The Structure of Pyrococcus Furiosus Glutamate Dehydrogenase Reveals

Total Page:16

File Type:pdf, Size:1020Kb

The Structure of Pyrococcus Furiosus Glutamate Dehydrogenase Reveals View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures KSP Yip', TJ Stillman', KL Britton1 , PJ Artymiuk', PJ Baker'1, SE Sedelnikova1, PC Engel' t, A Pasquo2 , R Chiaraluce2 , V Consalvi2, R Scandurra2 and DW Rice1* 1 The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, PO Box 594, Sheffield S10 2UH, UK and 2 Dipartimento di Scienze Biochimiche, Universita La Sapienza, Roma 00185, Italy Background: The hyperthermophile Pyrococcusfuriosus is glutamate dehydrogenase from the mesophile Clostridium one of the most thermostable organisms known, with symbiosum. an optimum growth temperature of 1000C. The proteins Conclusions: Comparison of the structures of these two from this organism display extreme thermostability. We enzymes has revealed one major difference: the structure have undertaken the structure determination of glutamate of the hyperthermophilic enzyme contains a striking series dehydrogenase from P. furiosus in order to gain further of ion-pair networks on the surface of the protein insights into the relationship between molecular structure subunits and buried at both interdomain and inter- and thermal stability. subunit interfaces. We propose that the formation of such Results: The structure of P. furiosus glutamate dehydro- extended networks may represent a major stabilizing genase, a homohexameric enzyme, has been determined feature associated with the adaptation of enzymes to at 2.2 A resolution and compared with the structure of extreme temperatures. Structure 15 November 1995, 3:1147-1158 Key words: glutamate dehydrogenase, hyperthermophile, Pyrococcus furiosus, thermal stability, X-ray crystallography Introduction metabolism and which catalyze the oxidative deamina- The Archaea represent a phylogenetically distinct evo- tion of L-glutamate to 2-oxoglutarate and ammonia lutionary domain whose members possess various extra- with the concomitant reduction of one molecule of ordinary properties, which include the ability of some NAD(P)+ . Biochemical studies on the GluDHs from a species to grow at temperatures in excess of 100 0 C. diverse range of sources have shown that the vast major- Common habitats of these remarkable microorganisms ity of these enzymes are based on a hexamer of identical are submarine hydrothermal areas and continental solfa- subunits [8]. Analysis of the amino acid sequence for Pf taric fields [1-3]. Not surprisingly, the proteins from GluDH has shown that it displays considerable similarity these organisms display extreme thermostability and the to other members of this enzyme family [12,13]. In analysis of their structures is expected to provide insights particular, Pf GluDH shows 34% sequence identity with into the molecular mechanisms which Nature employs the GluDH from the mesophile Clostridium symbiosum in order to achieve this. Understanding the basis of (Cs) [14], a molecule of known three-dimensional this thermostability may allow us to engineer proteins to structure [15,16], which has a half-life at 520 C of withstand not only high temperatures but also environ- approximately 20 min [17]. The striking difference in ments even more hostile to life but relevant to the thermostability combined with the sequence similarity conditions used in many industrial processes [4]. between these two enzymes encouraged us to solve the structure of Pf GluDH. In this paper we describe the The archaeon Pyrococcusfuriosus (Pf), is one of the most structure determination of this enzyme and the results thermostable organisms known, with an optimum growth of the comparative analysis with the structure of the temperature of 100°C [5]. The glutamate dehydrogenase GluDH from Cs. This has allowed us to highlight struc- (GluDH) from this organism accounts for up to 20% of tural features of the Pf enzyme which may contribute to the total cell protein and is extremely thermostable, with its superior thermal properties. a half-life at 1000C of 12 h [6,7]. The abundance of GluDH, coupled with the wealth of biochemical data on this enzyme from a diverse range of mesophilic organisms Results and discussion [8], has created considerable interest in it as a model Description of the Pyrococcus furiosus GluDH structure system for the analysis of thermostability [9-11]. Overall, the fold of the GluDH from Pf is very similar to that of the hexameric GluDH from Cs GluDHs are ubiquitous enzymes which occupy an [15,16], enabling us to undertake a detailed comparison important branch point between carbon and nitrogen of their molecular structures. The secondary-structure *Corresponding author. tPresent address: Department of Biochemistry, University of Dublin, Belfield, Dublin 4, Eire. © Current Biology Ltd ISSN 0969-2126 1147 1148 Structure 1995, Vol 3 No 11 assignments and structure-based sequence alignment for In previous studies, a decrease in the lengths of the loops Pf and Cs GluDHs are given in Figure 1. A schematic connecting elements of regular secondary structure has representation of the structure of a single subunit of Pf been suggested to be important for thermostability [18]. GluDH is shown in Figure 2. The structure of a single Comparisons between the two GluDHs show that there subunit of this enzyme consists of two domains sepa- are only two regions of major structural difference. rated by a deep cleft. Domain I is largely composed of Firstly, at the N terminus, the Pf GluDH is some 21 residues from the N-terminal portion of the polypep- residues shorter, corresponding to the loss of helix al in tide chain and is responsible for directing the self- Cs GluDH (15 residues) and the replacement of two assembly of the subunits into a hexamer with 32 short helices, a3 and o4, by a loop. The structural symmetry, whereas domain II contains the nucleotide- rearrangement caused by these changes does indeed lead binding site. The domain interface is dominated by to a more compact character for Pf GluDH in this region interactions involving four long x helices (a6, a12, a13 (Fig. 3a). However, the sequence at the N terminus of and ot14 in Pf GluDH). The active-site pocket is located GluDH is the most variable region across the enzyme in the cleft region and contains residues provided by family. Helix axl is also deleted from the structure of both domains. A description of the structure of the GluDH from the mesophilic organism Neurospora crassa hyperthermophilic Pf GluDH is presented below and is (TJS, DWR, et al., unpublished data) and its absence in compared with Cs GluDH. many other mesophilic species, such as Saccharomyces cere- visiae, is implied from sequence alignment of GluDHs Analysis of secondary structure, hydrogen bonding and loops [14,19,20]. It would therefore appear that this difference The overall similarity between the two enzymes is illus- is not necessarily related to thermostability. Furthermore, trated in Figure 1 and Table 1. The percentage of resi- the shortening of sequences at the N terminus has been dues in helical -or -strand conformations is virtually noted elsewhere and has led to the suggestion that this identical. Furthermore, it is clear from Table 1 that the feature may merely reflect phylogenetic differences [18]. number of main-chain hydrogen bonds, and the average number of protein-protein hydrogen bonds per residue, A second region of significant structural and sequence are very similar and thus the differences between these difference occurs between strands 13i and 3k (residues enzymes in these respects are also very subtle. 267-316 in the Cs enzyme), as shown in Figure 3b. In GDH(CS) 1 kydrvia.vekkyadEPEFVQtvvls..lgpvvdahpy..vALLMZPVIPRvEFRVP ZDDNGKVHVNTGYRVQFN82 GDH(Pf) 1 veQDPYEIvikqleraaqy ------ ieEALEFLPQRIVEVTIPV NDiDGSVKVFTGFRVQHN61 GDH(Cs) 83 GAIGPYKGGLRFAPSVNLSIMKFLGFEQAIKDSLTLPMGGAKGGSOFDPNGKSDREVMRFCQAPIFTELYRHIGPDIDVPAG164 GDH(Pf) 62 WARGPTKGGIRWHPEETLSTVALAA AVMDLPYGKGG IVDPLSDp RLAR YIRAIYDVISYEDIPAP 143 GDH(Cs ) 165 DLGGAREI GYMYGQYRKIVGGf-- yNGVLTGKARSFGGSLVRPEATGYGSVYYVEAVMID -tLVGKTVALAGGNVAW 243 GDH(Pf) 144 DVYTNPQIKAWEDEYETISRRktpaFGIITGK LSIGGSLGRIEATARGASYTIREAAXV ItLKGKTIAIQGYGNAGY 225 GDH(C) 244 GAAKLAE-LGAKAVTLSGPYGYIYDPEGittekiylUasLqrkvqdydkfgqVQFFpg POWIQVDXInPCATQN 324 GDH(Pf) 226 YLATIMSEdFGM VAVSDSKGGIYNP1 ----.dvYkWkneh---- vkWdfgATNIt.. .LLeLVDVILAPAAIZZ 299 Fig. 1. Alignment of the sequences for Clostridium symbiosum (Cs) and Pyro- coccus furiosus (Pf) GluDH based on the superposition of the respective Ca coordinates of each domain. Equivalent residues whose relative positions differ GDH(Cs) 325 DVDLZQAIV VKYIVAnTYYI EVA QNWAPSKA GVLVSGFUMSQNSI IrL8WTAEESVDMNHq 406 GDH(Pf) 300 VITI0XADNI ---kaKIWVANGPVTPEADEILFEK-qILIPDFLNAGGVTVSyFELQNIX CTGYY6IEEVRULD 377 by greater than 2 A are indicated by the use of lower-case letters. The secondary dr1 structural elements of the three-dimen- sional structure of the two GluDHs are shown with helices represented as cylinders and strands shown as arrows. GDH(Cs) 407 TDIHDGSAA..ryggynlVAANIVGFQKIADAO Gi-W 449 The residue numbers for the individual CDH(Pf) 378 TXAFYDVYNiakkni--h.RDAAYVVAVQRVYQAILaDRvkh 419 sequences are given at the beginning and end of each line. Positions of del- otirnc ,ro inrlirtrrl hv, - _LV.IU~I~_ 1 ................. ( ._1C .. i P. furiosus glutamate dehydrogenase Yip et a. 1149 Fig. 2. Stereo
Recommended publications
  • Methanothermus Fervidus Type Strain (V24S)
    UC Davis UC Davis Previously Published Works Title Complete genome sequence of Methanothermus fervidus type strain (V24S). Permalink https://escholarship.org/uc/item/9367m39j Journal Standards in genomic sciences, 3(3) ISSN 1944-3277 Authors Anderson, Iain Djao, Olivier Duplex Ngatchou Misra, Monica et al. Publication Date 2010-11-20 DOI 10.4056/sigs.1283367 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2010) 3:315-324 DOI:10.4056/sigs.1283367 Complete genome sequence of Methanothermus fervidus type strain (V24ST) Iain Anderson1, Olivier Duplex Ngatchou Djao2, Monica Misra1,3, Olga Chertkov1,3, Matt Nolan1, Susan Lucas1, Alla Lapidus1, Tijana Glavina Del Rio1, Hope Tice1, Jan-Fang Cheng1, Roxanne Tapia1,3, Cliff Han1,3, Lynne Goodwin1,3, Sam Pitluck1, Konstantinos Liolios1, Natalia Ivanova1, Konstantinos Mavromatis1, Natalia Mikhailova1, Amrita Pati1, Evelyne Brambilla4, Amy Chen5, Krishna Palaniappan5, Miriam Land1,6, Loren Hauser1,6, Yun-Juan Chang1,6, Cynthia D. Jeffries1,6, Johannes Sikorski4, Stefan Spring4, Manfred Rohde2, Konrad Eichinger7, Harald Huber7, Reinhard Wirth7, Markus Göker4, John C. Detter1, Tanja Woyke1, James Bristow1, Jonathan A. Eisen1,8, Victor Markowitz5, Philip Hugenholtz1, Hans-Peter Klenk4, and Nikos C. Kyrpides1* 1 DOE Joint Genome Institute, Walnut Creek, California, USA 2 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany 5 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA 6 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 7 University of Regensburg, Archaeenzentrum, Regensburg, Germany 8 University of California Davis Genome Center, Davis, California, USA *Corresponding author: Nikos C.
    [Show full text]
  • A Proposal to Rename the Hyperthermophile Pyrococcus Woesei As Pyrococcus Furiosus Subsp
    Archaea 1, 277–283 © 2004 Heron Publishing—Victoria, Canada A proposal to rename the hyperthermophile Pyrococcus woesei as Pyrococcus furiosus subsp. woesei WIROJNE KANOKSILAPATHAM,1 JUAN M. GONZÁLEZ,1,2 DENNIS L. MAEDER,1 1,3 1,4 JOCELYNE DIRUGGIERO and FRANK T. ROBB 1 Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, MD 21202, USA 2 Present address: IRNAS-CSIC, P.O. Box 1052, 41080 Sevilla, Spain 3 Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20274, USA 4 Corresponding author ([email protected]) Received April 8, 2004; accepted July 28, 2004; published online August 31, 2004 Summary Pyrococcus species are hyperthermophilic mem- relatively rapidly at temperatures above 90 °C and produce ° bers of the order Thermococcales, with optimal growth tem- H2S from elemental sulfur (S ) (Zillig et al. 1987). Two Pyro- peratures approaching 100 °C. All species grow heterotrophic- coccus species, P. furiosus (Fiala and Stetter 1986) and ° ally and produce H2 or, in the presence of elemental sulfur (S ), P. woesei (Zillig et al. 1987), were isolated from marine sedi- H2S. Pyrococcus woesei and P.furiosus were isolated from ma- ments at a Vulcano Island beach site in Italy. They have similar rine sediments at the same Vulcano Island beach site and share morphological and physiological characteristics: both species many morphological and physiological characteristics. We re- are cocci and move by means of a tuft of polar flagella. They port here that the rDNA operons of these strains have identical are heterotrophic and grow optimally at 95–100 °C, utilizing sequences, including their intergenic spacer regions and part of peptides as major carbon and nitrogen sources.
    [Show full text]
  • High-Fidelity Amplification Using a Thermostable DNA Polymerase Isolated from P’~Ococcusfuriosus
    Gette, 108 (1991) 1-6 8 1991 Elsevier Science Publishers B.V. All rights reserved. 0378-l 119/91/SO3.50 GENE 06172 High-fidelity amplification using a thermostable DNA polymerase isolated from P’~OCOCCUSfuriosus (Polymerase chain reaction; mutation frequency; lack; proofreading; 3’40-5 exonuclease; recombinant DNA; archaebacteria) Kelly S. Lundberg”, Dan D. Shoemaker*, Michael W.W. Adamsb, Jay M. Short”, Joseph A. Serge* and Eric J. Mathur” “ Division of Research and Development, Stratagene, Inc., La Jolla, CA 92037 (U.S.A.), and h Centerfor Metalloen~~vme Studies, University of Georgia, Athens, GA 30602 (U.S.A.) Tel. (404/542-2060 Received by M. Salas: 16 May 1991 Revised/Accepted: 11 August/l3 August 1991 Received at publishers: 17 September 1991 -.-- SUMMARY A thermostable DNA polymerase which possesses an associated 3’-to-5’ exonuclease (proofreading) activity has been isolated from the hyperthermophilic archaebacterium, Pyrococcus furiosus (Pfu). To test its fidelity, we have utilized a genetic assay that directly measures DNA polymerase fidelity in vitro during the polymerase chain reaction (PCR). Our results indicate that PCR performed with the DNA polymerase purified from P. furiosus yields amplification products containing less than 10s.~ of the number of mutations obtained from similar amplifications performed with Tuq DNA polymerase. The PCR fidelity assay is based on the ampli~cation and cloning of lad, lac0 and IacZor gene sequences (IcrcIOZa) using either ffil or 7ii~irqDNA poIymerase. Certain mutations within the lucf gene inactivate the Lac repressor protein and permit the expression of /?Gal. When plated on a chromogenic substrate, these Lacl - mutants exhibit a blue-plaque phenotype.
    [Show full text]
  • And Thermo-Adaptation in Hyperthermophilic Archaea: Identification of Compatible Solutes, Accumulation Profiles, and Biosynthetic Routes in Archaeoglobus Spp
    Universidade Nova de Lisboa Osmo- andInstituto thermo de Tecnologia-adaptation Química e Biológica in hyperthermophilic Archaea: Subtitle Subtitle Luís Pedro Gafeira Gonçalves Osmo- and thermo-adaptation in hyperthermophilic Archaea: identification of compatible solutes, accumulation profiles, and biosynthetic routes in Archaeoglobus spp. OH OH OH CDP c c c - CMP O O - PPi O3P P CTP O O O OH OH OH OH OH OH O- C C C O P O O P i Dissertation presented to obtain the Ph.D degree in BiochemistryO O- Instituto de Tecnologia Química e Biológica | Universidade Nova de LisboaP OH O O OH OH OH Oeiras, Luís Pedro Gafeira Gonçalves January, 2008 2008 Universidade Nova de Lisboa Instituto de Tecnologia Química e Biológica Osmo- and thermo-adaptation in hyperthermophilic Archaea: identification of compatible solutes, accumulation profiles, and biosynthetic routes in Archaeoglobus spp. This dissertation was presented to obtain a Ph. D. degree in Biochemistry at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa. By Luís Pedro Gafeira Gonçalves Supervised by Prof. Dr. Helena Santos Oeiras, January, 2008 Apoio financeiro da Fundação para a Ciência e Tecnologia (POCI 2010 – Formação Avançada para a Ciência – Medida IV.3) e FSE no âmbito do Quadro Comunitário de apoio, Bolsa de Doutoramento com a referência SFRH / BD / 5076 / 2001. ii ACKNOWNLEDGMENTS The work presented in this thesis, would not have been possible without the help, in terms of time and knowledge, of many people, to whom I am extremely grateful. Firstly and mostly, I need to thank my supervisor, Prof. Helena Santos, for her way of thinking science, her knowledge, her rigorous criticism, and her commitment to science.
    [Show full text]
  • The Crystal Structure of Pyrococcus Furiosus Ornithine Carbamoyltransferase Reveals a Key Role for Oligomerization in Enzyme Stability at Extremely High Temperatures
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 2801–2806, March 1998 Biochemistry The crystal structure of Pyrococcus furiosus ornithine carbamoyltransferase reveals a key role for oligomerization in enzyme stability at extremely high temperatures VINCENT VILLERET*, BERNARD CLANTIN†,CATHERINE TRICOT‡,CHRISTIANNE LEGRAIN‡,MARTINE ROOVERS§¶, i VICTOR STALON†,NICOLAS GLANSDORFF‡§¶, AND JOZEF VAN BEEUMEN* *Laboratorium voor Eiwitbiochemie en Eiwitengineering, Universiteit Gent, Ledeganckstraat 35, B-9000 Gent, Belgium; and †Laboratoire de Microbiologie, Universite´Libre de Bruxelles, ‡Institut de Recherches du Centre d’Enseignement et de Recherches des Industries Alimentaires, Commission de la Communaute´ Franc¸aise de Belgique, Re´gionBruxelles Capitale, §Laboratorium voor Erfelijkheidsleer en Microbiologie, Vrije Universiteit Brussel, and ¶Vlaams Interuniversitair Instituut voor Biotechnologie, avenue E. Gryson 1, B-1070 Brussels, Belgium Edited by Max F. Perutz, Medical Research Council, Cambridge, United Kingdom, and approved January 5, 1998 (received for review September 8, 1997) ABSTRACT The Pyrococcus furiosus (PF) ornithine car- lating agent (8). The involvement of such a thermolabile bamoyltransferase (OTCase; EC 2.1.3.3) is an extremely heat- intermediate in the metabolism of extreme thermophilic mi- stable enzyme that maintains about 50% of its activity after croorganisms raises the question of which mechanisms protect heat treatment for 60 min at 100°C. To understand the it from decomposition at elevated growth temperatures. Re- molecular basis of thermostability of this enzyme, we have cent results suggest that in Thermus aquaticus and Pyrococcus determined its three-dimensional structure at a resolution of furiosus (PF), CP is protected from the bulk of the aqueous 2.7 Å and compared it with the previously reported structures phase by channeling between carbamoylphosphate synthetase of OTCases isolated from mesophilic bacteria.
    [Show full text]
  • Counts Metabolic Yr10.Pdf
    Advanced Review Physiological, metabolic and biotechnological features of extremely thermophilic microorganisms James A. Counts,1 Benjamin M. Zeldes,1 Laura L. Lee,1 Christopher T. Straub,1 Michael W.W. Adams2 and Robert M. Kelly1* The current upper thermal limit for life as we know it is approximately 120C. Microorganisms that grow optimally at temperatures of 75C and above are usu- ally referred to as ‘extreme thermophiles’ and include both bacteria and archaea. For over a century, there has been great scientific curiosity in the basic tenets that support life in thermal biotopes on earth and potentially on other solar bodies. Extreme thermophiles can be aerobes, anaerobes, autotrophs, hetero- trophs, or chemolithotrophs, and are found in diverse environments including shallow marine fissures, deep sea hydrothermal vents, terrestrial hot springs— basically, anywhere there is hot water. Initial efforts to study extreme thermo- philes faced challenges with their isolation from difficult to access locales, pro- blems with their cultivation in laboratories, and lack of molecular tools. Fortunately, because of their relatively small genomes, many extreme thermo- philes were among the first organisms to be sequenced, thereby opening up the application of systems biology-based methods to probe their unique physiologi- cal, metabolic and biotechnological features. The bacterial genera Caldicellulosir- uptor, Thermotoga and Thermus, and the archaea belonging to the orders Thermococcales and Sulfolobales, are among the most studied extreme thermo- philes to date. The recent emergence of genetic tools for many of these organ- isms provides the opportunity to move beyond basic discovery and manipulation to biotechnologically relevant applications of metabolic engineering.
    [Show full text]
  • Ts2631 Endolysin from the Extremophilic Thermus Scotoductus Bacteriophage Vb Tsc2631 As an Antimicrobial Agent Against Gram-Negative Multidrug-Resistant Bacteria
    viruses Article Ts2631 Endolysin from the Extremophilic Thermus scotoductus Bacteriophage vB_Tsc2631 as an Antimicrobial Agent against Gram-Negative Multidrug-Resistant Bacteria Magdalena Plotka 1,* , Malgorzata Kapusta 2, Sebastian Dorawa 1, Anna-Karina Kaczorowska 3 and Tadeusz Kaczorowski 1,* 1 Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, 80-822 Gdansk, Poland 2 Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland 3 Collection of Plasmids and Microorganisms, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland * Correspondence: [email protected] (M.P.); [email protected] (T.K.); Tel.: +48-58-523-60-75 (M.P.); +48-58-523-60-67 (T.K.) Received: 5 June 2019; Accepted: 15 July 2019; Published: 18 July 2019 Abstract: Bacteria that thrive in extreme conditions and the bacteriophages that infect them are sources of valuable enzymes resistant to denaturation at high temperatures. Many of these heat-stable proteins are useful for biotechnological applications; nevertheless, none have been utilized as antibacterial agents. Here, we demonstrate the bactericidal potential of Ts2631 endolysin from the extremophilic bacteriophage vB_Tsc2631, which infects Thermus scotoductus, against the alarming multidrug-resistant clinical strains of Acinetobacter baumannii, Pseudomonas aeruginosa and pathogens from the Enterobacteriaceae family. A 2–3.7 log reduction in the bacterial load was observed in antibacterial tests against A. baumannii and P. aeruginosa after 1.5 h. The Ts2631 activity was further enhanced by ethylenediaminetetraacetic acid (EDTA), a metal ion chelator (4.2 log reduction in carbapenem-resistant A. baumannii) and, to a lesser extent, by malic acid and citric acid (2.9 and 3.3 log reductions, respectively).
    [Show full text]
  • Ana Maria Da Silva Esteves Dissertation Presented to Obtain The
    Insights into the biochemical strategies of adaptation to heat stress in the hyperthermophilic archaeon Pyrococcus furiosus Ana Maria da Silva Esteves Dissertation presented to obtain the Ph.D. degree in Biochemistry Instituto de Tecnologia Química e Biológica António Xavier | Universidade Nova de Lisboa Oeiras, February, 2015 Insights into the biochemical strategies of adaptation to heat stress in the hyperthermophilic archaeon Pyrococcus furiosus Ana Maria da Silva Esteves Supervisor: Professora Helena Santos Co-supervisor: Dr. Nuno Borges Dissertation presented to obtain the Ph.D degree in Biochemistry Instituto de Tecnologia Química e Biológica António Xavier | Universidade Nova de Lisboa Oeiras, February, 2015 From left to right: Prof. Volker Müller, Dr. Emmanouil Matzapetakis, Dr. Nuno Borges (Co-supervisor), Ana M. Esteves, Prof. Helena Santos (Supervisor), Prof. Pedro Moradas Ferreira, Prof. Beate Averhoff, Prof. Hermínia de Lencastre. Oeiras, 9th of February 2015. Apoio financeiro da Fundação para a Ciência e Tecnologia e do FSE no âmbito do Quadro Comunitário de apoio, Bolsa de Doutoramento com a referência SFRH/BD/61742/2009. In loving memory of my grandmother Elisa iv Acknowledgements First, I would like to thank Prof. Helena Santos, my supervisor, for accepting me as a Ph.D. student in her laboratory. Also, I want to express my appreciation to Prof. Helena Santos for being an excellent team leader, and for her constant effort to put together the resources and expertise her students need to carry out their projects with success. Her guidance, rigor, patience and enthusiasm for science definitely contributed to my development as a young scientist. I want to thank Dr.
    [Show full text]
  • BIOGEOCHEMICAL INTERACTIONS in FLOODED UNDERGROUND MINES Renee Schmidt Montana Tech
    Montana Tech Library Digital Commons @ Montana Tech Graduate Theses & Non-Theses Student Scholarship Summer 2017 BIOGEOCHEMICAL INTERACTIONS IN FLOODED UNDERGROUND MINES Renee Schmidt Montana Tech Follow this and additional works at: http://digitalcommons.mtech.edu/grad_rsch Part of the Geochemistry Commons Recommended Citation Schmidt, Renee, "BIOGEOCHEMICAL INTERACTIONS IN FLOODED UNDERGROUND MINES" (2017). Graduate Theses & Non-Theses. 129. http://digitalcommons.mtech.edu/grad_rsch/129 This Thesis is brought to you for free and open access by the Student Scholarship at Digital Commons @ Montana Tech. It has been accepted for inclusion in Graduate Theses & Non-Theses by an authorized administrator of Digital Commons @ Montana Tech. For more information, please contact [email protected]. BIOGEOCHEMICAL INTERACTIONS IN FLOODED UNDERGROUND MINES by Renée Schmidt A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geoscience: Geochemistry Option Montana Tech 2017 ii Abstract This study presents a biogeochemical analysis of microbial communities in flooded underground mines in Butte, Montana, USA. Samples were collected from nine mineshafts representing three distinct geochemical zones. These zones consist of the East, West, and Outer Camp mines. The East Camp mines, bordering the Berkeley Pit Superfund site, have the highest concentrations of dissolved metals and the most acidic pH values. Dissolved metal concentrations in the West Camp are one to three orders of magnitude lower than in the East Camp and have nearly neutral pH values. The Outer Camp mines have similar metal concentrations to the West Camp but are neutral to alkaline in pH. Sulfide levels also differ between the zones. In the East Camp, sulfide levels were below detection limits, whereas the West and Outer Camp mines had sulfide -6 -4 18 concentrations ranging from 10 to 10 mol/L.
    [Show full text]
  • Evidence for Associated Horizontal Gene Transfer in Pyrococcus Furiosus
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC J Appl Genet 50(4), 2009, pp. 421–430 Original article CRISPR elements in the Thermococcales: evidence for associated horizontal gene transfer in Pyrococcus furiosus M.C. Portillo, J.M. Gonzalez Institute for Natural Resources and Agrobiology, IRNAS-CSIC, Sevilla, Spain Abstract. The presence and distribution of CRISPR (clustered regularly interspaced short palindrome repeat)el- ements in the archaeal order Thermococcales were analyzed. Four complete genome sequences from the species Pyrococcus abyssi, P. furiosus, P. horikoshii, and Thermococcus kodakaraensis were studied. A fragment of the genome of P. furiosus was flanked by CRISPR elements upstream and by a single element downstream. The composition of the gene sequences contained in this genome fragment (positions 699013 to 855319) showed sig- nificant differences from the other genes in the P. furiosus genome. Differences were observed in the GC content at the third codon positions and the frequency of codon usage between the genes located in the analyzed fragment and the other genes in the P. furiosus genome. These results represent the first evidence suggesting that repeated CRISPR elements can be involved in horizontal gene transfer and genomic differentiation of hyperthermophilic Archaea. Keywords: CRISPR, gene transfer, genome, hyperthermophilic Archaea, Pyrococcus furiosus. Introduction spacers and repetitive elements modified the phage-resistance phenotype of bacteria Genomic regions consisting of tandem repeat (Barrangou et al. 2007). The incorporation of short DNA elements, typically of 21–47 base pairs (bp) fragments of foreign DNA into the genome of in length, separated by nonrepetitive spacer se- prokaryotes at CRISPR loci has been reported quences of approximately similar length, have (Bolotin et al.
    [Show full text]
  • Gene Cloning and Characterization of NADH Oxidase from Thermococcus Kodakarensis
    African Journal of Biotechnology Vol. 10(78), pp. 17916-17924, 7 December, 2011 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB11.989 ISSN 1684–5315 © 2011 Academic Journals Full Length Research Paper Gene cloning and characterization of NADH oxidase from Thermococcus kodakarensis Naeem Rashid 1*, Saira Hameed 2, Masood Ahmed Siddiqui 3 and Ikram-ul-Haq 2 1School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan. 2Institute of Industrial Biotechnology, GC University, Lahore, Pakistan. 3Department of Chemistry, University of Balochistan, Quetta, Pakistan. Accepted 12 October, 2011 The genome search of Thermococcus kodakarensis revealed three open reading frames, Tk0304, Tk1299 and Tk1392 annotated as nicotinamide adenine dinucleotide (NADH) oxidases. This study deals with cloning, and characterization of Tk0304. The gene, composed of 1320 nucleotides, encodes a protein of 439 amino acids with a molecular weight of 48 kDa. Expression of the gene in Escherichia coli resulted in the production of Tk0304 in soluble form which was purified by heat treatment at 80°C followed by ion exchange chromatography. Enzyme activity of Tk0304 was enhanced about 50% in the presence of 30 µM flavin adenine dinucleotide (FAD) when assay was conducted at 60°C. Surprisingly the activity of the enzyme was not affected by FAD when the assay was conducted at 75°C or at higher temperatures. Tk0304 displayed highest activity at pH 9 and 80°C. The enzyme was highly thermostable displaying 50% of the original activity even after an incubation of 80 min in boiling water. Among the potent inhibitors of NADH oxidases, silver nitrate and potassium cyanide did not show any significant inhibitory effect at a final concentration of 100 µM.
    [Show full text]
  • Tackling the Methanopyrus Kandleri Paradox Céline Brochier*, Patrick Forterre† and Simonetta Gribaldo†
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Open Access Research2004BrochieretVolume al. 5, Issue 3, Article R17 Archaeal phylogeny based on proteins of the transcription and comment translation machineries: tackling the Methanopyrus kandleri paradox Céline Brochier*, Patrick Forterre† and Simonetta Gribaldo† Addresses: *Equipe Phylogénomique, Université Aix-Marseille I, Centre Saint-Charles, 13331 Marseille Cedex 3, France. †Institut de Génétique et Microbiologie, CNRS UMR 8621, Université Paris-Sud, 91405 Orsay, France. reviews Correspondence: Céline Brochier. E-mail: [email protected] Published: 26 February 2004 Received: 14 November 2003 Revised: 5 January 2004 Genome Biology 2004, 5:R17 Accepted: 21 January 2004 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2004/5/3/R17 reports © 2004 Brochier et al.; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. ArchaealPhylogeneticsequencedusingrespectively). two phylogeny concatenated genomes, analysis based it of is datasetsthe now on Archaea proteinspossible consisting has ofto been thetest of transcription alternative mainly14 proteins established approach involv and translationed byes in 16S bytranscription rRNAusing machineries: largesequence andsequence 53comparison.tackling ribosomal datasets. the Methanopyrus Withproteins We theanalyzed accumulation(3,275 archaealkandleri and 6,377 of phyparadox comp positions,logenyletely Abstract deposited research Background: Phylogenetic analysis of the Archaea has been mainly established by 16S rRNA sequence comparison. With the accumulation of completely sequenced genomes, it is now possible to test alternative approaches by using large sequence datasets.
    [Show full text]