Final Report Project: Programme for the Conservation of Cuban Cacti
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Forest Inventory and Analysis National Core Field Guide
National Core Field Guide, Version 5.1 October, 2011 FOREST INVENTORY AND ANALYSIS NATIONAL CORE FIELD GUIDE VOLUME I: FIELD DATA COLLECTION PROCEDURES FOR PHASE 2 PLOTS Version 5.1 National Core Field Guide, Version 5.1 October, 2011 Changes from the Phase 2 Field Guide version 5.0 to version 5.1 Changes documented in change proposals are indicated in bold type. The corresponding proposal name can be seen using the comments feature in the electronic file. • Section 8. Phase 2 (P2) Vegetation Profile (Core Optional). Corrected several figure numbers and figure references in the text. • 8.2. General definitions. NRCS PLANTS database. Changed text from: “USDA, NRCS. 2000. The PLANTS Database (http://plants.usda.gov, 1 January 2000). National Plant Data Center, Baton Rouge, LA 70874-4490 USA. FIA currently uses a stable codeset downloaded in January of 2000.” To: “USDA, NRCS. 2010. The PLANTS Database (http://plants.usda.gov, 1 January 2010). National Plant Data Center, Baton Rouge, LA 70874-4490 USA. FIA currently uses a stable codeset downloaded in January of 2010”. • 8.6.2. SPECIES CODE. Changed the text in the first paragraph from: “Record a code for each sampled vascular plant species found rooted in or overhanging the sampled condition of the subplot at any height. Species codes must be the standardized codes in the Natural Resource Conservation Service (NRCS) PLANTS database (currently January 2000 version). Identification to species only is expected. However, if subspecies information is known, enter the appropriate NRCS code. For graminoids, genus and unknown codes are acceptable, but do not lump species of the same genera or unknown code. -
Redalyc.A Study of the Dry Forest Communities in the Dominican
Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil GARCÍA-FUENTES, ANTONIO; TORRES-CORDERO, JUAN A.; RUIZ-VALENZUELA, LUIS; LENDÍNEZ-BARRIGA, MARÍA LUCÍA; QUESADA-RINCÓN, JUAN; VALLE- TENDERO, FRANCISCO; VELOZ, ALBERTO; LEÓN, YOLANDA M.; SALAZAR- MENDÍAS, CARLOS A study of the dry forest communities in the Dominican Republic Anais da Academia Brasileira de Ciências, vol. 87, núm. 1, marzo, 2015, pp. 249-274 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32738838023 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anais da Academia Brasileira de Ciências (2015) 87(1): 249-274 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201520130510 www.scielo.br/aabc A study of the dry forest communities in the Dominican Republic ANTONIO GARCÍA-FUENTES1, JUAN A. TORRES-CORDERO1, LUIS RUIZ-VALENZUELA1, MARÍA LUCÍA LENDÍNEZ-BARRIGA1, JUAN QUESADA-RINCÓN2, FRANCISCO VALLE-TENDERO3, ALBERTO VELOZ4, YOLANDA M. LEÓN5 and CARLOS SALAZAR-MENDÍAS1 1Departamento de Biología Animal, Biología Vegetal y Ecología, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus Las Lagunillas, s/n, 23071 Jaén, España 2Departamento de Ciencias Ambientales, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Avda. Carlos III, s/n, 45071 Toledo, España 3Departamento de Botánica, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva, Avda. -
Mission to the Caribbean-Final Report
THE STATUS OF CACTOBLASTIS CACTORUM (LEPIDOPTERA: PYRALIDAE) IN THE CARIBBEAN AND THE LIKELIHOOD OF ITS SPREAD TO MEXICO Report* to the International Atomic Energy Agency (IAEA), Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture and the Plant Health General Directorate, Mexico (DGSVB/SAGARPA) as part of the TC Project MEX/5/029 Helmuth G. Zimmermann¹, Mayra Pérez Sandi y Cuen² and Arturo Bello Rivera³ ¹Helmuth Zimmermann & Associates, Pretoria, South Africa. ² Consultant to SAGARPA, Mexico D.F. ³SAGARPA, Plant Health, Mexico D.F. © IAEA 2005 The islands surveyed during this mission included: Puerto Rico, Dominican Republic, Antigua, Montserrat, St. Kitts, Jamaica and Grand Cayman (funded by the IAEA). *This report also includes information and conclusions by the second author (Mayra Perez Sandi) who visited and surveyed the following islands in the Lesser Antilles: Guadeloupe, Dominique, Trinidad and Tobago, Chacachacare, Grenada, St. Vicent, Bequia, Barbados, St. Lucia, Martinique and Chevalier. This part of the survey was funded by PRONATURA NORESTE, FMCN Y USAID. 1 EXECUTIVE SUMMARY The cactus moth, Cactoblastis cactorum (Berg) , which has become the textbook example of successful biological weed control of invasive Opuntia species in many countries, including some Caribbean islands, is now threatening not only the lucrative cactus pear industry in Mexico, but also the rich diversity of all Opuntia species in most of the North American mainland. Already threatened species in Mexico could go extinct. The moth is now present on most Caribbean islands as a consequence of mostly deliberate or accidental introductions by man, or through natural spread. Although there is convincing evidence that Cactoblastis reached Florida inadvertently conveyed by the nursery trade, there also exists the slight possibility of natural spread and by means of cyclonic weather events. -
Research Notes
Research Notes GEOGRAPHICAL DISTRIBUTION AND HOST PLANTS OF THE CACTUS MOTH, CACTOBLASTIS CACTORUM (BERG) IN PUERTO RICO AND THE UNITED STATES VIRGIN ISLANDS The cactus moth, Caddblastis cadorum (Berg)1, was described from Argentina in 1885 in the genus Zophodia. Ragonot2 transferred the species to the genus Caddblastis in his 1901 monograph. C. cadorum occurs endemically in the more northern provinces of Argen tina: Entre Ríos, Corrientes, Santa Fe, the northern part of Córdoba, Santiago del Estero, Tucumán, Salta, Juyuy and the Chaco. In Uruguay, it has been recorded along the Uruguay and Plata Rivers from Piriápolis in the south, northward to Salta. The distribution extends from Corrientes in northeastern Argentina northward through Paraguay, where the insect has been observed at Villa de la Concepción and in the vicinity of Asunción, into the Brazilian province of Matto Grosso, where the larva has been recorded at Corumba on the Paraguay River. Heinrich3'4 discussed this species taxonomically in his 1939 and 1956 revisions of the moths belonging to the Phycitinae (Lepidoptera). The most complete account on the biological control of this species was given by Dodd6 in 1940, while Mann6 in 1969 furnished an excellent account of the distribution, host plants and biology of C. cadorum. Simmonds and Bennett7 in 1966 discussed the introduction and host plants of the moth into the Leeward Islands of the West Indies (Nevis, Montserrat, Antigua, St. Kitts). The eggs of Caddblastis cadorum are laid in chains or egg sticks generally at the end of a cactus spine (fig. 1, A). It is well known that larvae (fig. -
The Flora of Desecheo Island, Puerto Rico
The Flora of Desecheo Island, Puerto Rico Roy C. Woodbury, Luis F. Mariorell, and José C. Garcia Tudurt1 INTRODUCTION A report on the flora of Puerto Rico and the Virgin Islands was published during the period 1923 to 1930 as volumes V and VI of the Scientific Survey of Porto Rico and the Virgin Islands in 8 parts (4 parts to each volume). The first four parts of volume V and parts 1, 2 and 4 of volume VI are by N. L. Britton and Percy Wilson (S).2 Part 3 of volume VI included the end of part 2 and an Appendix on the Spermatophyta; most of the text however covered the Pteridophyta (ferns and fern-allies) written by William R. Maxon (18). Numerous citations occur in this monumental work to the flora of smaller islands and kej^s adjacent to Puerto Rico, namely: Vieques, Culebra, Mona, Muertos, Icacos, and Desecheo. Dr. Britton and his colleagues visited many of these islands; often making only superficial surveys and without devoting enough time to the collection of plant material. It also must be noted that several of these islands were visited but one time and this often during dry periods of the year. Our knowledge of the flora for each of these areas thus was incomplete. With such gaps in scientific knowledge in mind, the present authors decided to revise the flora of these islands and keys. This project is initiated with the present paper on the vegetation of Desecheo Island. We believe that this and other similar papers to follow will contribute much to a better knowledge of the flora of the Caribbean-Antillean Region, and may en courage further studies in other Caribbean areas. -
Heterochrony and Its Role in Sex Determination of Cryptically Dioecious Consolea (Cactaceae) Staminate Flowers
See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/229728185 Heterochrony and its role in sex determination of cryptically dioecious Consolea (Cactaceae) staminate flowers ARTICLE in BOTANICAL JOURNAL OF THE LINNEAN SOCIETY · JANUARY 2008 Impact Factor: 2.7 · DOI: 10.1111/j.1095-8339.2007.00754.x CITATIONS DOWNLOADS VIEWS 4 38 129 3 AUTHORS: Lara Strittmatter R. James Hickey University of Massachusetts Medical School Miami University 11 PUBLICATIONS 65 CITATIONS 24 PUBLICATIONS 254 CITATIONS SEE PROFILE SEE PROFILE V. Negrón‐Ortiz U.S. Fish and Wildlife Service 24 PUBLICATIONS 168 CITATIONS SEE PROFILE Available from: V. Negrón‐Ortiz Retrieved on: 15 September 2015 Botanical Journal of the Linnean Society, 2008, 156, 305–326. With 7 figures Heterochrony and its role in sex determination of cryptically dioecious Consolea (Cactaceae) staminate flowers LARA I. STRITTMATTER, R. JAMES HICKEY* and VIVIAN NEGRÓN-ORTIZ Botany Department, Miami University, Oxford, OH 45056, USA Received 22 May 2006; accepted for publication 27 September 2007 Ovule development, megasporogenesis, and megagametogenesis were studied in six cryptically dioecious species of Consolea. All species showed uniform development typical for the Opuntioideae. Ovule development proceeds acropetally, but shows developmental asynchrony across floral morphs. At anthesis, female morph ovules are functional and available for fertilization, whereas staminate flower ovules are senescing and incapable of being fertilized. In occasional plants of some species, staminate flowers may reach anthesis with a few functional apical ovules capable of seed formation. Such plants are described as inconstant/leaky males. Ovule fertility differences across morphs are interpreted as resulting from heterochronic ovule development and senescence, although variation in embryo sac longevity cannot be ruled out. -
Forest Inventory and Analysis National Urban Fia Plot Field Guide
FOREST INVENTORY AND ANALYSIS NATIONAL URBAN FIA PLOT FIELD GUIDE FIELD DATA COLLECTION PROCEDURES FOR URBAN FIA PLOTS Southern Research Station Version 7.2.1 FOREST SERVICE U.S. DEPARTMENT OF AGRICULTURE April 2018 National Urban FIA Plot Field Guide, Version 7.2.1 SRS Edition April 2018 Note to User: URBAN FIA Field Guide 7.2.1 is based on the National CORE Field Guide, Version 7.2; with the exception of Section 5.9, Section 5.9.2, and Appendix 6, which are based on the National CORE Field Guide, Version 8.0. Data elements are national CORE unless indicated as follows: National CORE data elements that end in “+U” (e.g., x.x+U) have had values, codes, or text added, changed, or adjusted from the CORE program. Any additional URBAN FIA text for a national CORE data element is hi-lighted or shown as an "Urban Note". All URBAN FIA data elements end in “U” (e.g., x.xU). The text for an URBAN FIA data element is not hi- lighted and does not have a corresponding variable in CORE. URBAN FIA electronic file notes: o national CORE data elements that are not applicable in URBAN FIA are formatted as light gray or light gray hidden text. o hyperlink cross-references are included for various sections, figures, and tables. *National CORE data elements retain their national CORE field guide data element/variable number but may not retain their national CORE field guide location or sequence within the guide. 1 National Urban FIA Plot Field Guide, Version 7.2.1 SRS Edition April 2018 CHANGES FROM THE URBAN FIA PLOT FIELD GUIDE VERSION 7.2 TO 7.2.1 - ABRIDGED ......... -
Evolutionary Patterns of Host Plant Use by Delphacid Planthoppers
population dynamics. Plant de specificity are considered with 1 crop varieties resistant to del- plant architecture on the abun n Chapter 3 (Denno). Species Evolutionary Patterns of Host Plant ' geographic and plant patch Use by Delphacid Planthoppers and density and plant diversity on l. The causal mechanisms for Their Relatives 1 and persistence are discussed its such as dispersal ability and ization and persistence. Stephen W. Wilson, Charles Mitter, Robert F. Denno and Michael R. Wilson Introduction Planthoppers (Homoptera: Fulgoroidea) are found on every continent ex cept Antarctica and in all major biomes, including tropical rainforests, deserts, grasslands, and the arctic tundra (O'Brien and Wilson 1985). The more than 9000 described species are divided into 19 families (O'Brien and Wilson 1985; Wheeler and Wilson 1987). All species of Fulgoroidea are phytophagous, sucking fluids from leaves, stems, roots, or fungal hyphae. There are species which feed on woody plants (both angiosperms and gymnosperms), herbs, ferns, and even fungi (O'Brien and Wilson 1985). The largest and most studied family of planthoppers is the Delphacidae which includes more than 2000 species in approximately 300 genera and 6 subfamilies (Asche 1985, 1990). Most continental delphacids are associated with monocots, particularly grasses and sedges (Wilson and O'Brien 1987; Denno and Roderick 1990 ), whereas some species, especially those on oceanic archipelagos, have radiated on dicots as well (Giffard 1922; Zim merman 1948). Their predilection for monocots, phloem-feeding habit, oviposition behavior and ability to transmit pathogens have contributed to the severe pest status of several delphacid species on rice, corn, sugarcane, and several cereal crops (Wilson and O'Brien 1987). -
Desecheo National Wildlife Refuge
Desecheo National Wildlife Refuge Comprehensive Conservation Plan U.S. Department of the Interior Fish and Wildlife Service Southeast Region September 2012 Desecheo National Wildlife Refuge COMPREHENSIVE CONSERVATION PLAN DESECHEO NATIONAL WILDLIFE REFUGE Mayaguez, Puerto Rico U.S. Department of the Interior Fish and Wildlife Service Southeast Region Atlanta, Georgia September 2012 Desecheo National Wildlife Refuge TABLE OF CONTENTS COMPREHENSIVE CONSERVATION PLAN I. BACKGROUND ................................................................................................................................. 1 Introduction ...................................................................................................................................1 Purpose and Need for the Plan ....................................................................................................1 U.S. Fish and Wildlife Service ......................................................................................................2 National Wildlife Refuge System ..................................................................................................2 Legal and Policy Context ..............................................................................................................4 Legal Mandates, Administrative and Policy Guidelines, and Other Special Considerations .............................................................................................4 Biological Integrity, Diversity, and Environmental Health Policy .........................................5 -
University of Florida Thesis Or Dissertation Formatting
THE EVOLUTION AND SYSTEMATICS OF THE Opuntia humifusa COMPLEX By LUCAS C. MAJURE A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2012 1 © 2012 Lucas C. Majure 2 To my amazing and ever-supportive parents, Terrence and Diana Majure, my incredible wife Mariela Pajuelo, and beautiful son Gabriel 3 ACKNOWLEDGMENTS I thank my advisors, Drs. Douglas E. and Pam S. Soltis, and Walter S. Judd for their utmost support, enthusiasm, critical guidance, and encouragement throughout my PhD program. I thank my committee member Marc Branham for his help and ideas with my project. I also thank current and former members of the Soltis Lab (Monica Arakaki, Samuel Brockington, Charlotte Germain-Aubrey, Maribeth Latvis, Nicolas Miles, Michael J. Moore, Stein Servick, Victor Suarez), the herbarium FLAS (Richard Abbott, Paul Corogin, Lorena Endara, Mark Whitten, Kurt Neubig, Kent Perkins, Norris Williams), and the Department of Biology for their support and help throughout my degree. I thank my collaborators, Raul Puente, M. Patrick Griffith, and Donald J. Pinkava for their expertise. I also thank those institutions and people who provided me with specimens for use in this work and/or aided with fieldwork: Desert Botanical Garden (DBG), Eastern Kentucky University herbarium (EKY), Huntington Botanical Garden (HBG), Illinois Natural History Survey (ILLS), Louisiana State University herbarium (LSU), Miami University Herbarium (MU), Missouri Botanical Garden (MO), New York Botanical Garden (NY), Rancho Santa Ana Botanical Garden, Smithsonian Institution (US), Troy University herbarium (TROY), University of Alabama (UNA), University of Miami herbarium (MU), University of Michigan herbarium (MICH), University of North Carolina (UNC), University of Tennessee herbarium (TENN), University of Wisconsin (WIS). -
Ipc-Cactoblastis-Final05.Pdf
Preliminary assessment of the potential impacts and risks of the invasive cactus moth, Cactoblastis cactorum Berg, in the U.S. and Mexico Final Report to the International Atomic Energy Agency, April 25, 2005 © IAEA 2005 By Simonson1, Sara E.; Stohlgren, Thomas J. 2; Tyler, Laura1; Gregg, William P.2*; Muir, Rachel 2*; and Lynn J. Garrett3 1NaturalN Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523 2National Institute of Invasive Species Science, U.S. Geological Survey, Biological Resource Discipline, Fort Collins Science Center, Fort Collins, CO 80526, * = NIISS partners. 3Agricultural Economist USDA, APHIS, PPQ- CPHST, Raleigh, NC 27606 Left: The brightly colored larva of the cactus moth Cactoblastis cactorum Berg feeds on prickly pear cactus (mainly Platyopuntia species). The rapid spread of the invasive cactus moth poses a threat to many valuable native and cultivated prickly pear cactus species in the Southwest United States and Mexico. Photo courtesy of Helmut Zimmermann and Hildegard Klein. Right: Yellow beavertail prickly pear, Opuntia aurea E.M. Baxter, is a species of conservation concern in Arizona and Utah. Artwork courtesy of Donald Davidson ©2004, Traveling Artist Wildflowers Project, National Park Service, U.S. Department of the Interior http://www.nps.gov/plants/cw/watercolor/info/opau2-a.htm 1 Preliminary assessment of the potential impacts and risks of the invasive cactus moth, Cactoblastis cactorum Berg, in the U.S. and Mexico Simonson, S.E., T. J. Stohlgren, L. Tyler, W. Gregg, R. Muir, and L. Garrett Executive Summary: Cactoblastis cactorum Berg (the cactus moth) has become a serious threat to the high diversity of Opuntia (prickly pear cactus) species and throughout the world, both native and cultivated (IAEA 2002). -
Duniel Barrios Edgardo Díaz Lucas C. Majure
EXPLORACIONES BOTÁNICAS A POBLACIONES DE CONSOLEA (CACTACEAE) EN CUBA: ESTADO DE CONSERVACIÓN Y PRINCIPALES AMENAZAS Duniel Barrios Grupo de Ecología y Conservación Jardín Botánico Nacional Universidad de La Habana, CUBA [email protected] Edgardo Díaz Lucas C. Majure Departamento de Biología Florida Museum of Natural History Facultad de Ciencias Agropecuarias, University of Florida Universidad Central “Marta Abreu” Gainesville, Florida 32611-7800, U.S.A. de Las Villas Marta Abreu, CUBA [email protected] [email protected] RESUMEN Cuatro especies de Consolea han sido reportadas para el archipiélago cubano, todas consideradas como amenazadas de extinción. Durante los últimos tres años se realizaron varias expediciones con el fin de actualizar la información existente sobre el estado de conservación de sus poblaciones y sus principales amenazas. Se revisaron e identificaron los especímenes en los herbarios HAC, HAJB, HMC, MNHN y NY para elaborar un mapa de distribución por especie. Todas las especies de Consolea nativas de Cuba se mantienen bajo amenaza de extinción. Consolea moniliformis es la especie con mayores poblaciones mientras que C. macracantha tiene la mayor extensión de presencia; dos nuevas localidades fueron identificadas para esta especie que a su vez fue la única con evidencias de ataque por Cactoblastis cactorum. Entre las principales amenazas detectadas para Consolea en Cuba están las plantas exóticas invasoras, el pastoreo y las construcciones civiles. Proveemos una clave dicotómica para las especies de Cuba. ABSTRACT Four species of Consolea have been reported from the Cuban archipelago, each of which has been considered under threat of extinction. During the last three years various expeditions were carried out to try to update existing information about the conservation status of popu- lations of the different species and their primary threats.