Genetic Dominance Governs the Evolution and Spread of Mobile Genetic

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Dominance Governs the Evolution and Spread of Mobile Genetic bioRxiv preprint doi: https://doi.org/10.1101/863472; this version posted December 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genetic dominance governs the evolution and spread of mobile genetic 2 elements in bacteria 3 Jerónimo Rodríguez-Beltrán1*, Vidar Sørum2, Macarena Toll-Riera3, Carmen de la 4 Vega1, Rafael Peña-Miller4, Alvaro San Millán1*. 5 1 Department of Microbiology, Hospital Universitario Ramon y Cajal (IRYCIS) and 6 CIBER for Epidemiology and Public Health, Madrid, Spain. 7 2 Department of Pharmacy, UiT-The Arctic University of Norway, Tromsø, Norway. 8 3 Department of Evolutionary Biology and Environmental Studies, University of Zurich, 9 Switzerland. 10 4 Center for Genomic Sciences, Universidad Nacional Autonóma de México, 11 Cuernavaca, Mexico. 12 Correspondence: [email protected], [email protected] 13 14 Abstract 15 Mobile genetic elements (MGEs), such as plasmids, promote bacterial evolution 16 through horizontal gene transfer (HGT). However, the rules governing the repertoire 17 of traits encoded on MGEs remain unclear. In this study, we uncovered the central 18 role of genetic dominance shaping genetic cargo in MGEs, using antibiotic resistance 19 as a model system. MGEs are typically present in more than one copy per host 20 bacterium and, as a consequence, genetic dominance favors the fixation of dominant 21 mutations over recessive ones. Moreover, genetic dominance also determines the 22 phenotypic effects of horizontally acquired MGE-encoded genes, silencing recessive 23 alleles if the recipient bacterium already carries a wild-type copy of the gene. The 24 combination of these two effects governs the catalogue of genes encoded on MGEs, 25 dictating bacterial evolution through HGT. bioRxiv preprint doi: https://doi.org/10.1101/863472; this version posted December 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 26 Introduction 27 HGT between bacteria is largely mediated by specialized MGEs, such as plasmids 28 and bacteriophages, which provide an important source of genetic diversity and play 29 a fundamental role in bacterial ecology and evolution (1). The repertoire of accessory 30 genes encoded on MGEs and their ability to be phenotypically expressed in different 31 genetic backgrounds are key aspects of MGE-mediated evolution. There are several 32 factors known to impact horizontal gene transferability in bacteria, such as the level 33 of gene expression, the degree of protein connectivity, or the biochemical properties 34 of proteins (2-5), but the specific parameters that shape the repertoire of genes 35 encoded on MGEs remain largely unknown (6, 7). 36 Genetic dominance is the relationship between alleles of the same gene in which one 37 allele (dominant) masks the phenotypic contribution of a second allele (recessive). In 38 diploid or polyploid organisms, dominant alleles stem the establishment of new traits 39 encoded by recessive mutations (an effect known as Haldane’s sieve (8, 9)). Most 40 bacteria of human interest carry a single copy of their chromosome. In haploid 41 organisms like these, new alleles are able to produce a phenotype regardless of the 42 degree of genetic dominance of the underlying mutations. Therefore, the role of 43 genetic dominance in bacterial evolution has generally been overlooked. However, 44 the bacterial genome consists of more than the single chromosome; a myriad of 45 mobile genetic elements populate bacterial cells. Many MGEs, including plasmids 46 and filamentous phages, replicate independently of the bacterial chromosome and 47 are generally present at more than one copy per cell, with copy number ranging from 48 a handful to several hundred (10, 11). Extra-chromosomal MGEs thus produce an 49 island of local polyploidy in the bacterial genome (12, 13). Moreover, HGT in bacteria 50 mostly occurs between close relatives (14, 15), and genes encoded on mobile 51 elements can therefore create allelic redundancy with chromosomal genes. In light of 52 these evidences, genetic dominance should strongly affect both the emergence of bioRxiv preprint doi: https://doi.org/10.1101/863472; this version posted December 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 53 new mutations in MGE-encoded genes and the phenotypic effects of horizontally 54 transferred alleles. 55 Results and Discussion 56 To test whether genetic dominance determines the emergence of mutations in MGE- 57 encoded genes, we used a two-gene synthetic system that can confer tetracycline 58 resistance through dominant and recessive mutations (Figure 1). This construct 59 consists of a cI gene, encoding the bacteriophage λ CI repressor, in control of the 60 expression of a contiguous tetA gene, which encodes a tetracycline efflux pump (16). 61 This system provides tetracycline resistance when tetA transcription is derepressed. 62 Derepression can be achieved through mutations that either inactivate the cI gene or 63 disrupt the CI binding site upstream of tetA (Figure 1A). The repressor gene provides 64 a large target (714 bp), but we hypothesized that mutations inactivating cI would be 65 recessive, since in-trans copies of wild type CI would repress tetA. In contrast, the CI 66 binding site is a short target (166 bp), but mutations in this region are likely to be 67 dominant because they will lead to non-repressible, constitutive TetA production. 68 We produced two otherwise isogenic Escherichia coli MG1655 clones carrying the cI- 69 tetA system either as a single chromosomal copy (mono-copy treatment) or also 70 present on a pBAD plasmid with approximately 20 copies per cell (pCT, multi-copy 71 treatment) (Figure 1A). Fluctuation assays with both clones revealed a 4.84-fold 72 lower phenotypic tetracycline mutation rate in the multi-copy treatment clone, despite −12 73 the higher cI-tetA copy number (Likelihood ratio test statistic 55.0, P< 10 , Figure 74 1B). To determine if this effect was due to differential access to dominant or 75 recessive mutations, we first analyzed the mutations in the cI-tetA system and 76 confirmed that they were located in different regions in each treatment (Wilcoxon 77 signed-rank test, W= 313, P≈ 10-06, Figure 1C, Table S1). Next, we generated 78 homozygous and heterozygous mutant clones in order to measure the coefficient of 79 dominance (h) of a subset of mutations [h ranges from 0 (completely recessive) to 1 bioRxiv preprint doi: https://doi.org/10.1101/863472; this version posted December 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 80 (completely dominant), Figure S1-S2, Table S2]. As predicted, h was low or 81 intermediate in tetracycline resistance mutations recovered from the mono-copy 82 treatment and high in mutations from the multi-copy treatment (ANOVA effect of 83 treatment; F=70.02, df=1, P≈3x10-5; Figure 1D). 84 85 Figure 1. Genetic dominance and gene copy number modulate phenotypic mutation 86 rates. (A) Schematic representation of plasmid pCT, the experimental model and the 87 cI-tetA system (note the isogenic nature of the clones apart from the dosage of cI- 88 tetA). (B) Phenotypic tetracycline resistance mutation rates in the different clones. 89 Rifampicin mutation rates were determined to test the equal underlying mutation rate 90 of clones. Error bars represent 84% confidence intervals. (C) Location and type of 91 tetracycline resistance mutations in the mono-copy and multi-copy treatments are 92 indicated. In the cI-tetA system diagram, blue shading denotes the cI coding region, 93 and purple shading denotes the CI binding site plus the cI-tetA intergenic region. (D) 94 Coefficient of dominance (h) of 10 mutations described in panel C. Bars represent 95 the median of 8 biological replicates, error bars represent the interquartile range. bioRxiv preprint doi: https://doi.org/10.1101/863472; this version posted December 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 96 Our results indicate that interplay between genetic dominance and gene copy 97 number determines the rate at which phenotypic mutants emerge in bacteria. The 98 increased gene dosage provided by MGEs improves the chances of a beneficial 99 mutation being acquired but simultaneously masks the phenotypic contribution of the 100 newly acquired allele if it is recessive. To study the general effect of this interplay on 101 the evolution of MGE-encoded genes, we developed a computational model based 102 on the classic fluctuation assay ((17), Figure 2A and S3-S4). This model allows us to 103 simulate the acquisition and segregation of mutations located in an extra- 104 chromosomal MGE, in this case a plasmid, with a given copy number. With this 105 information, we can explore the frequency of phenotypic mutants in the bacterial 106 population at any time point; this frequency will depend on the distribution of mutated 107 and wild-type alleles in each individual cell and on the coefficient of dominance of 108 those mutations (Figure S4).
Recommended publications
  • Antibiotic Resistance in the European Union Associated with Therapeutic Use of Veterinary Medicines
    The European Agency for the Evaluation of Medicinal Products Veterinary Medicines Evaluation Unit EMEA/CVMP/342/99-Final Antibiotic Resistance in the European Union Associated with Therapeutic use of Veterinary Medicines Report and Qualitative Risk Assessment by the Committee for Veterinary Medicinal Products 14 July 1999 Public 7 Westferry Circus, Canary Wharf, London, E14 4HB, UK Switchboard: (+44-171) 418 8400 Fax: (+44-171) 418 8447 E_Mail: [email protected] http://www.eudra.org/emea.html ãEMEA 1999 Reproduction and/or distribution of this document is authorised for non commercial purposes only provided the EMEA is acknowledged TABLE OF CONTENTS Page 1. INTRODUCTION 1 1.1 DEFINITION OF ANTIBIOTICS 1 1.1.1 Natural antibiotics 1 1.1.2 Semi-synthetic antibiotics 1 1.1.3 Synthetic antibiotics 1 1.1.4 Mechanisms of Action 1 1.2 BACKGROUND AND HISTORY 3 1.2.1 Recent developments 3 1.2.2 Authorisation of Antibiotics in the EU 4 1.3 ANTIBIOTIC RESISTANCE 6 1.3.1 Microbiological resistance 6 1.3.2 Clinical resistance 6 1.3.3 Resistance distribution in bacterial populations 6 1.4 GENETICS OF RESISTANCE 7 1.4.1 Chromosomal resistance 8 1.4.2 Transferable resistance 8 1.4.2.1 Plasmids 8 1.4.2.2 Transposons 9 1.4.2.3 Integrons and gene cassettes 9 1.4.3 Mechanisms for inter-bacterial transfer of resistance 10 1.5 METHODS OF DETERMINATION OF RESISTANCE 11 1.5.1 Agar/Broth Dilution Methods 11 1.5.2 Interpretative criteria (breakpoints) 11 1.5.3 Agar Diffusion Method 11 1.5.4 Other Tests 12 1.5.5 Molecular techniques 12 1.6 MULTIPLE-DRUG RESISTANCE
    [Show full text]
  • Fluoroquinolone Mechanisms of Action and Resistance
    Downloaded from http://perspectivesinmedicine.cshlp.org/ on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Topoisomerase Inhibitors: Fluoroquinolone Mechanisms of Action and Resistance David C. Hooper1 and George A. Jacoby2 1Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114 2Lahey Hospital and Medical Center, Burlington, Massachusetts 01805 Correspondence: [email protected] Quinolone antimicrobials are widely used in clinical medicine and are the only current class of agents that directly inhibit bacterial DNA synthesis. Quinolones dually target DNA gyrase and topoisomerase IV binding to specific domains and conformations so as to block DNA strand passage catalysis and stabilize DNA–enzyme complexes that block the DNA repli- cation apparatus and generate double breaks in DNA that underlie their bactericidal activity. Resistance has emerged with clinical use of these agents and is common in some bacterial pathogens. Mechanisms of resistance include mutational alterations in drug target affinity and efflux pump expression and acquisition of resistance-conferring genes. Resistance mu- tations in one or both of the two drug target enzymes are commonly in a localized domain of the GyrA and ParC subunits of gyrase and topoisomerase IV, respectively, and reduce drug binding to the enzyme–DNA complex. Other resistance mutations occur in regulatory genes that control the expression of native efflux pumps localized in the bacterial membrane(s). These pumps have broad substrate profiles that include other antimicrobials as well as quin- olones. Mutations of both types can accumulate with selection pressure and produce highly resistant strains. Resistance genes acquired on plasmids confer low-level resistance that promotes the selection of mutational high-level resistance.
    [Show full text]
  • PACKAGE LEAFLET: INFORMATION for the USER Levofloxacin 5 Mg
    PACKAGE LEAFLET: INFORMATION FOR THE USER Levofloxacin 5 mg/ml solution for infusion Levofloxacin Read all of this leaflet carefully before you are given this medicine because it contains important information for you • Keep this leaflet. You may need to read it again. • If you have any further questions, ask your doctor, pharmacist or nurse. • This medicine has been prescribed for you only. Do not pass it on to others. It may harm them, even if their signs of illness are the same as yours. • If you get any side effects, talk to your doctor, pharmacist or nurse. This includes any possible side effects not listed in this leaflet. See section 4. What is in this leaflet 1. What Levofloxacin solution for infusion is and what it is used for 2. What you need to know before you are given Levofloxacin solution for infusion 3. How Levofloxacin solution for infusion is given 4. Possible side effects 5. How to store Levofloxacin solution for infusion 6. Contents of the pack and other information 1. What Levofloxacin solution for infusion is and what it is used for The name of your medicine is Levofloxacin solution for infusion. Levofloxacin solution for infusion contains a medicine called levofloxacin. This belongs to a group of medicines called antibiotics. Levofloxacin is a ’quinolone’ antibiotic. It works by killing the bacteria that cause infections in your body. Levofloxacin solution for infusion can be used to treat infections of the: • Lungs, in people with pneumonia • Urinary tract, including your kidneys or bladder • Prostate gland, where you have a long lasting infection • Skin and underneath the skin, including muscles.
    [Show full text]
  • Disabling and Potentially Permanent Side Effects Lead to Suspension Or Restrictions of Quinolone and Fluoroquinolone Antibiotics
    16 November 2018 EMA/795349/2018 Disabling and potentially permanent side effects lead to suspension or restrictions of quinolone and fluoroquinolone antibiotics EMA has reviewed serious, disabling and potentially permanent side effects with quinolone and fluoroquinolone antibiotics given by mouth, injection or inhalation. The review incorporated the views of patients, healthcare professionals and academics presented at EMA’s public hearing on fluoroquinolone and quinolone antibiotics in June 2018. EMA’s human medicines committee (CHMP) has endorsed the recommendations of EMA’s safety committee (PRAC) and concluded that the marketing authorisation of medicines containing cinoxacin, flumequine, nalidixic acid, and pipemidic acid should be suspended. The CHMP confirmed that the use of the remaining fluoroquinolone antibiotics should be restricted. In addition, the prescribing information for healthcare professionals and information for patients will describe the disabling and potentially permanent side effects and advise patients to stop treatment with a fluoroquinolone antibiotic at the first sign of a side effect involving muscles, tendons or joints and the nervous system. Restrictions on the use of fluoroquinolone antibiotics will mean that they should not be used: • to treat infections that might get better without treatment or are not severe (such as throat infections); • to treat non-bacterial infections, e.g. non-bacterial (chronic) prostatitis; • for preventing traveller’s diarrhoea or recurring lower urinary tract infections (urine infections that do not extend beyond the bladder); • to treat mild or moderate bacterial infections unless other antibacterial medicines commonly recommended for these infections cannot be used. Importantly, fluoroquinolones should generally be avoided in patients who have previously had serious side effects with a fluoroquinolone or quinolone antibiotic.
    [Show full text]
  • Pharmaceutical Services Division and the Clinical Research Centre Ministry of Health Malaysia
    A publication of the PHARMACEUTICAL SERVICES DIVISION AND THE CLINICAL RESEARCH CENTRE MINISTRY OF HEALTH MALAYSIA MALAYSIAN STATISTICS ON MEDICINES 2008 Edited by: Lian L.M., Kamarudin A., Siti Fauziah A., Nik Nor Aklima N.O., Norazida A.R. With contributions from: Hafizh A.A., Lim J.Y., Hoo L.P., Faridah Aryani M.Y., Sheamini S., Rosliza L., Fatimah A.R., Nour Hanah O., Rosaida M.S., Muhammad Radzi A.H., Raman M., Tee H.P., Ooi B.P., Shamsiah S., Tan H.P.M., Jayaram M., Masni M., Sri Wahyu T., Muhammad Yazid J., Norafidah I., Nurkhodrulnada M.L., Letchumanan G.R.R., Mastura I., Yong S.L., Mohamed Noor R., Daphne G., Kamarudin A., Chang K.M., Goh A.S., Sinari S., Bee P.C., Lim Y.S., Wong S.P., Chang K.M., Goh A.S., Sinari S., Bee P.C., Lim Y.S., Wong S.P., Omar I., Zoriah A., Fong Y.Y.A., Nusaibah A.R., Feisul Idzwan M., Ghazali A.K., Hooi L.S., Khoo E.M., Sunita B., Nurul Suhaida B.,Wan Azman W.A., Liew H.B., Kong S.H., Haarathi C., Nirmala J., Sim K.H., Azura M.A., Asmah J., Chan L.C., Choon S.E., Chang S.Y., Roshidah B., Ravindran J., Nik Mohd Nasri N.I., Ghazali I., Wan Abu Bakar Y., Wan Hamilton W.H., Ravichandran J., Zaridah S., Wan Zahanim W.Y., Kannappan P., Intan Shafina S., Tan A.L., Rohan Malek J., Selvalingam S., Lei C.M.C., Ching S.L., Zanariah H., Lim P.C., Hong Y.H.J., Tan T.B.A., Sim L.H.B, Long K.N., Sameerah S.A.R., Lai M.L.J., Rahela A.K., Azura D., Ibtisam M.N., Voon F.K., Nor Saleha I.T., Tajunisah M.E., Wan Nazuha W.R., Wong H.S., Rosnawati Y., Ong S.G., Syazzana D., Puteri Juanita Z., Mohd.
    [Show full text]
  • On the Extraction of Antibiotics from Shrimps Prior to Chromatographic Analysis
    separations Review On the Extraction of Antibiotics from Shrimps Prior to Chromatographic Analysis Victoria Samanidou *, Dimitrios Bitas, Stamatia Charitonos and Ioannis Papadoyannis Laboratory of Analytical Chemistry, University of Thessaloniki, GR 54124 Thessaloniki, Greece; [email protected] (D.B.); [email protected] (S.C.); [email protected] (I.P.) * Correspondence: [email protected]; Tel.: +30-2310-997698; Fax: +30-2310-997719 Academic Editor: Frank L. Dorman Received: 2 February 2016; Accepted: 26 February 2016; Published: 4 March 2016 Abstract: The widespread use of antibiotics in veterinary practice and aquaculture has led to the increase of antimicrobial resistance in food-borne pathogens that may be transferred to humans. Global concern is reflected in the regulations from different agencies that have set maximum permitted residue limits on antibiotics in different food matrices of animal origin. Sensitive and selective methods are required to monitor residue levels in aquaculture species for routine regulatory analysis. Since sample preparation is the most important step, several extraction methods have been developed. In this review, we aim to summarize the trends in extraction of several antibiotics classes from shrimps and give a comparison of performance characteristics in the different approaches. Keywords: sample preparation; extraction; aquaculture; shrimps; chromatography; antibiotics 1. Introduction According to FAO (CWP Handbook of Fishery Statistical Standards, Section J: AQUACULTURE), “aquaculture is the farming of aquatic organisms: fish, mollusks, crustaceans, aquatic plants, crocodiles, alligators, turtles, and amphibians. Farming implies some form of intervention in the rearing process to enhance production, such as regular stocking, feeding, protection from predators, etc.”[1]. Since 1960, aquaculture practice and production has increased as a result of the improved conditions in the aquaculture facilities.
    [Show full text]
  • LEVAQUIN (Levofloxacin) Tablets Are Supplied As 250, 500, and 750 Mg Capsule-Shaped, Coated Tablets
    LEVAQUIN (levofloxacin) TABLETS LEVAQUIN (levofloxacin) ORAL SOLUTION LEVAQUIN (levofloxacin) INJECTION LEVAQUIN (levofloxacin in 5% dextrose) INJECTION To reduce the development of drug-resistant bacteria and maintain the effectiveness of LEVAQUIN (levofloxacin) and other antibacterial drugs, LEVAQUIN should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria. DESCRIPTION LEVAQUIN (levofloxacin) is a synthetic broad spectrum antibacterial agent for oral and intravenous administration. Chemically, levofloxacin, a chiral fluorinated carboxyquinolone, is the pure (-)-(S)-enantiomer of the racemic drug substance ofloxacin. The chemical name is (-)-(S)-9-fluoro-2,3-dihydro-3-methyl-10-(4-methyl- 1-piperazinyl)-7-oxo-7H-pyrido[1,2,3-de]-1,4-benzoxazine-6-carboxylic acid hemihydrate. O F COOH 1/2 H2O N N N O CH3 H3C The chemical structure is: H Its empirical formula is C18H20FN3O4 • ½ H2O and its molecular weight is 370.38. Levofloxacin is a light yellowish-white to yellow-white crystal or crystalline powder. The molecule exists as a zwitterion at the pH conditions in the small intestine. The data demonstrate that from pH 0.6 to 5.8, the solubility of levofloxacin is essentially constant (approximately 100 mg/mL). Levofloxacin is considered soluble to freely soluble in this pH range, as defined by USP nomenclature. Above pH 5.8, the solubility increases rapidly to its maximum at pH 6.7 (272 mg/mL) and is considered freely soluble in this range. Above pH 6.7, the solubility decreases and reaches a minimum value (about 50 mg/mL) at a pH of approximately 6.9.
    [Show full text]
  • The Grohe Method and Quinolone Antibiotics
    The Grohe method and quinolone antibiotics Antibiotics are medicines that are used to treat bacterial for modern fluoroquinolones. The Grohe process and the infections. They contain active ingredients belonging to var- synthesis of ciprofloxacin sparked Bayer AG’s extensive ious substance classes, with modern fluoroquinolones one research on fluoroquinolones and the global competition of the most important and an indispensable part of both that produced additional potent antibiotics. human and veterinary medicine. It is largely thanks to Klaus Grohe – the “father of Bayer quinolones” – that this entirely In chemical terms, the antibiotics referred to for simplicity synthetic class of antibiotics now plays such a vital role for as quinolones are derived from 1,4-dihydro-4-oxo-3-quin- medical practitioners. From 1965 to 1997, Grohe worked oline carboxylic acid (1) substituted in position 1. as a chemist, carrying out basic research at Bayer AG’s Fluoroquinolones possess a fluorine atom in position 6. In main research laboratory (WHL) in Leverkusen. During this addition, ciprofloxacin (2) has a cyclopropyl group in posi- period, in 1975, he developed the Grohe process – a new tion 1 and also a piperazine group in position 7 (Figure A). multi-stage synthesis method for quinolones. It was this This substituent pattern plays a key role in its excellent achievement that first enabled him to synthesize active an- antibacterial efficacy. tibacterial substances such as ciprofloxacin – the prototype O 5 O 4 3 6 COOH F COOH 7 2 N N N 8 1 H N R (1) (2) Figure A: Basic structure of quinolone (1) (R = various substituents) and ciprofloxacin (2) Quinolones owe their antibacterial efficacy to their inhibition This unique mode of action also makes fluoroquinolones of essential bacterial enzymes – DNA gyrase (topoisomer- highly effective against a large number of pathogenic ase II) and topoisomerase IV.
    [Show full text]
  • Therapeutic Class Overview Otic Fluoroquinolones
    Therapeutic Class Overview Otic Fluoroquinolones Therapeutic Class • Overview/Summary: This review will focus on the otic fluoroquinolone antibiotics.1-4 Topical corticosteroids help to aid in the resolution of the inflammatory response accompanying bacterial infections.3,4 Fluoroquinolones are broad-spectrum antimicrobial agents that directly inhibit bacterial deoxyribonucleic acid (DNA) synthesis by blocking the actions of DNA gyrase and topoisomerase IV, which leads to bacterial cell death.5 The otic antibacterials are approved for the treatment of otitis externa and otitis media. Otitis externa (also known as swimmer’s ear) is an inflammatory condition of the external ear canal auditory canal or auricle, usually from infection. Common infectious pathogens include S. aureus, S. epidermidis and P. aeruginosa; however, several other gram-positive, gram-negative and anaerobic infections along with polymicrobic infections occur frequently.6 Topical antibacterials (alone or in combination with a corticosteroid) are very effective and systemic therapy is generally not required.7 Acute otitis media is an inflammatory condition of the middle ear with middle ear effusion and symptoms include otalgia, hearing loss and vertigo.8 Common pathogens in children include S. pneumoniae and H. influenzae (and M. catarrhalis in children).8,9 Oral antibacterials are generally the initial treatment option for children and adults; however, topical antibacterials with or without corticosteroids may be used in patients with perforated tympanic membranes, tympanostomy
    [Show full text]
  • The Use of Systemic and Topical Fluoroquinolones Mary Anne Jackson, MD, FAAP, Gordon E
    CLINICAL REPORT Guidance for the Clinician in Rendering Pediatric Care The Use of Systemic and Topical Fluoroquinolones Mary Anne Jackson, MD, FAAP, Gordon E. Schutze, MD, FAAP, COMMITTEE ON INFECTIOUS DISEASES Appropriate prescribing practices for fl uoroquinolones, as well as all abstract antimicrobial agents, are essential as evolving resistance patterns are considered, additional treatment indications are identifi ed, and the toxicity profi le of fl uoroquinolones in children has become better defi ned. Earlier recommendations for systemic therapy remain; expanded uses of fl uoroquinolones for the treatment of certain infections are outlined in this report. Prescribing clinicians should be aware of specifi c adverse reactions This document is copyrighted and is property of the American associated with fl uoroquinolones, and their use in children should continue Academy of Pediatrics and its Board of Directors. All authors have fi led confl ict of interest statements with the American Academy to be limited to the treatment of infections for which no safe and effective of Pediatrics. Any confl icts have been resolved through a process approved by the Board of Directors. The American Academy of alternative exists or in situations in which oral fl uoroquinolone treatment Pediatrics has neither solicited nor accepted any commercial represents a reasonable alternative to parenteral antimicrobial therapy. involvement in the development of the content of this publication. Clinical reports from the American Academy of Pediatrics benefi t from expertise and resources of liaisons and internal (AAP) and external reviewers. However, clinical reports from the American Academy of Pediatrics may not refl ect the views of the liaisons or the organizations OVERVIEW or government agencies that they represent.
    [Show full text]
  • Commonly Used Antibiotics in the Outpatient Setting By
    Commonly Used Antibiotics in the Outpatient Setting By: Raymond Lengel, MSN, FNP, RN Purpose: This course will provide an overview of the antibiotics most commonly ordered by primary care providers for common conditions in the outpatient setting. Objectives: · List three major problems associated with the use of antibiotics · Discuss common allergic reactions to antibiotics · List three health conditions that are treated with each class of antibiotic discussed · List three side effects associated with each class of antibiotic discussed · Discuss the nurse’s role in the administration of oral antibiotics The course will look at 6 major classes of commonly used oral antibiotics, some miscellaneous antibiotics and topical antibiotics that health care providers prescribe in the outpatient setting. One injection medication that is commonly used in the primary care office will be discussed. Many people go to the doctor with false perceptions of the ideal antibiotic to treat their infection. One common example is the use of the Z-Pak. The Z-Pak is a formulation of the commonly used antibiotic azithromycin. It is a very good antibiotic, but it gets over used. The reason that this medication is overused is because it is a once a day antibiotic for five days (some infections can be treated with a three or even one day course). This is convenient for people and is often requested. While the Z-Pak is commonly a good choice to treat many infections, it is not always the ideal choice. There is currently a lot of resistance to this antibiotic, due to its overuse. The use of antibiotics is a major part of the primary care doctor’s practice as many visits are due to an infectious process.
    [Show full text]
  • Antimicrobial Use and Prevalence of Healthcare-Associated Infections in Acute and Long-Term Care Facilities December 2018
    . Europe’s journal on infectious disease epidemiology, prevention and control Special edition: Antimicrobial use and prevalence of healthcare-associated infections in acute and long-term care facilities December 2018 Featuring • Antimicrobial prescribing in long-term care facilities: a nationwide point- prevalence study, Slovenia, 2016 • Prevalence of healthcare-associated infections, estimated incidence and composite antimicrobial resistance index in acute care hospitals and long- term care facilities: results from two European point prevalence surveys, 2016 to 2017 • and more... www.eurosurveillance.org Editorial team Editorial advisors Based at the European Centre for Albania: Alban Ylli, Tirana Disease Prevention and Control (ECDC), Austria: Maria Paulke-Korinek, Vienna 169 73 Stockholm, Sweden Belgium: Koen de Schrijver, Antwerp; Tinne Lernout, Brussels Telephone number Bosnia and Herzegovina: Nina Rodić Vukmir, Banja Luka +46 (0)8 58 60 11 38 Bulgaria: Iva Christova, Sofia E-mail Croatia: Sanja Music Milanovic, Zagreb [email protected] Cyprus: Maria Koliou, Nicosia Czech Republic: Jan Kynčl, Prague Editor-in-chief Denmark: Peter Henrik Andersen, Copenhagen Dr Ines Steffens Estonia: Kuulo Kutsar, Tallinn Senior editor Finland: Outi Lyytikäinen, Helsinki Kathrin Hagmaier France: Judith Benrekassa, Paris Germany: Jamela Seedat, Berlin Scientific editors Greece: Rengina Vorou, Athens Janelle Sandberg Hungary: Ágnes Hajdu, Budapest Karen Wilson Iceland: Gudrun Sigmundsdottir, Reykjavík Assistant editors Ireland: Joan O
    [Show full text]