23B Expression in Human Cervical Cancer Cells Through DNA Methylation of the Host Gene C9orf3

Total Page:16

File Type:pdf, Size:1020Kb

23B Expression in Human Cervical Cancer Cells Through DNA Methylation of the Host Gene C9orf3 www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 7), pp: 12158-12173 Research Paper Human papillomavirus type 16 E6 suppresses microRNA- 23b expression in human cervical cancer cells through DNA methylation of the host gene C9orf3 Chi Lam Au Yeung1,2, Tsun Yee Tsang1, Pak Lun Yau1, Tim Tak Kwok1 1School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China 2Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA Correspondence to: Chi Lam Au Yeung, email: [email protected] Keywords: HPV-16 E6, miRNA-23b, DNA methylation, C9orf3, cervical cancer Received: July 09, 2016 Accepted: November 21, 2016 Published: January 06, 2017 ABSTRACT Oncogenic protein E6 of human papillomavirus type 16 (HPV-16) is believed to involve in the aberrant methylation in cervical cancer as it upregulates DNA methyltransferase 1 (DNMT1) through tumor suppressor p53. In addition, DNA demethylating agent induces the expression of one of the HPV-16 E6 regulated microRNAs (miRs), miR-23b, in human cervical carcinoma SiHa cells. Thus, the importance of DNA methylation and miR-23b in HPV-16 E6 associated cervical cancer development is investigated. In the present study, however, it is found that miR-23b is not embedded in any typical CpG island. Nevertheless, a functional CpG island is predicted in the promoter region of C9orf3, the host gene of miR-23b, and is validated by methylation-specific PCR and bisulfite genomic sequencing analyses. Besides, c-MET is confirmed to be a target gene of miR-23b. Silencing of HPV-16 E6 is found to increase the expression of miR-23b, decrease the expression of c-MET and thus induce the apoptosis of SiHa cells through the c-MET downstream signaling pathway. Taken together, the tumor suppressive miR-23b is epigenetically inactivated through its host gene C9orf3 and this is probably a critical pathway during HPV-16 E6 associated cervical cancer development. INTRODUCTION transactivation or transrepression in ways similar as that for the protein-coding genes [5]. The transcription factors, MicroRNA (miR), a class of small non-coding such as p53, c-myc, E2F and NFκB, were reported to be single-stranded RNA of 19 to 24 nucleotides in length, involved in the regulation of miRNA expressions [5–8]. is recently believed to participate in the development of On the other hand, the regulation of miRNAs may also be cancer, including cervical cancer. The main function of at the post-transcriptional level, such as miRNA maturation miR is to repress the expression of target mRNA by either process. Discrepancies among the levels of primary cleavage or translational silencing. The silencing action transcript, precursor and mature miRNA species have depends on the degree of complementation of miRNA been reported. The biogenesis of mature miRNAs mainly sequence with the 3’-UTR of target mRNAs [1–3]. involves two RNase III enzymes, Drosha and Dicer. “Knowing” the mechanisms that regulate the Previous studies showed that a large fraction of miRNA expression of miRNAs is critical in understanding the might be regulated at the Drosha processing step [4, 9]. role of miRs in cervical cancer development. So far, the Epigenetic modification such as DNA molecular mechanisms however remain largely unknown. hypermethylation often results in the silencing of genes Several microarray profiling studies showed that the while aberrant DNA methylation is detected in many expression pattern of a large number of miRNAs can be cancers. Thus, epigenetic silencing may also be one attributed to the regulatory sequences present in their of the possible mechanisms that contribute to miRNA promoters [4]. Therefore, miRNAs may probably be regulation, especially for miRNAs that with tumor controlled by nuclear transcription factors through either suppressive function, such as miR-124a and 127 [10, www.impactjournals.com/oncotarget 12158 Oncotarget 11]. Oncogenic viruses, such as human papillomavirus in miR-23b expression, ectopic expression of HPV-16 (HPV), are often thought to be involved in the alteration E6 in HCT116 parental and DK cells was carried out of DNA methylation in the host cells, a process appears by transfecting the cells with HPV-16 E6 cDNA [22]. to be critical in cancer progression [12–14]. In fact, DNA HPV-16 E6 suppressed miR-23b expression in HCT116 methyltransferase 1 (DNMT1), a major enzyme for DNA parental cells but failed in the DK cells, indicating that methylation, was found to be overexpressed in human the suppression effect of HPV-16 E6 on miR-23b was cervical cancer [15]. mediated through DNMTs (Figure 1B). On the other Nearly half of the miRNAs are located within hand, in HPV-16 E6 positive human cervical cancer SiHa the introns of protein-coding genes or non-coding cells, knockdown of HPV-16 E6 by E6 siRNA increased transcriptional units, which are known as the host genes. the miR-23b level in cells. Such increase, however, was miR-23b is located in the intron 14 of the host gene lessened by 84% upon the co-transfection with DNMT1 C9orf3 on chromosome 9. Recent studies showed that the cDNA (Figure 1C). This further indicated that DNMT1 expression of miR-23b could be regulated via the upstream might mediate the suppressive effect of HPV-16 E6 on promoter region of the host gene [5, 16] and may also be miR-23b. epigenetically regulated. One of the target genes identified for miR-23b is Lack of CG rich region in the miR-23b upstream c-MET, which is believed to act as a protooncogene and sequence participate in cell proliferation [17, 18]. c-MET was also overexpressed in many human solid tumors including DNMT1 is known to regulate the expression of uterine cervix carcinomas and its overexpression served genes through DNA methylation. Whether DNMT1 as an important prognostic indicator [19, 20]. may mediate the HPV-16 E6 effect on miR-23b through In the present study, HPV-16 E6 was confirmed to DNA methylation is to be examined. By quantitative regulate miR-23b indirectly through the DNA methylation RT-PCR analysis, a 2-fold increase in the expression of of host gene C9orf3 and thus induce c-MET and inhibit miR-23b was observed in SiHa cells treated with DNA apoptosis in cervical cancer cells. The uniqueness and the demethylating agent, 5-aza-2’deoxycytidine (ADC), significance for indirect epigenetic regulation pathway of indicating the likely involvement of DNA methylation in miRs, from the host gene C9orf3 to miR-23b, is worth the regulation of miR-23b (Figure 1D). further investigation. By then, the upstream sequence of miR-23b spanning from 1kb upstream to the mature miR-23b RESULTS was analyzed for the presence of any CG rich region, where presumably DNA methylation may occur. Using Reduced miR-23b expression in DNMT the conventional online algorithms for CpG island knockout cells prediction, such as Methprimer, no typical CpG island (200 nucleotides or more with CG content greater than miR-23b is suggested to be epigenetically regulated 50%) was detected. Despite the failure in the prediction of in the previous study. miR-23b together with a number of putative CpG island in the miR-23b upstream sequence, miRs were found to be overexpressed in human colorectal the possibility of the sequence being methylated was carcinoma HCT116 double DNMT1 and DNMT3b still examined by the methylation-specific PCR (MSP) knockout (DK) cells as compared to the HCT116 parental analysis. No significant difference was however detected cells [21]. It is therefore believed that these miRs may between the ADC-treated cells and the untreated cells be regulated epigenetically. miR-23b was confirmed to or the HPV-16 E6 knockdown cells and the pSilencer be overexpressed in DK cells by quantitative RT-PCR transfected control cells (Supplementary Figure 1). analysis in the present study (Figure 1A). In addition, Also, when SiHa cells were transfected with the luciferase similar to DK cells, the miR was also overexpressed in reporter containing the miR-23b upstream sequence, DNMT1 knockout (D1) cells (Figure 1A), suggesting the reporter activities in cells with or without the ADC that DNMT1 may suppress the expression of miR-23b, treatment were found to be similar. All the results presumably by methylation, in cells. suggested the lack of CG rich region in the upstream sequence of miR-23b and the unlikely involvement of this DNMT1 mediated HPV-16 E6 suppression of sequence in the DNA methylation regulation of miR-23b. miR-23b HPV-16 E6 and DNA methylation decreased HPV-16 E6 was previously found to upregulate C9orf3 mRNA expression DNMT1 in human cervical cancer cells [22]. Therefore, it is hypothesized that HPV-16 E6 may act through miR-23b is an intronic miRNA and the host gene methylation to regulate the expression of miR-23b. To is C9orf3. Although intronic miRNAs can be regulated investigate the regulatory role of HPV-16 E6/DNMT1 by the miRNAs’ own promoters, they may also be co- www.impactjournals.com/oncotarget 12159 Oncotarget Figure 1: DNMT1 mediated the HPV-16 E6 suppression of miR-23. miR-23b expression level was determined by quantitative RT-PCR analysis. A. the miR-23b expression level in HCT116 parental, D1 and DK cells. B. HCT116 parental or DK cells were transiently transfected with pcDNA3/HPV16E6cDNA (HPV16E6FL) or pcDNA3 empty vector for 24 h. C. SiHa cells were transiently transfected with pSilencer/HPVE6siRNA (HPV16E6i) alone or co-transfected with pGFP-C3/DNMT1cDNA (HPV16E6i+DNMT1) for 24 h. The cells were transfected with pSilencer empty vector in parallel in which miR-23b expression level was designated as 1.0. D. SiHa cells were treated with 5 μM 5-aza-2’-deoxycytidine (ADC) for 24 h.
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Table 9. Functional Annotation Clustering Results for the Union (GS3) of the Top Genes from the SNP-Level and Gene-Based Analyses (See ST4)
    Supplementary Table 9. Functional Annotation Clustering Results for the union (GS3) of the top genes from the SNP-level and Gene-based analyses (see ST4) Column Header Key Annotation Cluster Name of cluster, sorted by descending Enrichment score Enrichment Score EASE enrichment score for functional annotation cluster Category Pathway Database Term Pathway name/Identifier Count Number of genes in the submitted list in the specified term % Percentage of identified genes in the submitted list associated with the specified term PValue Significance level associated with the EASE enrichment score for the term Genes List of genes present in the term List Total Number of genes from the submitted list present in the category Pop Hits Number of genes involved in the specified term (category-specific) Pop Total Number of genes in the human genome background (category-specific) Fold Enrichment Ratio of the proportion of count to list total and population hits to population total Bonferroni Bonferroni adjustment of p-value Benjamini Benjamini adjustment of p-value FDR False Discovery Rate of p-value (percent form) Annotation Cluster 1 Enrichment Score: 3.8978262119731335 Category Term Count % PValue Genes List Total Pop Hits Pop Total Fold Enrichment Bonferroni Benjamini FDR GOTERM_CC_DIRECT GO:0005886~plasma membrane 383 24.33290978 5.74E-05 SLC9A9, XRCC5, HRAS, CHMP3, ATP1B2, EFNA1, OSMR, SLC9A3, EFNA3, UTRN, SYT6, ZNRF2, APP, AT1425 4121 18224 1.18857065 0.038655922 0.038655922 0.086284383 UP_KEYWORDS Membrane 626 39.77128335 1.53E-04 SLC9A9, HRAS,
    [Show full text]
  • 1 No. Affymetrix ID Gene Symbol Genedescription Gotermsbp Q Value 1. 209351 at KRT14 Keratin 14 Structural Constituent of Cyto
    1 Affymetrix Gene Q No. GeneDescription GOTermsBP ID Symbol value structural constituent of cytoskeleton, intermediate 1. 209351_at KRT14 keratin 14 filament, epidermis development <0.01 biological process unknown, S100 calcium binding calcium ion binding, cellular 2. 204268_at S100A2 protein A2 component unknown <0.01 regulation of progression through cell cycle, extracellular space, cytoplasm, cell proliferation, protein kinase C inhibitor activity, protein domain specific 3. 33323_r_at SFN stratifin/14-3-3σ binding <0.01 regulation of progression through cell cycle, extracellular space, cytoplasm, cell proliferation, protein kinase C inhibitor activity, protein domain specific 4. 33322_i_at SFN stratifin/14-3-3σ binding <0.01 structural constituent of cytoskeleton, intermediate 5. 201820_at KRT5 keratin 5 filament, epidermis development <0.01 structural constituent of cytoskeleton, intermediate 6. 209125_at KRT6A keratin 6A filament, ectoderm development <0.01 regulation of progression through cell cycle, extracellular space, cytoplasm, cell proliferation, protein kinase C inhibitor activity, protein domain specific 7. 209260_at SFN stratifin/14-3-3σ binding <0.01 structural constituent of cytoskeleton, intermediate 8. 213680_at KRT6B keratin 6B filament, ectoderm development <0.01 receptor activity, cytosol, integral to plasma membrane, cell surface receptor linked signal transduction, sensory perception, tumor-associated calcium visual perception, cell 9. 202286_s_at TACSTD2 signal transducer 2 proliferation, membrane <0.01 structural constituent of cytoskeleton, cytoskeleton, intermediate filament, cell-cell adherens junction, epidermis 10. 200606_at DSP desmoplakin development <0.01 lectin, galactoside- sugar binding, extracellular binding, soluble, 7 space, nucleus, apoptosis, 11. 206400_at LGALS7 (galectin 7) heterophilic cell adhesion <0.01 2 S100 calcium binding calcium ion binding, epidermis 12. 205916_at S100A7 protein A7 (psoriasin 1) development <0.01 S100 calcium binding protein A8 (calgranulin calcium ion binding, extracellular 13.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Systematic Evaluation of Genetic Variants for Polycystic Ovary Syndrome in a Chinese Population
    RESEARCH ARTICLE Systematic Evaluation of Genetic Variants for Polycystic Ovary Syndrome in a Chinese Population Yuping Xu1,2,3, Zhiqiang Li4, Fenglian Ai1,2,3, Jianhua Chen4, Qiong Xing1,2,3, Ping Zhou1,2,3, Zhaolian Wei1,2,3, Yongyong Shi4*, Xiao-Jin He1,2,3*, Yunxia Cao1,2,3* 1 Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China, 2 Institute of Reproductive Genetics, Anhui Medical University, Hefei, 230022, China, 3 Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, 230022, China, 4 The Bio-X Institutes, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China * [email protected] (YC); [email protected] (YS); [email protected] (XH) Abstract − To date, eleven genome-wide significant (GWS) loci (P < 5×10 8) for polycystic ovary syn- OPEN ACCESS drome (PCOS) have been identified through genome-wide association studies (GWAS). Citation: Xu Y, Li Z, Ai F, Chen J, Xing Q, Zhou P, et Some of the risk loci have been selected for replications and validated in multiple ethnicities, al. (2015) Systematic Evaluation of Genetic Variants however, few previous studies investigated all loci. Scanning all the GWAS variants would for Polycystic Ovary Syndrome in a Chinese demonstrate a more informative profile of variance they explained. Thus, we analyzed all Population. PLoS ONE 10(10): e0140695. the 17 single nucleotide polymorphisms (SNPs) mapping to the 11 GWAS loci in an inde- doi:10.1371/journal.pone.0140695 pendent sample set of 800 Chinese subjects with PCOS and 1110 healthy controls system- Editor: Stephen L Atkin, Weill Cornell Medical − atically.
    [Show full text]
  • C:\Users\Administrator\Desktop\Array Datasheet\Disease Gene Array
    Product Data Sheet ExProfileTM Human Proteases Related Gene qPCR Array For focused group profiling of human proteases genes expression Cat. No. QG096-A (6 x 96-well plate, Format A) Cat. No. QG096-B (6 x 96-well plate, Format B) Cat. No. QG096-C (6 x 96-well plate, Format C) Cat. No. QG096-D (6 x 96-well plate, Format D) Cat. No. QG096-E (6 x 96-well plate, Format E) Plates available individually or as a set of 6. Each set contains 504 unique gene primer pairs deposited in one 96-well plate. Introduction The ExProfile human proteases related gene qPCR array profiles the expression of 504 human genes related to proteases. These genes are carefully chosen for their close correlation based on a thorough literature search of peer-reviewed publications, mainly including genes that encode various proteases. This array allows researchers to study the related genes to gain understanding of their roles in the functioning and characterization of proteases. QG096 plate 01: 84 unique gene PCR primer pairs QG096 plate 02: 84 unique gene PCR primer pairs QG096 plate 03: 84 unique gene PCR primer pairs QG096 plate 04: 84 unique gene PCR primer pairs QG096 plate 05: 84 unique gene PCR primer pairs QG096 plate 06: 84 unique gene PCR primer pairs Shipping and storage condition Shipped at room temperate Stable for at least 6 months when stored at -20°C Array format GeneCopoeia provides five qPCR array formats (A, B, C, D, and E) suitable for use with the following real- time cyclers.
    [Show full text]
  • WO 2019/048500 Al 14 March 2019 (14.03.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/048500 Al 14 March 2019 (14.03.2019) W 1P O PCT (51) International Patent Classification: C12Q 1/6883 (2018.01) (21) International Application Number: PCT/EP20 18/073 905 (22) International Filing Date: 05 September 2018 (05.09.2018) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 62/554,427 05 September 2017 (05.09.2017) US (71) Applicant: AMONETA DIAGNOSTICS [FR/FR]; 17, Rue du Fort, 68330 Huningue (FR). (72) Inventors; and (71) Applicants: FIRAT, Hueseyin [FR/FR]; 29a, Rue de Michelfelden, 68330 Huningue (FR). MOUSSAOUI, Sali- ha [FR/FR]; 24, rue des Ecureuils, 68870 Bartenheim (FR). SCHORDAN, Eric [FR/FR]; 4 rue des Paturages, 68220 Wentzwiller (FR). (74) Agent: PHARMA CONCEPTS GMBH; Unterer Rhein- weg 50, 4057 Basel (CH). (81) Designated States (unless otherwise indicated, for every kind of national protection available) : AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • QKI Suppl Figs Tables Merged.Pdf
    Supplemental Table 1 p<0.05 Human (Hs683) EntrezGene Name shQKI-1/shGFP shQKI-2/shGFP 0 0 26.63 19.00 0 0 11.75 12.75 0 CDNA clone IMAGE:5267346 8.96 4.77 LOC91316: Similar to bK246H3.1 (immunoglobulin lambda-like 91316 polypeptide 1, pre-B-cell specific) 7.94 3.85 RIPK2: receptor-interacting serine- 8767 threonine kinase 2 4.09 3.21 LOC728705: hypothetical protein 728705 LOC728705 3.86 2.44 0 Transcribed locus 3.79 3.95 CCDC57: coiled-coil domain containing 284001 57 3.62 4.73 C1orf101: chromosome 1 open reading 257044 frame 101 3.54 3.33 CDNA FLJ30490 fis, clone 0 BRAWH2000169 3.28 2.76 CHRNE: cholinergic receptor, nicotinic, 1145 epsilon 3.25 2.42 LOC728215: similar to transmembrane 728215 protein 28 3.25 2.86 83849 SYT15: Synaptotagmin XV 3.24 3.30 0 Transcribed locus 3.18 2.64 79838 TMC5: transmembrane channel-like 5 3.16 2.70 144568 A2ML1: alpha-2-macroglobulin-like 1 3.13 2.77 AGGF1: angiogenic factor with G patch 55109 and FHA domains 1 3.09 2.86 91703 ACY3: aspartoacylase (aminocyclase) 3 3.06 2.30 258010 SVIP: small VCP/p97-interacting protein 3.01 2.30 MSR1: macrophage scavenger receptor 4481 1 2.97 2.01 23250 ATP11A: ATPase, class VI, type 11A 2.96 1.71 LOC440934: Hypothetical gene 440934 supported by BC008048 2.89 2.27 0 Transcribed locus 2.87 3.04 Homo sapiens, clone IMAGE:4391558, 0 mRNA 2.85 3.38 C4orf38: chromosome 4 open reading 152641 frame 38 2.79 1.88 54756 IL17RD: interleukin 17 receptor D 2.77 1.98 0 CDNA clone IMAGE:5277449 2.75 2.25 OR51B2: olfactory receptor, family 51, 79345 subfamily B, member 2 2.75 1.89 0
    [Show full text]
  • Exploring the Regulatory Mechanism of the Notch Ligand Receptor Jagged1 Via the Aryl Hydrocarbon Receptor in Breast Cancer Sean Alan Piwarski
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 2018 Exploring the Regulatory Mechanism of the Notch Ligand Receptor Jagged1 Via the Aryl Hydrocarbon Receptor in Breast Cancer Sean Alan Piwarski Follow this and additional works at: https://mds.marshall.edu/etd Part of the Biological Phenomena, Cell Phenomena, and Immunity Commons, Medical Molecular Biology Commons, Medical Toxicology Commons, and the Oncology Commons EXPLORING THE REGULATORY MECHANISM OF THE NOTCH LIGAND RECEPTOR JAGGED1 VIA THE ARYL HYDROCARBON RECEPTOR IN BREAST CANCER A dissertation submitted to the Graduate College of Marshall University In partial fulfillment of the requirements for the degree of Doctor of Philosophy In Biomedical Sciences by Sean Alan Piwarski Approved by Dr. Travis Salisbury, Committee Chairperson Dr. Gary Rankin Dr. Monica Valentovic Dr. Richard Egleton Dr. Todd Green Marshall University July 2018 APPROVAL OF DISSERTATION We, the faculty supervising the work of Sean Alan Piwarski, affirm that the dissertation, Exploring the Regulatory Mechanism of the Notch Ligand Receptor JAGGED1 via the Aryl Hydrocarbon Receptor in Breast Cancer, meets the high academic standards for original scholarship and creative work established by the Biomedical Sciences program and the Graduate College of Marshall University. This work also conforms to the editorial standards of our discipline and the Graduate College of Marshall University. With our signatures, we approve the manuscript for publication. ii © 2018 SEAN ALAN PIWARSKI ALL RIGHTS RESERVED iii DEDICATION To my mom and dad, This dissertation is a product of your hard work and sacrifice as amazing parents. I could never have accomplished something of this magnitude without your love, support, and constant encouragement.
    [Show full text]
  • Genome-Wide Profiling of Druggable Active Tumor Defense Mechanisms to Enhance Cancer Immunotherapy
    bioRxiv preprint doi: https://doi.org/10.1101/843185; this version posted November 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Genome-wide profiling of druggable active tumor defense mechanisms to enhance cancer immunotherapy Rigel J. Kishton1,2,*,#, Shashank J. Patel1,2,†,*, Suman K. Vodnala1,2, Amy E. Decker3, Yogin Patel1,2, Madhusudhanan Sukumar1,2, Tori N. Yamamoto1,2,4, Zhiya Yu1,2, Michelle Ji1,2, Amanda N. Henning1,2, Devikala Gurusamy1,2, Douglas C. Palmer1,2, Winifred Lo1, Anna Pasetto1, Parisa Malekzadeh1, Drew C. Deniger1, Kris C. Wood3, Neville E. Sanjana5,6, Nicholas P. Restifo1,2, #, § 1Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA 2Center for Cell-Based Therapy, National Cancer Institute, Bethesda, MD 20892, USA 3Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC, USA 4Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA 5New York Genome Center, New York, NY 10013 USA 6Department of Biology, New York University, New York, NY 10003, USA *These authors contributed equally to this work. †Present address: NextCure Inc., Beltsville, MD 20705, USA §Present address: Lyell Immunopharma, South San Francisco, CA 94080, USA #Corresponding authors. NPR: [email protected]. RJK: [email protected]. bioRxiv preprint doi: https://doi.org/10.1101/843185; this version posted November 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
    [Show full text]
  • Oxidized Phospholipids Regulate Amino Acid Metabolism Through MTHFD2 to Facilitate Nucleotide Release in Endothelial Cells
    ARTICLE DOI: 10.1038/s41467-018-04602-0 OPEN Oxidized phospholipids regulate amino acid metabolism through MTHFD2 to facilitate nucleotide release in endothelial cells Juliane Hitzel1,2, Eunjee Lee3,4, Yi Zhang 3,5,Sofia Iris Bibli2,6, Xiaogang Li7, Sven Zukunft 2,6, Beatrice Pflüger1,2, Jiong Hu2,6, Christoph Schürmann1,2, Andrea Estefania Vasconez1,2, James A. Oo1,2, Adelheid Kratzer8,9, Sandeep Kumar 10, Flávia Rezende1,2, Ivana Josipovic1,2, Dominique Thomas11, Hector Giral8,9, Yannick Schreiber12, Gerd Geisslinger11,12, Christian Fork1,2, Xia Yang13, Fragiska Sigala14, Casey E. Romanoski15, Jens Kroll7, Hanjoong Jo 10, Ulf Landmesser8,9,16, Aldons J. Lusis17, 1234567890():,; Dmitry Namgaladze18, Ingrid Fleming2,6, Matthias S. Leisegang1,2, Jun Zhu 3,4 & Ralf P. Brandes1,2 Oxidized phospholipids (oxPAPC) induce endothelial dysfunction and atherosclerosis. Here we show that oxPAPC induce a gene network regulating serine-glycine metabolism with the mitochondrial methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHFD2) as a cau- sal regulator using integrative network modeling and Bayesian network analysis in human aortic endothelial cells. The cluster is activated in human plaque material and by atherogenic lipo- proteins isolated from plasma of patients with coronary artery disease (CAD). Single nucleotide polymorphisms (SNPs) within the MTHFD2-controlled cluster associate with CAD. The MTHFD2-controlled cluster redirects metabolism to glycine synthesis to replenish purine nucleotides. Since endothelial cells secrete purines in response to oxPAPC, the MTHFD2- controlled response maintains endothelial ATP. Accordingly, MTHFD2-dependent glycine synthesis is a prerequisite for angiogenesis. Thus, we propose that endothelial cells undergo MTHFD2-mediated reprogramming toward serine-glycine and mitochondrial one-carbon metabolism to compensate for the loss of ATP in response to oxPAPC during atherosclerosis.
    [Show full text]
  • Control of the Physical and Antimicrobial Skin Barrier by an IL-31–IL-1 Signaling Network
    The Journal of Immunology Control of the Physical and Antimicrobial Skin Barrier by an IL-31–IL-1 Signaling Network Kai H. Ha¨nel,*,†,1,2 Carolina M. Pfaff,*,†,1 Christian Cornelissen,*,†,3 Philipp M. Amann,*,4 Yvonne Marquardt,* Katharina Czaja,* Arianna Kim,‡ Bernhard Luscher,€ †,5 and Jens M. Baron*,5 Atopic dermatitis, a chronic inflammatory skin disease with increasing prevalence, is closely associated with skin barrier defects. A cy- tokine related to disease severity and inhibition of keratinocyte differentiation is IL-31. To identify its molecular targets, IL-31–dependent gene expression was determined in three-dimensional organotypic skin models. IL-31–regulated genes are involved in the formation of an intact physical skin barrier. Many of these genes were poorly induced during differentiation as a consequence of IL-31 treatment, resulting in increased penetrability to allergens and irritants. Furthermore, studies employing cell-sorted skin equivalents in SCID/NOD mice demonstrated enhanced transepidermal water loss following s.c. administration of IL-31. We identified the IL-1 cytokine network as a downstream effector of IL-31 signaling. Anakinra, an IL-1R antagonist, blocked the IL-31 effects on skin differentiation. In addition to the effects on the physical barrier, IL-31 stimulated the expression of antimicrobial peptides, thereby inhibiting bacterial growth on the three-dimensional organotypic skin models. This was evident already at low doses of IL-31, insufficient to interfere with the physical barrier. Together, these findings demonstrate that IL-31 affects keratinocyte differentiation in multiple ways and that the IL-1 cytokine network is a major downstream effector of IL-31 signaling in deregulating the physical skin barrier.
    [Show full text]