Effects of Probenecid and Cimetidine on the Pharmacokinetics of Nemonoxacin Open Access to Scientific and Medical Research Doi

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Probenecid and Cimetidine on the Pharmacokinetics of Nemonoxacin Open Access to Scientific and Medical Research Doi Journal name: Drug Design, Development and Therapy Article Designation: Original Research Year: 2016 Volume: 10 Drug Design, Development and Therapy Dovepress Running head verso: Zhang et al Running head recto: Effects of probenecid and cimetidine on the pharmacokinetics of nemonoxacin open access to scientific and medical research doi: http://dx.doi.org/10.2147/DDDT.S95934 Open Access Full Text Article ORIGINAL RESEARCH Effects of probenecid and cimetidine on the pharmacokinetics of nemonoxacin in healthy Chinese volunteers Yi-fan Zhang1 Purpose: To investigate the effects of probenecid and cimetidine on the pharmacokinetics of Xiao-jian Dai1 nemonoxacin in humans. Yong Yang1 Methods: Two independent, open-label, randomized, crossover studies were conducted in Xiao-yan Chen1 24 (12 per study) healthy Chinese volunteers. In Study 1, each volunteer received a single oral Ting Wang2 dose of 500 mg of nemonoxacin alone or with 1.5 g of probenecid divided into three doses within Yun-biao Tang3 25 hours. In Study 2, each volunteer received a single oral dose of 500 mg of nemonoxacin alone or with multiple doses of cimetidine (400 mg thrice daily for 7 days). The plasma and urine Cheng-yuan Tsai4 nemonoxacin concentrations were determined using validated liquid chromatography–tandem Li-wen Chang4 mass spectrometry methods. Yu-ting Chang4 Results: Coadministration of nemonoxacin with probenecid reduced the renal clearance (CL ) 1 r Da-fang Zhong of nemonoxacin by 22.6%, and increased the area under the plasma concentration–time curve 1State Key Laboratory of Drug from time 0 to infinity (AUC0–∞) by 26.2%. Coadministration of nemonoxacin with cimetidine Research, Shanghai Institute of reduced the CL of nemonoxacin by 13.3% and increased AUC by 9.4%. Coadministration of Materia Medica, Chinese Academy of r 0–∞ Sciences, Shanghai, 2Department of nemonoxacin with probenecid or cimetidine did not significantly affect the maximum concentra- Pharmacy, The First Hospital Affiliated tion of nemonoxacin or the percentage of the administered dose recovered in the urine. to Lanzhou University, Lanzhou, Although probenecid reduced the CL and increased the plasma exposure of nem- 3Department of Pharmacy, The Conclusion: r General Hospital of Shenyang Military onoxacin, these effects are unlikely to be clinically meaningful at therapeutic doses. Cimetidine Region, Shenyang, People’s Republic had weaker, clinically meaningless effects on the pharmacokinetics of nemonoxacin. of China; 4TaiGen Biotechnology Co., Ltd., Taipei, Taiwan Keywords: nemonoxacin, probenecid, cimetidine, clinical pharmacokinetics, drug–drug interaction Introduction Nemonoxacin (TG-873870) is a novel nonfluorinated quinolone developed by TaiGen Biotechnology Co., Ltd (Taipei, Taiwan). It shows a broad spectrum of activity against Gram-positive, Gram-negative, and atypical pathogens,1,2 and it appears to be more potent than other fluorinated quinolones (FQs), including ciprofloxacin, levofloxacin, and moxifloxacin.3 Clinical studies have shown that nemonoxacin has good safety/ tolerability and efficacy profiles in the treatment of community-acquired pneumonia (CAP), superior to those of levofloxacin.4,5 The premarketing clinical studies for the oral formulation have been completed, and the Taiwan Food and Drug Administration Correspondence: Da-fang Zhong approved oral nemonoxacin for the treatment of CAP in March 2014 (Manufacturing State Key Laboratory of Drug licence No. 058540). Research, Shanghai Institute of Materia To further understand the safety and effectiveness of new drugs, drug–drug inter- Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, action (DDI) studies must be considered. Nemonoxacin is quickly and completely People’s Republic of China absorbed after its oral administration and has a half-life of 10–13 hours, which sup- Tel/fax +86 21 5080 0738 Email [email protected] ports its once-daily administration.6–8 Like other FQs, the absorption of nemonoxacin submit your manuscript | www.dovepress.com Drug Design, Development and Therapy 2016:10 357–370 357 Dovepress © 2016 Zhang et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you http://dx.doi.org/10.2147/DDDT.S95934 hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). Zhang et al Dovepress is reduced in the presence of polyvalent metal ions, such as mean body mass index (BMI) was 21.8±2.8 kg/m2 (range Al3+, Mg2+, and Fe2+, because of its ability to chelate with 19.6–23.9 kg/m2). In Study 2, one male volunteer withdrew metals.9 Because no major or minor metabolites of nemon- for personal reasons after the administration of cimetidine oxacin have been found in in vitro or in vivo studies,6–8 the on day 4 in Period 1. The other eleven volunteers completed risk of metabolism-related DDIs is very low. Mass balance the study and were included in the pharmacokinetic analysis. studies in healthy volunteers have shown that nemonoxacin is Their mean age was 21.8±1.6 years (range 18–24 years), predominantly eliminated by the kidney, and 50%–70% of the mean body weight was 58.4±3.9 kg (range 51–65 kg), and dose is excreted unchanged in the urine more than 72 hours mean BMI was 21.0±1.2 kg/m2 (range 19.7–23.2 kg/m2). after its administration.6–9 After its binding by plasma proteins The volunteers were in good health in terms of their medical is considered (16%), the renal clearance (CLr) of the free history, physical examination, electrocardiography (ECG), (unbound) fraction of nemonoxacin is 132–164 mL/min, and routine laboratory tests. None of the subjects had used which is greater than the normal glomerular filtration rate any drugs for $2 weeks before the study and alcohol was (GFR) (ie, 125 mL/min), suggesting active renal secretion of forbidden from 72 hours before the administration of the the unchanged drug. Because nemonoxacin primarily exists study drugs. All volunteers provided written informed con- as a zwitterion at physiological pH, it is likely to interact sent before enrollment. with organic anion transporters (OATs) and organic cation transporters (OCTs) in renal tubule cells. It is well docu- Study design mented that probenecid, which is actively secreted via the Two independent, open-label, randomized, two-treatment, renal tubules and has a high affinity for OATs and OCTs, two-sequence, two-period crossover studies were designed decreases the CLr of many FQs, including ciprofloxacin, to assess the effects of probenecid and cimetidine on the gemifloxacin, gatifloxacin, and levofloxacin.10–13 It was also pharmacokinetics of nemonoxacin in healthy volunteers. Both reported that coadministration of cimetidine, a competitive studies included a washout period of 7 days between each OCT2 inhibitor, significantly reduces the CLr of enoxacin, study period. In Study 1, each volunteer received a single oral fleroxacin, gemifloxacin, or levofloxacin (by 13%–28%).13–15 dose of 500 mg of nemonoxacin alone (Treatment A) or with Here, we performed two studies to determine the effects 500-mg oral doses of probenecid 1 hour prior to and 12 and 24 of probenecid and cimetidine on the pharmacokinetics of hours after the administration of nemonoxacin (Treatment B). nemonoxacin in healthy volunteers. In Study 2, each volunteer received a single oral dose of 500 mg of nemonoxacin alone (Treatment C) or with multiple Materials and methods doses of cimetidine (Treatment D). In Treatment D, 400 mg Study drugs of cimetidine was orally administered thrice daily for 7 days, Nemonoxacin malate capsules (250 mg of nemonoxacin and nemonoxacin was administered on day 5. In both studies, per capsule, Batch number: 12031007, Expiry date: March, nemonoxacin was orally administered to the subjects after an 2014) were provided by TaiGen Biotechnology Co., Ltd. overnight fast of $10 hours. No food was allowed for $4 hours Probenecid tablets (250 mg of probenecid per tablet, Batch after administration of the drug. Water was allowed as desired, number: 110502, Expiry date: May, 2014) were manufactured except 2 hours before and 2 hours after drug administration. by Shanghai Sine Pharmaceutical Co., Ltd (Shanghai, Peo- Study 1 was conducted at the General Hospital of Shenyang ple’s Republic of China) and Tagment® tablets (400 mg of Military Region and Study 2 was conducted at the First Hos- cimetidine per tablet, Batch number: 12100066, Expiry date: pital Affiliated to Lanzhou University. The protocols of Study July, 2014) were manufactured by GlaxoSmithKline (China) 1 and Study 2 were approved by the Independent Ethics Com- Investment Co., Ltd (London, UK). mittee of the General Hospital of Shenyang Military Region and the Independent Ethics Committee of the First Hospital Volunteers Affiliated to Lanzhou University, respectively. Twenty-four healthy Chinese volunteers were initially enrolled in the studies, with 12 volunteers (six males and six Safety evaluation females) per study. In Study 1, all 12 volunteers completed All the volunteers who participated in the studies were included the study and were included in the pharmacokinetic analyses. in the safety analysis. Safety was evaluated in terms of physi- Their mean age was 23.3±2.7 years (range 19–27 years), cal examinations, vital signs (blood pressure, pulse, respiratory mean body weight was 62.0±9.6 kg (range 58–80 kg), and rate, and body temperature), 12-lead ECG, laboratory tests 358 submit your manuscript | www.dovepress.com Drug Design, Development and Therapy 2016:10 Dovepress Dovepress Effects of probenecid and cimetidine on the pharmacokinetics of nemonoxacin (clinical chemistry, hematology, urinalysis, and serology), precision was ,5.5% and 7.1%, respectively.
Recommended publications
  • Paper I and II)
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1335 Constraints on up-regulation of drug efflux in the evolution of ciprofloxacin resistance LISA PRASKI ALZRIGAT ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 ISBN 978-91-554-9923-5 UPPSALA urn:nbn:se:uu:diva-320580 2017 Dissertation presented at Uppsala University to be publicly examined in B22, BMC, Husargatan 3, Uppsala, Friday, 9 June 2017 at 09:00 for the degree of Doctor of Philosophy (Faculty of Medicine). The examination will be conducted in English. Faculty examiner: Professor Fernando Baquero (Departamento de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain). Abstract Praski Alzrigat, L. 2017. Constraints on up-regulation of drug efflux in the evolution of ciprofloxacin resistance. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1335. 48 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9923-5. The crucial role of antibiotics in modern medicine, in curing infections and enabling advanced medical procedures, is being threatened by the increasing frequency of resistant bacteria. Better understanding of the forces selecting resistance mutations could help develop strategies to optimize the use of antibiotics and slow the spread of resistance. Resistance to ciprofloxacin, a clinically important antibiotic, almost always involves target mutations in DNA gyrase and Topoisomerase IV. Because ciprofloxacin is a substrate of the AcrAB-TolC efflux pump, mutations causing pump up-regulation are also common. Studying the role of efflux pump-regulatory mutations in the development of ciprofloxacin resistance, we found a strong bias against gene-inactivating mutations in marR and acrR in clinical isolates.
    [Show full text]
  • NEW ANTIBACTERIAL DRUGS Drug Pipeline for Gram-Positive Bacteria
    NEW ANTIBACTERIAL DRUGS Drug pipeline for Gram-positive bacteria Françoise Van Bambeke, PharmD, PhD Paul M. Tulkens, MD, PhD Pharmacologie cellulaire et moléculaire Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium http://www.facm.ucl.ac.be Based largely on presentations given at the 24th and 25th European Congress of Clinical Microbiology and Infectious Diseases and the 54th Interscience Conference on Antimicrobial Agents and Chemotherapy 22/05/2015 Gause Institute for New Antibiotics: the anti-Gram positive pipeline 1 Disclosures Research grants for work on investigational compounds discussed in this presentation from • Cempra Pharmaceuticals • Cerexa • GSK • Melinta therapeutics • The Medicine Company • MerLion Pharmaceuticals • Theravance • Trius 22/05/2015 Gause Institute for New Antibiotics: the anti-Gram positive pipeline 2 Belgium 22/05/2015 Gause Institute for New Antibiotics: the anti-Gram positive pipeline 3 Belgium 10 millions inhabitants … 10 Nobel prizes (10/850) • Peace - Institute of International Law, Ghent (1904) - Auguste Beernaert (1909) - Henri Lafontaine (1913) - Father Dominique Pire (1958) • Literature - Maurice Maeterlinck, Ghent (1911) • Medicine - Jules Bordet, Brussels (1919) - Corneille Heymans, Ghent (1938) - Christian de Duve, Louvain (1974) - Albert Claude, Brussels (1974) • Chemistry - Ilya Prigogyne, Brussels (1977) - Physics - François Englert, Brussels (2013) 22/05/2015 Gause Institute for New Antibiotics: the anti-Gram positive pipeline 4 The Catholic University of Louvain in brief (1 of 4) • originally founded in 1425 in the city of Louvain (in French and English; known as Leuven in Flemish) 22/05/2015 Gause Institute for New Antibiotics: the anti-Gram positive pipeline 5 The Catholic University of Louvain in brief (2 of 4) • It was one of the major University of the so-called "Low Countries" in the 1500 – 1800 period, with famous scholars and discoverers (Vesalius for anatomy, Erasmus for philosophy, …).
    [Show full text]
  • Antimicrobial Pipeline and Drug Development
    Antimicrobial Pipeline and Drug Development Alasdair MacGowan Bristol Centre for Antimicrobial Research & Evaluation North Bristol NHS Trust & University of Bristol BRISTOL UK Topics: - Background - The present situation - Drugs recently approved and in late development - Future issues - Conclusions Background: Not enough new antibacterials or companies active in the therapeutic area FDA Approvals of new antibacterials 1983-2015 (Boucher et al, 2013, updated FDA website) Years Antibacterial approved 1983-1987 16 1988-1992 14 1993-1997 10 1998-2002 6 2003-2007 5 2008-2012 2 2013-2015 6 (ceftazidime+avibactam; dalbavancin; oritavancin; tedizolid; telavancin; Ceftolozane+tazobactam) Active corporate antibacterial programmes: 1940 - onwards (Kinch et al, 2014) Year Active programme 1940 1 1950 4 1960 9 1970 22 1980 26 1990 29 2000 31 2010 12 2013 9 Why are there so few drugs and companies? Few novel modes of action Increasing regulatory demands (manufacture, safety, efficacy) Trial designs (superiority vs non-inferiority) Infection control interventions Highly saturated market High generic competition Conservative prescribers Short course therapy Cost containment Antimicrobial resistance - Means less attractive commercially than other therapeutic areas Drug development takes a long time (Paul et al, 2010; Rex, 2015) Discovery 72 leads 3 Pre-clinical 36 candidates 10 years Clinical trials Phase 1 18 6 Phase 2 6 Phase 3 3 7 years Regulator review/approval 1-2 Start now and you may have approval by 2025-2030 Determinants impacting
    [Show full text]
  • WO 2018/048944 Al 15 March 2018 (15.03.2018) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/048944 Al 15 March 2018 (15.03.2018) W !P O PCT (51) International Patent Classification: A61K38/1 7 (2006.01) C07K 14/575 (2006.01) A61P 3/00 (2006.01) A61K 38/22 (2006.01) (21) International Application Number: PCT/US2017/050334 (22) International Filing Date: 06 September 2017 (06.09.2017) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 62/383,957 06 September 2016 (06.09.2016) US (71) Applicant: LA JOLLA PHARMCEUTICAL COMPA¬ NY [US/US]; 10182 Telesis Court, 6th Floor, San Diego, CA 92121 (US). (72) Inventors: TD3MARSH, George; 45 Tintern Lane, Porto- la Valley, CA 94028 (US). CHAWLA, Lakhmir; 10586 Abalone Landing Ter, San Diego, CA 92 130 (US). = (74) Agent: HALSTEAD, David, P. et al; Foley Hoag LLP, = 155 Seaport Boulevard, Boston, MA 02210-2600 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, = AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, = CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, = DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, = HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, = KR, KW,KZ, LA, LC, LK, LR, LS, LU, LY,MA, MD, ME, = MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, = OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, = SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, ≡ TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Summary Report on Antimicrobials Dispensed in Public Hospitals
    Summary Report on Antimicrobials Dispensed in Public Hospitals Year 2014 - 2016 Infection Control Branch Centre for Health Protection Department of Health October 2019 (Version as at 08 October 2019) Summary Report on Antimicrobial Dispensed CONTENTS in Public Hospitals (2014 - 2016) Contents Executive Summary i 1 Introduction 1 2 Background 1 2.1 Healthcare system of Hong Kong ......................... 2 3 Data Sources and Methodology 2 3.1 Data sources .................................... 2 3.2 Methodology ................................... 3 3.3 Antimicrobial names ............................... 4 4 Results 5 4.1 Overall annual dispensed quantities and percentage changes in all HA services . 5 4.1.1 Five most dispensed antimicrobial groups in all HA services . 5 4.1.2 Ten most dispensed antimicrobials in all HA services . 6 4.2 Overall annual dispensed quantities and percentage changes in HA non-inpatient service ....................................... 8 4.2.1 Five most dispensed antimicrobial groups in HA non-inpatient service . 10 4.2.2 Ten most dispensed antimicrobials in HA non-inpatient service . 10 4.2.3 Antimicrobial dispensed in HA non-inpatient service, stratified by service type ................................ 11 4.3 Overall annual dispensed quantities and percentage changes in HA inpatient service ....................................... 12 4.3.1 Five most dispensed antimicrobial groups in HA inpatient service . 13 4.3.2 Ten most dispensed antimicrobials in HA inpatient service . 14 4.3.3 Ten most dispensed antimicrobials in HA inpatient service, stratified by specialty ................................. 15 4.4 Overall annual dispensed quantities and percentage change of locally-important broad-spectrum antimicrobials in all HA services . 16 4.4.1 Locally-important broad-spectrum antimicrobial dispensed in HA inpatient service, stratified by specialty .
    [Show full text]
  • WHO Report on Surveillance of Antibiotic Consumption: 2016-2018 Early Implementation ISBN 978-92-4-151488-0 © World Health Organization 2018 Some Rights Reserved
    WHO Report on Surveillance of Antibiotic Consumption 2016-2018 Early implementation WHO Report on Surveillance of Antibiotic Consumption 2016 - 2018 Early implementation WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation ISBN 978-92-4-151488-0 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution- NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons. org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non- commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • Visão De Futuro Para Produção De Antibióticos: Tendências De Pesquisa, Desenvolvimento E Inovação
    UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CRISTINA D’URSO DE SOUZA MENDES SANTOS VISÃO DE FUTURO PARA PRODUÇÃO DE ANTIBIÓTICOS: TENDÊNCIAS DE PESQUISA, DESENVOLVIMENTO E INOVAÇÃO Rio de Janeiro EQ/UFRJ 2014 CRISTINA D ’U RSO DE SOUZA MENDES SANTOS VISÃO DE FUTURO PARA A PRODUÇÃO DE ANTIBIÓTICOS: TENDÊNCIAS DE PESQUISA, DESENVOLVIMENTO E INOVAÇÃO Tese de Doutorado apresentada ao Programa de Pós-Graduação em Tecnologia de Processos Químicos e Bioquímicos, Escola de Química, Universidade Federal do Rio de Janeiro, como requisito parcial à obtenção do título de Doutor em Ciências, D.Sc. Orientadora: Profa. Adelaide Maria de Souza Antunes, D.Sc. Rio de Janeiro 2014 Santos, Cristina d’Urso de Souza Mendes. Visão de futuro para produção de antibióticos: tendências de pesquisa, desenvolvimento e inovação / Cristina d’Urso de Souza Mendes Santos. - Rio de Janeiro, 2014. 216 f.: il.; 29,7 cm. Tese (Doutorado em Ciências) – Universidade Federal do Rio de Janeiro, Escola de Química, Programa de Pós-Graduação em Tecnologia de Processos Químicos e Bioquímicos, Rio de Janeiro, 2014. Orientadora: Adelaide Maria de Souza Antunes. 1. Antibióticos. 2. P&D na Indústria Farmacêutica. 3. Prospecção Tecnológica. 4. Patentes. I. Antunes, Adelaide Maria de Souza. II. Universidade Federal do Rio de Janeiro. Escola de Química. III. Visão de futuro para a produção de antibióticos: tendências de pesquisa, desenvolvimento e inovação. iv v Dedico esta tese à minha mãe querida e amada, que está no céu comemorando esta vitória, que é mais dela do que minha. Dedico também à minha filhinha Malu que sem entender foi a minha maior motivação para concluir esta tese.
    [Show full text]
  • In-Vitro Activity of Nemonoxacin Against Streptococcus Pneumoniae and Haemophilus Influenzae
    EV0440 IN-VITRO ACTIVITY OF NEMONOXACIN AGAINST STREPTOCOCCUS PNEUMONIAE AND HAEMOPHILUS INFLUENZAE 1* 1 1 1 2 2 Kozlov R.S. , Dekhnich A.V. , Sukhorukova M.V. , Edelstein M.V. , Chernavin A.V. , Samsonov M.Y. 1 Institute of Antimicrobial Chemotherapy, Smolensk, RU; 2 “R-Pharm”, Moscow, RU * E-mail: [email protected] 27th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID), 22 - 25 April 2017, Vienna, Austria Table 1. Results of susceptibility testing of S.pneumoniae (n=200) Table 2. MIC distributions for S.pneumoniae (n=200) Background S(%) I(%) R(%) % of strains tested with MIC, mg/l Antimicrobial MIC MIC Antimicrobial 50 90 EUCAST CLSI EUCAST CLSI EUCAST CLSI 0.004 0.008 0.015 0.03 0.06 0.125 0.25 0.5 1 2 4 8 16 32 64 128 256 Amoxicillin 0.03 2 NA 95.5 NA 1.5 NA 3.0 Amoxicillin 61.0 4.5 4.0 4.5 3.0 12.5 6.0 1.5 3.0 Nemonoxacin is a new non-fluorinated quinolone Azithromycin 27.0 34.0 0.5 2.0 0.5 3.5 3.5 2.0 0.5 0.5 1.0 25.0 Azithromycin 0.06 128 63.5 64.0 0.5 3.5 36.0 32.5 Cefixime 7.5 38.5 16.0 7.5 3.5 4.0 4.5 6.0 3.0 3.5 3.0 2.0 1.0 antimicrobial agent in the late stage of clinical NA NA NA NA NA NA Cefixime 0.25 16 Ceftaroline 8.0 49.0 8.5 5.5 5.5 12.0 9.5 1.5 0.5 development.
    [Show full text]
  • A Mini Review on the Study of New Broad-Spectrum Antimicrobial Fluoroquinolone JNJ-Q2
    Avens Publishing Group Inviting Innovations Open Access Case Study J Chem Applications June 2014 Volume 1 Issue 1 © All rights are reserved by Mohammad Asif AvensJournal Publishing of Group InviChemistryting Innovations & A Mini Review on the Study Applications Mohammad Asif* of New Broad-Spectrum Department of Pharmacy, GRD (PG) Institute of Management & Technology, Dehradun, (Uttarakhand), 248009, India Address for Correspondence Antimicrobial Fluoroquinolone Mohammad Asif, Department of Pharmacy, GRD (PG) Institute of Management & Technology, Dehradun, Uttarakhand, 248009, India, E-mail: [email protected] JNJ-Q2 Copyright: © 2014 Asif M. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Keywords: Antimicrobial; Anticancer; Fluoroquinolone; New drug; Submission: 03 April 2014 JNJ-Q2 Accepted: 29 May 2014 Abstract Published: 04 June 2014 The prokaryotic type II topoisomerases (DNA gyrase and topoisomerase IV) and the eukaryotic type II topoisomerases represent quinolones are distinguished from the antibacterial quinolones [7,8] the cellular targets for quinolone antibacterial and anticancer agents. Both enzymes effort the selectively shift from an antibacterial and are preferentially target the different prokaryotic and eukaryotic to an antitumor activity. In the search for potential molecule in the type II topoisomerases [9] (Figure 1). quinolones series, some of quinolone analogs displayed antibacterial and cytotoxic activities. The newly developed quinolone JNJ-Q2 is Generations of Quinolones a broad-spectrum fluoroquinolone, has activity against pathogenic bacteria but its anticancer activity is still disclosed. The studies The quinolones are divided into generations based on their demonstrated that quinolone series changes the biological profile antibacterial spectrum.
    [Show full text]
  • Newer Antibiotics: Need for More Studies in Neonates and Children Jeeson C Unni
    ANTIMICROBIALS Newer Antibiotics: Need for More Studies in Neonates and Children Jeeson C Unni ABSTRACT This article reviews few trials assessing the use of newer antibiotics in the neonates and children. Published data show that more studies are conducted in the adult population (50 times) when compared to children with respect to the testing of newer antibiotics. The figures are approximately 177 and 580 times more as compared to neonatal and preterm babies, respectively. Although there is paucity of data in the pediatric domain, carbavance (meropenem + vaborbactam) and solithromycin deserve special mention, as they are currently being used in pediatric clinical trials. Keywords: New antibiotics, Pediatric population, Resistance. Pediatric Infectious Disease (2019): 10.5005/jp-journals-10081-1212 INTRODUCTION IAP Drug Formulary, Aster Medcity, Kochi, Kerala, India Ninety-one years after the invention of penicillin, a silent epidemic Corresponding Author: Jeeson C Unni, IAP Drug Formulary, Aster of antibiotic resistance is emerging. There is a dearth of new Medcity, Kochi, Kerala, India, Phone: +91 9847245207, e-mail: antibiotics to fall back upon. Newly approved antibiotics tend to [email protected] be reserved as a last line of defense against multidrug-resistant How to cite this article: Unni JC. Newer Antibiotics: Need for More (MDR) infections, thus minimizing its sales value. Drugs on which Studies in Neonates and Children. Pediatr Inf Dis 2019;1(4):164–168. millions are spent on research and development (R&D) sometimes, Source of support: Nil therefore, do not see the light of day. This is a major deterrent for Conflict of interest: None investment in R&D by pharmaceuticals, which has resulted in a bleak future for development of new antibiotic molecules.
    [Show full text]
  • Antibiotics Currently in Global Clinical Development Note: This Data Visualization Was Updated in September 2018 with New Data
    A data table from Sept 2018 Antibiotics Currently in Global Clinical Development Note: This data visualization was updated in September 2018 with new data. As of June 2018, approximately 42 new antibiotics with the potential to treat serious bacterial infections are in clinical development. The success rate for clinical drug development is low; historical data show that, generally, only 1 in 5 infectious disease products that enter human testing (phase 1 clinical trials) will be approved for patients.* Below is a snapshot of the current antibiotic pipeline, based on publicly available information and informed by external experts. Please note that this resource focuses exclusively on small molecule products that act systemically (drugs that work throughout the body), contain at least one component not previously approved, and have the potential to treat serious or life-threatening infections.1 In September 2017, the antibiotics pipeline was expanded to include products in development globally. Because this resource is updated periodically, footnote numbers may not be sequential. Please contact [email protected] with additions or updates. Expected Expected activity activity against against CDC Development Drug name Company Drug class Target resistant Gram- urgent or WHO Potential indication(s)?5 phase2 negative ESKAPE critical threat pathogens?3 pathogen?4 Approved for: Complicated urinary tract Melinta infections including pyelonephritis; other Vabomere β-lactam (carbapenem) Approved Aug. 30, Therapeutics Inc. potential indications: complicated (meropenem + + β-lactamase inhibitor PBP, β-lactamase Yes Yes (CRE) 2017 (U.S. FDA) (formerly The intra-abdominal infections, hospital- vaborbactam) (cyclic boronate)11,13 Medicines Co.) acquired bacterial pneumonia/ventilator- associated bacterial pneumonia Approved for: Complicated urinary tract infections including acute pyelonephritis; Zemdri Approved June 26, 30S subunit of other potential indications: hospital- Achaogen Inc.
    [Show full text]
  • Dostupnost Antiinfektiv V České Republice
    aktuálně ročník 27 | číslo 5/2017 LÉKY A PRÁVO Dostupnost antiinfektiv v České republice MVDr. Veronika Valdová Arete‑Zoe, LLC Souhrn Valdová V. Dostupnost antiinfektiv v České republice. Remedia 2017; 27: 509–513. na Seznamu nepostradatelných léčiv Světové zdravotnické organizace figuruje 119 antiinfektiv, z nichž v České republice není registrováno 29. Dalších 10 léčiv je registrováno, ale neobchodováno. Dostupnost antibiotik a dalších nezbytných léčiv má přímý dopad na klinickou praxi. Příkladem je aktuali- zovaný postup pro léčbu sepse a septického šoku, který doporučuje deeskalaci a zacílení na identifikovaný patogen ihned po jeho identifikaci z důvodu snížení zátěže pro organismus pacienta. aktualizované léčebné postupy je nutno brát v úvahu při sestavování národních seznamů nepostradatelných léčiv. Z nepostradatelných tuberkulostatik a antivirotik chybějí v ČR některé fixní kombinace určené pro první linii léčby tuberkulózy a HIV/aIDS. Padělky léčivých přípravků a nedoléčené infekce jsou hlavními příčinami vzniku multirezistentních kmenů původce tuberkulózy. Z hyperimunních sér v ČR chybí sérum proti záškrtu. Vakcíny se potýkají s celosvětovým nedostatkem v důsledku délky a náročnosti výroby. Klíčová slova: antiinfektiva – nepostradatelná léčiva – dostupnost léčiv – nedostatek léčiv – tuberkulóza – HIV/aIDS – sepse. Summary Valdova V. Availability of antiinfectives in the Czech Republic. Remedia 2017; 27: 509–513. the World Health Organization (WHO) lists 119 antiinfectives on the list of essential medicines. Of these, 29 are not registered in the Czech Republic, and another 10 are registered but not marketed. availability of antimicrobials and other essential medicines directly affects clinical practice. One such example is the newly revised guidelines for the treatment of sepsis and septic shock, which recommends deescalation of antibiotic treatment and targeting the causative pathogen immediately after its identification to minimize toxicity to the patient’s metabolism.
    [Show full text]