Inhibition of the Fungal Fatty Acid Synthase Type I Multienzyme Complex
Inhibition of the fungal fatty acid synthase type I multienzyme complex Patrik Johansson*, Birgit Wiltschi*, Preeti Kumari†, Brigitte Kessler*, Clemens Vonrhein‡, Janet Vonck†, Dieter Oesterhelt*§, and Martin Grininger*§ *Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; †Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt, Germany; and ‡Global Phasing Ltd., Sheraton House, Castle Park, Cambridge CB3 0AX, United Kingdom Communicated by Hartmut Michel, Max Planck Institute for Biophysics, Frankfurt, Germany, June 23, 2008 (received for review March 6, 2008) Fatty acids are among the major building blocks of living cells, isoniazid and triclosan, both inhibiting the ER step of bacterial making lipid biosynthesis a potent target for compounds with fatty acid biosynthesis (6, 7). Several inhibitors targeting the antibiotic or antineoplastic properties. We present the crystal ketoacyl synthase (KS) step of the FAS cycle have also been structure of the 2.6-MDa Saccharomyces cerevisiae fatty acid syn- described, including cerulenin (CER) (8), thiolactomycin (TLM) thase (FAS) multienzyme in complex with the antibiotic cerulenin, (9), and the recently discovered platensimycin (PLM) (10). The representing, to our knowledge, the first structure of an inhibited polyketide CER inhibits both FAS type I and II KS enzymes, by fatty acid megasynthase. Cerulenin attacks the FAS ketoacyl syn- covalent modification of the active site cysteine and by occupying thase (KS) domain, forming a covalent bond to the active site the long acyl-binding pocket (11, 12). TLM and PLM, in contrast, cysteine C1305. The inhibitor binding causes two significant con- have been shown to be selective toward the FAS II system, formational changes of the enzyme.
[Show full text]