin g collec­ rrom California, Oregon, Washington, t,ions have produced a number of Nevada, Utah and New Mexico: Utah Heteroptera not recorded from the specimens have been taken on Juneus Province. Whilst a revised a nnotated baltieus. check-list of Heteroptera for British Columbia is in preparation, it is evi­ Kolenetrus plenus (Distant) . West­ ient that it will be some time before wick Lake, Cariboo, 1. viii. 1959 (G. G. this is complete ; it seems worthwhile E. S.) , a single brachypterous male. to record now some of the more inter­ This species was originally described esting new records. 1'rom Guatemala and Bueno ( 1946) records it from Massachusetts, Con­ Family PENTATOMIDAE necticut, New York and Arizona: (1950) it Sciocoris microphthalmus Flo r. Moore records from Quebec. BOllchie Lake, near Quesnel, 31. vii. The Westwick Lake specimen was 1959 (G. G. E. Scudder): Wycliffe, B. taken by searching among Juneus vi. 1961 (G. G. E. S.); Cranbrook, B. tufts at the edge of the lake. When vi. 1961 (G . G. E. S.); Sullivan River , fIrst captured, I mistook the specimen Big Bend Highway, 10. vi. 1961 (G. G . Jor an Aeompus, not only due to its E. S.) - abundant on ftower h eads of appearance, but also because this is a Yellow Dryas (Dryas .. drummondii frequent habitat for Aeompus in Bri­ Rich.); Westwick Lake, Ca riboo, 23 .
    [Show full text]
  • Synergistic Interaction of Climate and Land-Use Drivers Alter the Function of North American, Prairie-Pothole Wetlands
    sustainability Article Synergistic Interaction of Climate and Land-Use Drivers Alter the Function of North American, Prairie-Pothole Wetlands Owen P. McKenna 1,* , Samuel R. Kucia 1, David M. Mushet 1, Michael J. Anteau 1 and Mark T. Wiltermuth 2 1 U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND 58401, USA; [email protected] (S.R.K.); [email protected] (D.M.M.); [email protected] (M.J.A.) 2 U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI 54603, USA; [email protected] * Correspondence: [email protected]; Tel.: 1-701-253-5527 Received: 30 September 2019; Accepted: 19 November 2019; Published: 21 November 2019 Abstract: Prairie-pothole wetlands provide the critical habitat necessary for supporting North American migratory waterfowl populations. However, climate and land-use change threaten the sustainability of these wetland ecosystems. Very few experiments and analyses have been designed to investigate the relative impacts of climate and land-use change drivers, as well as the antagonistic or synergistic interactions among these drivers on ecosystem processes. Prairie-pothole wetland water budgets are highly dependent on atmospheric inputs and especially surface runoff, which makes them especially susceptible to changes in climate and land use. Here, we present the history of prairie-pothole climate and land-use change research and address the following research questions: 1) What are the relative effects of climate and land-use change on the sustainability of prairie-pothole wetlands? and 2) Do the effects of climate and land-use change interact differently under different climatic conditions? To address these research questions, we modeled 25 wetland basins (1949–2018) and measured the response of the lowest wetland in the watershed to wetland drainage and climate variability.
    [Show full text]
  • Amphibian Response to a Large-Scale Habitat Restoration in the Prairie Pothole Region
    JNAH ISSN 1094-2246 The Journal of North American Herpetology Volume 2016, Number 1 5 July 2016 jnah.cnah.org AMPHIBIAN RESPONSE TO A LARGE-SCALE HABITAT RESTORATION IN THE PRAIRIE POTHOLE REGION ROCHELLE M. STILES1, CHRIS H. LA RUE2, MICHAEL J. HAWKINS2, WILLIAM A. MITCHELL1, AND MICHAEL J. LANNOO3 1Department of Biology, Indiana State University, Terre Haute, Indiana, USA 2Iowa Department of Natural Resources, Spirit Lake, Iowa, USA 3Terre Haute Center for Medical Education, Indiana University School of Medicine, Terre Haute, Indiana, USA; Corresponding author. E-mail: [email protected] ABSTRACT: Over the next half-century, scientists anticipate that nearly one third of the currently recognized 7,450 amphibian species will become extinct. Many organizations have responded to the challenge of conserving amphibian biodiversity, some indirectly. Under the auspices of the Iowa Great Lakes Management Plan, the United States Fish and Wildlife Service, Department of Natural Resources, and their partners have been implementing habitat restoration efforts designed to protect water quality, provide recreational opportunities, and benefit wildlife at the regional level. With this program, over 130 wetlands have been created in the past 30 years on recently purchased public lands—one of the largest wetland restoration projects conducted in the Prairie Pothole Region of the Great Plains. While amphibians were not the main target of these restorations, we show that in response, 121 new breeding populations of native Northern Leop- ard Frogs (Lithobates pipiens; n = 80) and Eastern Tiger Salamanders (Ambystoma tigrinum; n = 41) have been established; in addition, we found 19 populations of non-native American Bullfrogs (L.
    [Show full text]
  • South Dakota Cooperative Fish & Wildlife Research Unit
    U.S. Geological Survey South Dakota Cooperative Fish & Wildlife Research Unit 2017 ANNUAL REPORT OCTOBER 2016 – SEPTEMBER 2017 IN COOPERATION WITH: South Dakota State University South Dakota Department of Game, Fish & Parks Wildlife Management Institute U.S. Fish and Wildlife Service South Dakota Cooperative Fish and Wildlife Research Unit FOREWORD The U.S. Geological Survey, South Dakota Cooperative Fish & Wildlife Research Unit would like to extend our thanks to alumni, cooperators, students and staff for another productive year at South Dakota State University. Unit scientists are fortunate to work with a talented group of graduate students, research associates and agency biologists to address wildlife research needs in our state and region. Since 1963, over 255 students have received graduate degrees working with Unit scientists at the SD Coop Unit. Research at the South Dakota Coop Unit, guided by our Coordinating Committee, is conducted primarily by graduate students studying a range of topics that include endangered species biology, wetland ecology, fisheries management, upland game, big game management, and non-game species. The Unit is housed in the Department of Natural Resource Management at South Dakota State University, where we share a large supply of field equipment and laboratory facilities. The USGS EROS Data Center and the GIS Center of Excellence (GISCE) at SDSU provide unique resources and collaborative opportunities for the South Dakota Coop Unit. In 2010, Professor Emeritus and Assistant Unit Leader Dr. Kenneth F. Higgins (retired) established the Kenneth F. Higgins Waterfowl Legacy Research Endowment, directed at supporting graduate student research that benefits wetland-dependent avian species. Contributions to the endowment can be made by contacting the SDSU Alumni Association (888.735.2257; [email protected]).
    [Show full text]
  • Buglife Ditches Report Vol1
    The ecological status of ditch systems An investigation into the current status of the aquatic invertebrate and plant communities of grazing marsh ditch systems in England and Wales Technical Report Volume 1 Summary of methods and major findings C.M. Drake N.F Stewart M.A. Palmer V.L. Kindemba September 2010 Buglife – The Invertebrate Conservation Trust 1 Little whirlpool ram’s-horn snail ( Anisus vorticulus ) © Roger Key This report should be cited as: Drake, C.M, Stewart, N.F., Palmer, M.A. & Kindemba, V. L. (2010) The ecological status of ditch systems: an investigation into the current status of the aquatic invertebrate and plant communities of grazing marsh ditch systems in England and Wales. Technical Report. Buglife – The Invertebrate Conservation Trust, Peterborough. ISBN: 1-904878-98-8 2 Contents Volume 1 Acknowledgements 5 Executive summary 6 1 Introduction 8 1.1 The national context 8 1.2 Previous relevant studies 8 1.3 The core project 9 1.4 Companion projects 10 2 Overview of methods 12 2.1 Site selection 12 2.2 Survey coverage 14 2.3 Field survey methods 17 2.4 Data storage 17 2.5 Classification and evaluation techniques 19 2.6 Repeat sampling of ditches in Somerset 19 2.7 Investigation of change over time 20 3 Botanical classification of ditches 21 3.1 Methods 21 3.2 Results 22 3.3 Explanatory environmental variables and vegetation characteristics 26 3.4 Comparison with previous ditch vegetation classifications 30 3.5 Affinities with the National Vegetation Classification 32 Botanical classification of ditches: key points
    [Show full text]
  • Foster, Warne, A
    ISSN 0966 2235 LATISSIMUS NEWSLETTER OF THE BALFOUR-BROWNE CLUB Number Forty Five February 2020 Liopterus haemorrhoidalis (Fab.) found in a heathland pool in Dorset, England by Peter Sutton. ADDRESSES The addresses of authors of articles and reviewed works are mainly given at the end of this issue of Latissimus. The address for other correspondence is: Professor G N Foster, 3 Eglinton Terrace, Ayr KA7 1JJ, Scotland, UK – [email protected] 1 LATISSIMUS 45 February 2020 TOWARDS A PHOTOGUIDE FOR THE LARGER BRITISH WATER BEETLES Peter Sutton For some time now, I have been working on a sequel to The Larger Water Beetles of the British Isles (Sutton 2008) in a bid to photograph all of the large and spectacular aquatic Coleoptera of Britain. The trials and tribulations of the search for these fascinating insects are described in a recent article in British Wildlife (Sutton 2017). This article also reveals that some of the medium-sized species of interest, such as those of the genus Rhantus have been included, as have species from other groups, including the raft spider, Dolomedes plantarius (Clerck) and a rare wasp, Chalcis sispes (L.), parasitic on soldierflies (Stratiomyidae), which collectively highlight the conservation importance of some of the very special habitats in which they may be found. Figure 1 Rhantus frontalis (Marsham), brackish pool, Canvey Island, South Essex February 2020 LATISSIMUS 45 2 The prospective book, therefore, covers a good number of medium-sized water beetles (7- 13 mm), from the Piles Beetle Liopterus haemorrhoidalis (Fab.) (6.3-7.9 mm) to the comparatively large Ilybius ater (12.5 -14.5 mm), known by some in Britain as the Mud Dweller.
    [Show full text]
  • Streamflow Decline in the Yellow River Along with Socioeconomic
    water Article Streamflow Decline in the Yellow River along with Socioeconomic Development: Past and Future Shi Lun Yang 1,*, Benwei Shi 1 , Jiqing Fan 1, Xiangxin Luo 2, Qing Tian 3, Haifei Yang 4, Shenliang Chen 1 , Yingxin Zhang 1, Saisai Zhang 5, Xuefa Shi 6 and Houjie Wang 7,8 1 State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; [email protected] (B.S.); [email protected] (J.F.); [email protected] (S.C.); [email protected] (Y.Z.) 2 Institute of Estuarine and Coastal Research, Sun Yat-sen University, Guangzhou 510275, China; [email protected] 3 School of Marine Science, Nanjing University of Information Science and Technology, Nanjing 210044, China; [email protected] 4 Survey Bureau of Hydrology and Water Resources of the Changjiang Estuary, Bureau of Hydrology, Changjiang Water Resources Commission, Shanghai 200136, China; [email protected] 5 Shanghai Waterway Engineering Design and consulting Co., Ltd., Shanghai 200120, China; [email protected] 6 Key Laboratory of Marine Sedimentology & Environmental Geology, First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China; xfshi@fio.org.cn 7 Key Laboratory of Submarine Geosciences and Prospecting Techniques, College of Marine Geosciences, Ocean University of China, 238 Songling Rd., Qingdao 266100, China; [email protected] 8 Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China * Correspondence: [email protected] Received: 28 January 2020; Accepted: 6 March 2020; Published: 14 March 2020 Abstract: Human society and ecosystems worldwide are increasinAagly threatened by water shortages.
    [Show full text]
  • Marine Insects
    UC San Diego Scripps Institution of Oceanography Technical Report Title Marine Insects Permalink https://escholarship.org/uc/item/1pm1485b Author Cheng, Lanna Publication Date 1976 eScholarship.org Powered by the California Digital Library University of California Marine Insects Edited by LannaCheng Scripps Institution of Oceanography, University of California, La Jolla, Calif. 92093, U.S.A. NORTH-HOLLANDPUBLISHINGCOMPANAY, AMSTERDAM- OXFORD AMERICANELSEVIERPUBLISHINGCOMPANY , NEWYORK © North-Holland Publishing Company - 1976 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,without the prior permission of the copyright owner. North-Holland ISBN: 0 7204 0581 5 American Elsevier ISBN: 0444 11213 8 PUBLISHERS: NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM NORTH-HOLLAND PUBLISHING COMPANY LTD. - OXFORD SOLEDISTRIBUTORSFORTHEU.S.A.ANDCANADA: AMERICAN ELSEVIER PUBLISHING COMPANY, INC . 52 VANDERBILT AVENUE, NEW YORK, N.Y. 10017 Library of Congress Cataloging in Publication Data Main entry under title: Marine insects. Includes indexes. 1. Insects, Marine. I. Cheng, Lanna. QL463.M25 595.700902 76-17123 ISBN 0-444-11213-8 Preface In a book of this kind, it would be difficult to achieve a uniform treatment for each of the groups of insects discussed. The contents of each chapter generally reflect the special interests of the contributors. Some have presented a detailed taxonomic review of the families concerned; some have referred the readers to standard taxonomic works, in view of the breadth and complexity of the subject concerned, and have concentrated on ecological or physiological aspects; others have chosen to review insects of a specific set of habitats.
    [Show full text]