Role of the Cholesterol Metabolite 27-Hydroxycholesterol in Breast and Prostate Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Role of the Cholesterol Metabolite 27-Hydroxycholesterol in Breast and Prostate Cancer University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2016 Role Of The holesC terol Metabolite 27-Hydroxycholesterol In Breast And Prostate Cancer Shaneabbas S. Raza Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Raza, Shaneabbas S., "Role Of The hoC lesterol Metabolite 27-Hydroxycholesterol In Breast And Prostate Cancer" (2016). Theses and Dissertations. 2067. https://commons.und.edu/theses/2067 This Dissertation is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. ROLE OF THE CHOLESTEROL METABOLITE 27-HYDROXYCHOLESTEROL IN BREAST AND PROSTATE CANCER by Shaneabbas Shabbir Raza Bachelor of Arts, Minnesota State University Moorhead, 2012 A Dissertation Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Doctor of Philosophy Grand Forks, North Dakota August 2016 Copyright 2016 Shaneabbas Raza ii PERMISSION Title Role of cholesterol metabolite, 27-hydroxycholesterol in breast and prostate cancer Department Pharmacology, Physiology and Therapeutics Degree Doctor of Philosophy In presenting this dissertation in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my dissertation work or, in his absence, by the Chairperson of the department or the dean of the School of Graduate Studies. It is understood that any copying or publication or other use of this thesis dissertation or part thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of North Dakota in any scholarly use which may be made of any material in my dissertation. Shaneabbas Raza 07/10/2016 iv TABLE OF CONTENTS LIST OF FIGURES………………………………………………………………..…...vii LIST OF TABLES...………………………………………………………….…………ix ACKNOWLEDGEMENTS………………………………………………………………x GLOBAL ABSTRACT………………………………………………………….....……xii CHAPTER I. INTRODUCTION…………………………………………………..……1 Oxysterols: The Arcane Descendants of Cholesterol……….1 Breast Cancer……………………………………………………6 Prostate Cancer………………………………………………..11 II. ROLE OF 27-HYDROXYCHOLESTEROL IN BREAST CANCER…………………………………………………17 Abstract………...……………………………………………….17 Introduction……………………………………………………..18 Methods…………………………………………………………20 Results………………………………………………………….24 Discussion……………………………………………………...35 v III. ROLE OF 27-HYDROXYCHOLESTEROL IN PROSTATIC HYPERPLASIA……………………………………..42 Abstract………...……………………………………………….42 Introduction……………………………………………………..43 Methods…………………………………………………….…..45 Results………………………………………………………….50 Discussion……………………………………………………...61 IV. ROLE OF 27-HYDROXYCHOLESTEROL IN PROSTATE CANCER…..…………………………………………66 Abstract………...……………………………………………….66 Introduction……………………………………………………..67 Methods…………………………………………………………69 Results……..…………………………………………………...75 Discussion……………………………………………………...90 V. CONCLUDING REMARKS AND FUTURE DIRECTIONS……………………………………………….96 27-OHC and Breast Cancer…………………………………..96 27-OHC and Prostate Cancer………………………………..99 Future Directions……………………………………………..102 REFERENCES……………………………………………………………………….104 vi LIST OF FIGURES Figure Page 1. A diagram of the cholesterol biosynthetic pathway……………………….2 2. Structure of cholesterol and its main oxidation sites………………………4 3. A schematic diagram depicting the biosynthesis of the major oxysterols…………………………………………………………...5 4. A schematic diagram displaying the canonical progression of breast cancer pathology …………………………………………………………......7 5. A diagram depicting the classification of all breast cancers based on available immunohistochemistry marker profiles ………………………….9 6. A pictorial diagram depicting the difference and shared risks between BPH and PCa…………………………………………………………………13 7. Histopathology of Prostatic biopsy specimen……………………………..14 8. Stages of PCa and possible treatment regimens at various stages of the disease…………………………………………………………….…………..15 9. 27-OHC induces proliferation in breast cancer cell lines…………………25 10. 27-OHC reduces p53 activation…………………………………………….27 11. 27-OHC reduces p53 and increases MDM2 levels……………………….29 12. 27-OHC promotes p53-MDM2 interaction in MCF7 cells………………..31 13. 27-OHC induces proliferation via MDM2-mediated p53 inactivation…..34 14. Proposed mechanism of action of 27-OHC in ER+ breast cancer……..40 15. 27-OHC induces proliferation in prostate cells……………………………51 16. 27-OHC increases AR transcriptional activity…………………………….52 vii 17. 27-OHC increases PSA protein levels via AR……………………………54 18. 27-OHC-induced cell proliferation is AR dependent…………………….56 19. 27-OHC opposes docetaxel-induced apoptosis…………………………58 20. 27-OHC reduces docetaxel-induced caspase-3 cleavage……………..60 21. 27-OHC induces cell proliferation in PCa cells…………………………..77 22. 27-OHC stimulates cell proliferation via ER……………………………...79 23. 27-OHC upregulates ERβ expression…………………………………….81 24. 27-OHC induces cell proliferation via ERβ……………………………….83 25. 27-OHC reduces ECM invasion in PCa cells but not in non-tumorigenic cells…………………………………………………….85 26. 27-OHC differentially regulates ERβ2…………………………………….89 27. Schematic diagram of the role of 27-OHC in hormonal cancers……..101 viii LIST OF TABLES Table Page 1. Selected Genes analyzed with their corresponding pathways……………………………………………….…………………….73 2. Primers used in determining mRNA expression of significantly regulated genes……..……………………………………………………….74 3. Significantly regulated genes in absolute fold change…………………..87 ix ACKNOWLEDGEMENTS First off, I would like to thank my parents and siblings in Tanzania who not only made sacrifices for me but also inculcated in me the passion for knowledge and the determination to work hard. I owe a great deal of my success in graduate school to my mentor, Dr. Othman Ghribi. His influence on me goes well beyond his invaluable guidance, constant encouragement, constructive comments and immense motivation. I would like to thank him for not only the aforementioned deeds but also for inspiring me to be on the frontline of medicine. The lessons I learned from him transcend any amount of letters (titles) I earn, before and after my name. I would like to thank my committee members who not only were a great resource to me, but also abetted me in performing to my fullest potential. I would like to also thank my wife, Stephanie, for her unwavering support especially during difficult times in graduate school. x To my grandfather, the late Mohammed Hussein Raza My grandmother, the late Sughra Ali Nathoo My uncle, the late Vivian Almeida To my kids: “Nothing in life is to be feared, it is only to be understood. Now is the time to understand more, so that we may fear less” - Marie Curie (1867-1934) GLOBAL ABSTRACT The cholesterol metabolites known as oxysterols play an important role in maintaining cell homeostasis. They play vital roles in inflammation, cell growth, cell signaling, immunity, oxidative stress and aging. Following the discovery that the most abundant oxysterol, 27-hydroxycholesterol (27-OHC) is a Selective Estrogen Receptor Modulator (SERM), it has been implicated in hormonal cancers such as breast and uterine cancer. 27-OHC is a ligand of estrogen receptors (ER), a nuclear hormone receptor involved in cell growth and proliferation. The downstream events followed by 27-OHC-induced ER activation in the context of breast cancer is unknown. Also, the role of 27-OHC in prostate cancer is ill-defined given the involvement of ER in prostate cancer (PCa) and benign prostatic hyperplasia (BPH). Our studies delineate for the first time a potential cellular mechanism of action of 27-OHC in the context of ER+ breast cancer, whereby 27-OHC induced ER activation in ER+ MCF7 cells increases cell proliferation via perturbing the p53-MDM2 axis. We demonstrate that 27- OHC, through ER, exacerbated p53 inactivation via MDM2 resulting in an increase in cell proliferation in ER+ breast cancer cells. Next, we address the possibility of 27-OHC exacerbating prostate cancer cell proliferation. In the context of BPH and PCa, we show that 27-OHC not only increased cell proliferation in tumorigenic cell lines, LNCaP and PC3 but also in the non- tumorigenic cells, RWPE-1. We further demonstrate that 27-OHC- induced cell xii proliferation in prostate cells is specifically through ERβ. Given the tissue dependent selective ER modulation of 27-OHC, our novel findings suggest that 27-OHC activates ER signaling in the prostate. Altogether, our findings elucidate and establish the novel role and cellular mechanism of action of the oxysterol 27- OHC in the context of breast and prostate cancer. In the interest of discovering new therapeutic avenues for breast and prostate cancers, our work may aid in the development of novel therapies that could mitigate/halt/alleviate the progression of ER+ breast cancers and prostate cancers. xiii CHAPTER I INTRODUCTION Oxysterols: The Arcane Derivatives of Cholesterol Cholesterol is a critical component of the cell membranes of the cells. It helps to preserve the fluidity of the cell membranes which is vital to
Recommended publications
  • 1714 Gene Comprehensive Cancer Panel Enriched for Clinically Actionable Genes with Additional Biologically Relevant Genes 400-500X Average Coverage on Tumor
    xO GENE PANEL 1714 gene comprehensive cancer panel enriched for clinically actionable genes with additional biologically relevant genes 400-500x average coverage on tumor Genes A-C Genes D-F Genes G-I Genes J-L AATK ATAD2B BTG1 CDH7 CREM DACH1 EPHA1 FES G6PC3 HGF IL18RAP JADE1 LMO1 ABCA1 ATF1 BTG2 CDK1 CRHR1 DACH2 EPHA2 FEV G6PD HIF1A IL1R1 JAK1 LMO2 ABCB1 ATM BTG3 CDK10 CRK DAXX EPHA3 FGF1 GAB1 HIF1AN IL1R2 JAK2 LMO7 ABCB11 ATR BTK CDK11A CRKL DBH EPHA4 FGF10 GAB2 HIST1H1E IL1RAP JAK3 LMTK2 ABCB4 ATRX BTRC CDK11B CRLF2 DCC EPHA5 FGF11 GABPA HIST1H3B IL20RA JARID2 LMTK3 ABCC1 AURKA BUB1 CDK12 CRTC1 DCUN1D1 EPHA6 FGF12 GALNT12 HIST1H4E IL20RB JAZF1 LPHN2 ABCC2 AURKB BUB1B CDK13 CRTC2 DCUN1D2 EPHA7 FGF13 GATA1 HLA-A IL21R JMJD1C LPHN3 ABCG1 AURKC BUB3 CDK14 CRTC3 DDB2 EPHA8 FGF14 GATA2 HLA-B IL22RA1 JMJD4 LPP ABCG2 AXIN1 C11orf30 CDK15 CSF1 DDIT3 EPHB1 FGF16 GATA3 HLF IL22RA2 JMJD6 LRP1B ABI1 AXIN2 CACNA1C CDK16 CSF1R DDR1 EPHB2 FGF17 GATA5 HLTF IL23R JMJD7 LRP5 ABL1 AXL CACNA1S CDK17 CSF2RA DDR2 EPHB3 FGF18 GATA6 HMGA1 IL2RA JMJD8 LRP6 ABL2 B2M CACNB2 CDK18 CSF2RB DDX3X EPHB4 FGF19 GDNF HMGA2 IL2RB JUN LRRK2 ACE BABAM1 CADM2 CDK19 CSF3R DDX5 EPHB6 FGF2 GFI1 HMGCR IL2RG JUNB LSM1 ACSL6 BACH1 CALR CDK2 CSK DDX6 EPOR FGF20 GFI1B HNF1A IL3 JUND LTK ACTA2 BACH2 CAMTA1 CDK20 CSNK1D DEK ERBB2 FGF21 GFRA4 HNF1B IL3RA JUP LYL1 ACTC1 BAG4 CAPRIN2 CDK3 CSNK1E DHFR ERBB3 FGF22 GGCX HNRNPA3 IL4R KAT2A LYN ACVR1 BAI3 CARD10 CDK4 CTCF DHH ERBB4 FGF23 GHR HOXA10 IL5RA KAT2B LZTR1 ACVR1B BAP1 CARD11 CDK5 CTCFL DIAPH1 ERCC1 FGF3 GID4 HOXA11 IL6R KAT5 ACVR2A
    [Show full text]
  • Mirc11 Disrupts Inflammatory but Not Cytotoxic Responses of NK Cells
    Published OnlineFirst September 12, 2019; DOI: 10.1158/2326-6066.CIR-18-0934 Research Article Cancer Immunology Research Mirc11 Disrupts Inflammatory but Not Cytotoxic Responses of NK Cells Arash Nanbakhsh1, Anupallavi Srinivasamani1, Sandra Holzhauer2, Matthew J. Riese2,3,4, Yongwei Zheng5, Demin Wang4,5, Robert Burns6, Michael H. Reimer7,8, Sridhar Rao7,8, Angela Lemke9,10, Shirng-Wern Tsaih9,10, Michael J. Flister9,10, Shunhua Lao1,11, Richard Dahl12, Monica S. Thakar1,11, and Subramaniam Malarkannan1,3,4,9,11 Abstract Natural killer (NK) cells generate proinflammatory cyto- g–dependent clearance of Listeria monocytogenes or B16F10 kines that are required to contain infections and tumor melanoma in vivo by NK cells. These functional changes growth. However, the posttranscriptional mechanisms that resulted from Mirc11 silencing ubiquitin modifiers A20, regulate NK cell functions are not fully understood. Here, we Cbl-b, and Itch, allowing TRAF6-dependent activation of define the role of the microRNA cluster known as Mirc11 NF-kB and AP-1. Lack of Mirc11 caused increased translation (which includes miRNA-23a, miRNA-24a, and miRNA-27a) of A20, Cbl-b, and Itch proteins, resulting in deubiquityla- in NK cell–mediated proinflammatory responses. Absence tion of scaffolding K63 and addition of degradative K48 of Mirc11 did not alter the development or the antitumor moieties on TRAF6. Collectively, our results describe a func- cytotoxicity of NK cells. However, loss of Mirc11 reduced tion of Mirc11 that regulates generation of proinflammatory generation of proinflammatory factors in vitro and interferon- cytokines from effector lymphocytes. Introduction TRAF2 and TRAF6 promote K63-linked polyubiquitination that is required for subcellular localization of the substrates (20), Natural killer (NK) cells generate proinflammatory factors and and subsequent activation of NF-kB (21) and AP-1 (22).
    [Show full text]
  • Quantitative SUMO Proteomics Reveals the Modulation of Several
    www.nature.com/scientificreports OPEN Quantitative SUMO proteomics reveals the modulation of several PML nuclear body associated Received: 10 October 2017 Accepted: 28 March 2018 proteins and an anti-senescence Published: xx xx xxxx function of UBC9 Francis P. McManus1, Véronique Bourdeau2, Mariana Acevedo2, Stéphane Lopes-Paciencia2, Lian Mignacca2, Frédéric Lamoliatte1,3, John W. Rojas Pino2, Gerardo Ferbeyre2 & Pierre Thibault1,3 Several regulators of SUMOylation have been previously linked to senescence but most targets of this modifcation in senescent cells remain unidentifed. Using a two-step purifcation of a modifed SUMO3, we profled the SUMO proteome of senescent cells in a site-specifc manner. We identifed 25 SUMO sites on 23 proteins that were signifcantly regulated during senescence. Of note, most of these proteins were PML nuclear body (PML-NB) associated, which correlates with the increased number and size of PML-NBs observed in senescent cells. Interestingly, the sole SUMO E2 enzyme, UBC9, was more SUMOylated during senescence on its Lys-49. Functional studies of a UBC9 mutant at Lys-49 showed a decreased association to PML-NBs and the loss of UBC9’s ability to delay senescence. We thus propose both pro- and anti-senescence functions of protein SUMOylation. Many cellular mechanisms of defense have evolved to reduce the onset of tumors and potential cancer develop- ment. One such mechanism is cellular senescence where cells undergo cell cycle arrest in response to various stressors1,2. Multiple triggers for the onset of senescence have been documented. While replicative senescence is primarily caused in response to telomere shortening3,4, senescence can also be triggered early by a number of exogenous factors including DNA damage, elevated levels of reactive oxygen species (ROS), high cytokine signa- ling, and constitutively-active oncogenes (such as H-RAS-G12V)5,6.
    [Show full text]
  • Gene Expression in Cbx1-/- and Cbx1+/+ Mouse Brains and Placentas
    Gene Expression inCbx1-/- and Cbx1+/+ Mouse Brains and Placentas Lin Wang Degree project inapplied biotechnology, Master ofScience (2years), 2009 Examensarbete itillämpad bioteknik 30 hp tillmasterexamen, 2009 Biology Education Centre and Sub-department ofDevelopment &Genetics, Uppsala University Supervisor: Reinald Fundele 1 List of abbreviation Actβ actin, beta AD Alzheimer's disease Anxa2 annexin A2 Ascl2 achaete‐scute complex homolog 2 B6 C57BL/6 CAST CAST/EiJ Cbx1/3/5 chromobox homolog 1/3/5 CD chromodomain Cdkn1c cyclin‐dependent kinase inhibitor 1C CSD chromoshadow domain EST expressed sequence tag FTLD‐U frontotemporal lobar degeneration with ubiquitinated inclusions H19 H19 fetal liver mRNA H3K9Me2/H3K9Me3 di‐ or trimethylated lysine 9 of histone H3 HMTase histone methyltransferase HP1 heterochromatin protein‐1 IC2 imprinting center 2 Igf2 insulin‐like growth factor 2 IHC Immunohistochemistry Kcnq1ot1 KCNQ1 overlapping transcript 1 LOI loss‐of‐imprinting MGI Mouse Genome Informatics M/M;C/M;M/C;S/M mating between female ×male mice (M stands for C57BL/6; C stands for CAST/EiJ; S stands for M. spretus) MRC Medical Research Council MSP M. spretus Msuit mouse specific ubiquitously imprinted transcript 1 NCBI National Center for Biotechnology Information Nnat Neuronatin Npc2 Niemann Pick type C2 NTF3 neurotrophin 3 Peg3 paternally expressed 3 PEV position‐effect variegation polyQ poly‐glutamine Ptov1 prostate tumor over expressed gene 1 qRT‐PCR quantitative real time PCR Rasgrf1 RAS protein‐specific guanine nucleotide‐releasing factor 1 RFLP restriction fragment length polymorphism SNP single‐nucleotide polymorphism Snrpn small nuclear ribonucleoprotein N Ube2K ubiquitin‐conjugating enzyme E2K9 Usp29 ubiquitin specific peptidase 29 2 Summary Heterochromatin protein‐1 (HP1) is a nonhistone chromosomal protein that enables heterochromatin formation and gene silencing.
    [Show full text]
  • FOXA1 Directs H3K4 Monomethylation at Enhancers Via Recruitment of the Methyltransferase MLL3
    bioRxiv preprint doi: https://doi.org/10.1101/069450; this version posted August 16, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. ! FOXA1 directs H3K4 monomethylation at enhancers via recruitment of the methyltransferase MLL3 Kamila M. Jozwik1, Igor Chernukhin1, Aurelien A. Serandour1,2 , Sankari Nagarajan1, 3 and Jason S. Carroll1, 3 1Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, UK, CB2 ORE 2European Molecular Biology Laboratory, Genome Biology Unit, 69117, Heidelberg, Germany 3To whom correspondence should be addressed: [email protected] or [email protected] Keywords: breast cancer, enhancers, H3K4me1, FOXA1, MLL3 ! 1! bioRxiv preprint doi: https://doi.org/10.1101/069450; this version posted August 16, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. ABSTRACT FOXA1 is a pioneer factor that is important in hormone dependent cancer cells to stabilise nuclear receptors, such as estrogen receptor (ER) to chromatin. FOXA1 binds to enhancers regions that are enriched in H3K4mono- and dimethylation (H3K4me1, H3K4me2) histone marks and evidence suggests that these marks are requisite events for FOXA1 to associate with enhancers to initate subsequent gene expression events. However, exogenous expression of FOXA1 has been shown to induce H3K4me1 and H3K4me2 signal at enhancer elements and the order of events and the functional importance of these events is not clear.
    [Show full text]
  • The Cholesterol Metabolite 27-Hydroxycholesterol Stimulates
    Raza et al. Cancer Cell Int (2017) 17:52 DOI 10.1186/s12935-017-0422-x Cancer Cell International PRIMARY RESEARCH Open Access The cholesterol metabolite 27‑hydroxycholesterol stimulates cell proliferation via ERβ in prostate cancer cells Shaneabbas Raza1, Megan Meyer1, Casey Goodyear1, Kimberly D. P. Hammer2, Bin Guo3 and Othman Ghribi1* Abstract Background: For every six men, one will be diagnosed with prostate cancer (PCa) in their lifetime. Estrogen recep- tors (ERs) are known to play a role in prostate carcinogenesis. However, it is unclear whether the estrogenic efects are mediated by estrogen receptor α (ERα) or estrogen receptor β (ERβ). Although it is speculated that ERα is associated with harmful efects on PCa, the role of ERβ in PCa is still ill-defned. The cholesterol oxidized metabolite 27-hydroxy- cholesterol (27-OHC) has been found to bind to ERs and act as a selective ER modulator (SERM). Increased 27-OHC levels are found in individuals with hypercholesterolemia, a condition that is suggested to be a risk factor for PCa. Methods: In the present study, we determined the extent to which 27-OHC causes deleterious efects in the non- tumorigenic RWPE-1, the low tumorigenic LNCaP, and the highly tumorigenic PC3 prostate cancer cells. We con- ducted cell metabolic activity and proliferation assays using MTS and CyQUANT dyes, protein expression analyses via immunoblots and gene expression analyses via RT-PCR. Additionally, immunocytochemistry and invasion assays were performed to analyze intracellular protein distribution and quantify transepithelial cell motility. Results: We found that incubation of LNCaP and PC3 cells with 27-OHC signifcantly increased cell proliferation.
    [Show full text]
  • Xo PANEL DNA GENE LIST
    xO PANEL DNA GENE LIST ~1700 gene comprehensive cancer panel enriched for clinically actionable genes with additional biologically relevant genes (at 400 -500x average coverage on tumor) Genes A-C Genes D-F Genes G-I Genes J-L AATK ATAD2B BTG1 CDH7 CREM DACH1 EPHA1 FES G6PC3 HGF IL18RAP JADE1 LMO1 ABCA1 ATF1 BTG2 CDK1 CRHR1 DACH2 EPHA2 FEV G6PD HIF1A IL1R1 JAK1 LMO2 ABCB1 ATM BTG3 CDK10 CRK DAXX EPHA3 FGF1 GAB1 HIF1AN IL1R2 JAK2 LMO7 ABCB11 ATR BTK CDK11A CRKL DBH EPHA4 FGF10 GAB2 HIST1H1E IL1RAP JAK3 LMTK2 ABCB4 ATRX BTRC CDK11B CRLF2 DCC EPHA5 FGF11 GABPA HIST1H3B IL20RA JARID2 LMTK3 ABCC1 AURKA BUB1 CDK12 CRTC1 DCUN1D1 EPHA6 FGF12 GALNT12 HIST1H4E IL20RB JAZF1 LPHN2 ABCC2 AURKB BUB1B CDK13 CRTC2 DCUN1D2 EPHA7 FGF13 GATA1 HLA-A IL21R JMJD1C LPHN3 ABCG1 AURKC BUB3 CDK14 CRTC3 DDB2 EPHA8 FGF14 GATA2 HLA-B IL22RA1 JMJD4 LPP ABCG2 AXIN1 C11orf30 CDK15 CSF1 DDIT3 EPHB1 FGF16 GATA3 HLF IL22RA2 JMJD6 LRP1B ABI1 AXIN2 CACNA1C CDK16 CSF1R DDR1 EPHB2 FGF17 GATA5 HLTF IL23R JMJD7 LRP5 ABL1 AXL CACNA1S CDK17 CSF2RA DDR2 EPHB3 FGF18 GATA6 HMGA1 IL2RA JMJD8 LRP6 ABL2 B2M CACNB2 CDK18 CSF2RB DDX3X EPHB4 FGF19 GDNF HMGA2 IL2RB JUN LRRK2 ACE BABAM1 CADM2 CDK19 CSF3R DDX5 EPHB6 FGF2 GFI1 HMGCR IL2RG JUNB LSM1 ACSL6 BACH1 CALR CDK2 CSK DDX6 EPOR FGF20 GFI1B HNF1A IL3 JUND LTK ACTA2 BACH2 CAMTA1 CDK20 CSNK1D DEK ERBB2 FGF21 GFRA4 HNF1B IL3RA JUP LYL1 ACTC1 BAG4 CAPRIN2 CDK3 CSNK1E DHFR ERBB3 FGF22 GGCX HNRNPA3 IL4R KAT2A LYN ACVR1 BAI3 CARD10 CDK4 CTCF DHH ERBB4 FGF23 GHR HOXA10 IL5RA KAT2B LZTR1 ACVR1B BAP1 CARD11 CDK5 CTCFL DIAPH1 ERCC1 FGF3 GID4 HOXA11
    [Show full text]
  • Bioinformatic Analysis of the Expression and Prognostic Value Of
    www.nature.com/scientificreports OPEN Bioinformatic analysis of the expression and prognostic value of chromobox family proteins in human breast cancer Xiaomin Li1,3, Junhe Gou2, Hongjiang Li3 & Xiaoqin Yang3* Chromobox (CBX) family proteins control chromatin structure and gene expression. However, the functions of CBXs in cancer progression, especially breast cancer, are inadequately studied. We assessed the signifcance of eight CBX proteins in breast cancer. We performed immunohistochemistry and bioinformatic analysis of data from Oncomine, GEPIA Dataset, bcGenExMiner, Kaplan–Meier Plotter, and cBioPortal. We compared mRNA and protein expression levels of eight CBX proteins between breast tumor and normal tissue. The expression diference of CBX7 was the greatest, and CBX7 was downregulated in breast cancer tissues compared with normal breast tissues. The expression of CBX2 was strongly associated with tumor stage. We further analyzed the association between the eight CBX proteins and the following clinicopathological features: menopause age, estrogen receptor (ER), progesterone receptor (PR) and HER-2 receptor status, nodal status, P53 status, triple-negative status, and the Scarf–Bloom–Richardson grade (SBR) and Nottingham prognostic index (NPI). Survival analysis in the Kaplan–Meier Plotter database showed that the eight CBX proteins were signifcantly associated with prognosis. Moreover, CBX genes in breast cancer patients had a high net alteration frequency of 57%. There were signifcant co-expression correlations between the following CBX protein pairs: CBX4 positively with CBX8, CBX6 positively with CBX7, and CBX2 negatively with CBX7. We also analyzed the Gene Ontology enrichment of the CBX proteins, including biological processes, cellular components, and molecular functions. CBX 1/2/3/5/8 may be oncogenes for breast cancer, whereas CBX 6 and 7 may be tumor suppressors for breast cancer.
    [Show full text]
  • SUPPORTING INFORMATION for Regulation of Gene Expression By
    SUPPORTING INFORMATION for Regulation of gene expression by the BLM helicase correlates with the presence of G4 motifs Giang Huong Nguyen1,2, Weiliang Tang3, Ana I. Robles1, Richard P. Beyer4, Lucas T. Gray5, Judith A. Welsh1, Aaron J. Schetter1, Kensuke Kumamoto1,6, Xin Wei Wang1, Ian D. Hickson2,7, Nancy Maizels5, 3,8 1 Raymond J. Monnat, Jr. and Curtis C. Harris 1Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, U.S.A; 2Department of Medical Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, U.K.; 3Department of Pathology, University of Washington, Seattle, WA U.S.A.; 4 Center for Ecogenetics and Environmental Health, University of Washington, Seattle, WA U.S.A.; 5Department of Immunology and Department of Biochemistry, University of Washington, Seattle, WA U.S.A.; 6Department of Organ Regulatory Surgery, Fukushima Medical University, Fukushima, Japan; 7Cellular and Molecular Medicine, Nordea Center for Healthy Aging, University of Copenhagen, Denmark; 8Department of Genome Sciences, University of WA, Seattle, WA U.S.A. SI Index: Supporting Information for this manuscript includes the following 19 items. A more detailed Materials and Methods section is followed by 18 Tables and Figures in order of their appearance in the manuscript text: 1) SI Materials and Methods 2) Figure S1. Study design and experimental workflow. 3) Figure S2. Immunoblot verification of BLM depletion from human fibroblasts. 4) Figure S3. PCA of mRNA and miRNA expression in BLM-depleted human fibroblasts. 5) Figure S4. qPCR confirmation of mRNA array data. 6) Table S1. BS patient and control detail.
    [Show full text]
  • A Genomic View of Estrogen Actions in Human Breast Cancer Cells by Expression Profiling of the Hormone-Responsive Transcriptome
    719 A genomic view of estrogen actions in human breast cancer cells by expression profiling of the hormone-responsive transcriptome Luigi Cicatiello1, Claudio Scafoglio1, Lucia Altucci1, Massimo Cancemi1, Guido Natoli1, Angelo Facchiano2, Giovanni Iazzetti3, Raffaele Calogero4, Nicoletta Biglia6, Michele De Bortoli5,7, Christian Sfiligoi7, Piero Sismondi6,7, Francesco Bresciani1 and Alessandro Weisz1 1Dipartimento di Patologia generale, Seconda Università degli Studi di Napoli, Vico L. De Crecchio 7, 80138 Napoli, Italy 2Istituto di Scienze dell’Alimentazione del Consiglio Nazionale delle Ricerche, Avellino, Italy 3Dipartimento di Genetica, Biologia generale e molecolare, Università di Napoli ‘Federico II’, Napoli, Italy 4Dipartimento di Scienze cliniche e biologiche, Università degli Studi di Torino, Torino, Italy 5Dipartimento di Scienze oncologiche, Università degli Studi di Torino, Torino, Italy 6Dipartimento di Discipline ostetriche e ginecologiche, Università degli Studi di Torino, Torino, Italy 7Laboratorio di Ginecologia oncologica, Istituto per la Ricerca e la Cura del Cancro, Candiolo, Italy (Requests for offprints should be addressed to A Weisz; Email: [email protected]) Abstract Estrogen controls key cellular functions of responsive cells including the ability to survive, replicate, communicate and adapt to the extracellular milieu. Changes in the expression of 8400 genes were monitored here by cDNA microarray analysis during the first 32 h of human breast cancer (BC) ZR-75·1 cell stimulation with a mitogenic dose of 17-estradiol, a timing which corresponds to completion of a full mitotic cycle in hormone-stimulated cells. Hierarchical clustering of 344 genes whose expression either increases or decreases significantly in response to estrogen reveals that the gene expression program activated by the hormone in these cells shows 8 main patterns of gene activation/inhibition.
    [Show full text]
  • Remodeling of Active Endothelial Enhancers Is Associated with Aberrant Gene-Regulatory Networks in Pulmonary Arterial Hypertension
    ARTICLE https://doi.org/10.1038/s41467-020-15463-x OPEN Remodeling of active endothelial enhancers is associated with aberrant gene-regulatory networks in pulmonary arterial hypertension Armando Reyes-Palomares 1,2, Mingxia Gu 3, Fabian Grubert4, Ivan Berest1, Silin Sa3, Maya Kasowski4, ✉ Christian Arnold 1, Mao Shuai3, Rohith Srivas4, Simon Miao3, Dan Li3, Michael P. Snyder 4 , ✉ ✉ Marlene Rabinovitch3 & Judith B. Zaugg 1 1234567890():,; Environmental and epigenetic factors often play an important role in polygenic disorders. However, how such factors affect disease-specific tissues at the molecular level remains to be understood. Here, we address this in pulmonary arterial hypertension (PAH). We obtain pulmonary arterial endothelial cells (PAECs) from lungs of patients and controls (n = 19), and perform chromatin, transcriptomic and interaction profiling. Overall, we observe extensive remodeling at active enhancers in PAH PAECs and identify hundreds of differentially active TFs, yet find very little transcriptomic changes in steady-state. We devise a disease-specific enhancer-gene regulatory network and predict that primed enhancers in PAH PAECs are activated by the differentially active TFs, resulting in an aberrant response to endothelial signals, which could lead to disturbed angiogenesis and endothelial-to-mesenchymal- transition. We validate these predictions for a selection of target genes in PAECs stimulated with TGF-β, VEGF or serotonin. Our study highlights the role of chromatin state and enhancers in disease-relevant cell types of PAH. 1 European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69115 Heidelberg, Germany. 2 Department of Biochemistry and Molecular Biology, Complutense University of Madrid, 28040 Madrid, Spain. 3 Department of Medicine, Stanford University School of ✉ Medicine, Stanford, CA, USA.
    [Show full text]
  • Supplemental Material 1
    Supplemental material 1 Genes TCGA Genes TCGA Name Name early BC advanced BC phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic TP53 tumor protein p53 PIK3CA subunit alpha phosphatidylinositol-4,5-bisphosphate 3-kinase, PIK3CA TP53 tumor protein p53 catalytic subunit alpha CDH1 cadherin 1, type 1, E-cadherin (epithelial) CLIP1 CAP-GLY domain containing linker protein 1 GATA3 GATA binding protein 3 MUC1 mucin 1, cell surface associated KMT2C lysine (K)-specific methyltransferase 2C TSHR thyroid stimulating hormone receptor mitogen-activated protein kinase kinase kinase MAP3K1 FGFR2 fibroblast growth factor receptor 2 1, E3 ubiquitin protein ligase PTEN phosphatase and tensin homolog CBLB Cbl proto-oncogene B, E3 ubiquitin protein ligase NCOR1 nuclear receptor corepressor 1 IL21R interleukin 21 receptor NF1 neurofibromin 1 AMER1 APC membrane recruitment protein 1 RUNX1 runt-related transcription factor 1 NSD1 nuclear receptor binding SET domain protein 1 ARID1A AT rich interactive domain 1A (SWI-like) ETNK1 ethanolamine kinase 1 phosphoinositide-3-kinase, regulatory subunit 1 PIK3R1 AKAP9 A kinase (PRKA) anchor protein 9 (alpha) MAP2K4 mitogen-activated protein kinase kinase 4 PTPRB protein tyrosine phosphatase, receptor type, B RNF213 ring finger protein 213 ERBB2 erb-b2 receptor tyrosine kinase 2 KMT2D lysine (K)-specific methyltransferase 2D NOTCH1 notch 1 SPEN spen family transcriptional repressor TPR translocated promoter region, nuclear basket protein AKAP9 A kinase (PRKA) anchor protein 9 FLI1 Fli-1 proto-oncogene, ETS transcription
    [Show full text]