Peruvian Display Until Nov

Total Page:16

File Type:pdf, Size:1020Kb

Peruvian Display Until Nov HerbalGram 75 • Aug - Sept - Oct 2007 Allegations of Biopiracy • Chocolate’s Health Benefits • Hibiscus Lowers Blood Pressure • Protecting Wisconsin Ginseng • Safeguarding Seeds www.herbalgram.org Ginseng • Safeguarding Wisconsin • Protecting Blood Pressure Health Benefits • Hibiscus Lowers - Sept - Oct 75 • Aug HerbalGram of Biopiracy 2007 Allegations • Chocolate’s Chocolate’s Health Benefits • Hibiscus Lowers Blood Pressure • Protecting Wisconsin Ginseng The Journal of the American Botanical Council Number 75 | USA $6.95 | CAN $7.95 Peruvian Display until Nov. 1, 2007 Allegations of Biopiracy www.herbalgram.org www.herbalgram.org 2007 HerbalGram 75 | 1 2 | HerbalGram 75 2007 www.herbalgram.org Herb Profile Marshmallow Althaea officinalis Family: Malvaceae INTRODUCTION A perennial herb, marshmallow is native throughout damp The sweet confection known as “marshmallow” is related to the areas of Europe and Western Asia. Marshmallow is naturalized in plant through history. In 2000 BCE, ancient Egyptians reportedly North America in salt marshes from Massachusetts to Virginia, made a candy of marshmallow root and honey, which was reserved and it’s cultivated from Western Europe to Russia.1,2,3 Its material for gods and royalty.14 In the more recent past (circa mid-17th of commerce consists of both the whole or cut dried leaves and the century CE), French druggists made a meringue of marshmallow peeled or unpeeled, whole or cut, dried roots.4 These materials are root extract, egg white, and sugar called Pâté de Guimauve to treat harvested from cultivated plants mainly from Belgium, Bulgaria, chest complaints.10 By the late 19th century, marshmallow confec- Croatia, Hungary, Russian Federation, and Serbia.3,5 The thera- tions were easily available to the public, mass-produced, and no peutic activity of high-mucilage-containing materials, like marsh- longer contained marshmallow extract.14 mallow, can be predicted in part by volumetrically measuring their Continues on page 2 swelling index. This quality indicating test directly corresponds to the demulcent action (i.e., the soothing of mucous membranes caused by the expansion of mucilage polysaccharides when they absorb moisture, swell, and form a demulcent gel that has bioadhe- sive properties). Pharmacopeial quality marshmallow root should have a swelling index of not-less-than 10, and for marshmallow leaf, not-less-than 12.4 The material used in the traditional systems of medicine in India, the mature dried seeds and roots, are often cultivated in Punjab and Kashmir.6,7 The plant should be at least two years old before harvesting its roots.8 The seeds are collected when they are mature, before the dried fruits fall to the ground.6 HISTORY AND CULTURAL SIGNIFICANCE Reportedly, marshmallow has been used in traditional European medicine for over 2000 years.2 Its therapeutic use was first recorded in the 9th century BCE, and it was used widely in Greek medicine.9 Its genus name Althaea comes from the Greek altho, meaning to cure, and its family name, Malvaceae, is derived from the Greek malake, meaning soft.10 The root is often used as a component of preparations intended for the treatment of coughs (e.g., teas and syrups).11 Marshmallow’s use in traditional Greek medicine spread to Arabian medicine and to traditional Indian Ayurvedic and Unani medicines.1 Early Arab physicians prepared a poultice with the leaves to suppress inflammation. The Ayurvedic Pharmacopoeia of India (2006) reports the therapeutic uses of the roots and/or seeds for treating coughs and bronchitis, coryza (runny nose), and throat disorders, among other conditions. An important formulation that contains both marshmallow seed and root, “Gojihvadi Kvath,” indicated for cough, is listed in the Government of India’s Essen- tial Ayurveda Drugs for Dispensaries and Hospitals.12 In the Unani system of medicine, marshmallow seed is used for treatment of bronchitis, pleurisy, pneumonia, and kidney stones.6 The Unani formulation, “Lauq-e-Sapistan,” is indicated for dry and irritative cough, scanty sputum, chronic bronchitis, and chronic catarrh. Lauq-e-Sapistan is a soft, honey-based compound medicine with powdered marshmallow seed, snap melon seed (Cucumis melo, var. momordica, Cucurbitaceae), jujube fruit (Ziziphus jujuba, Rhamna- ceae), and quince fruit (Cydonia oblonga, Rosaceae), among other Marshmallow Althaea officinalis 13 herbs. Photo by Steven Foster. ©2007 stevenfoster.com www.herbalgram.org 2007 HerbalGram 75 | 1 MARSHMALLOW Continued from page 1 In 1989, the German Commission E approved both marshmal- group showed a significant reduction in cough score compared to low leaf and root for irritation of the oral and pharyngeal (throat) placebo.22 mucosa and associated dry cough.15 The root was also approved An open-label clinical study containing 42 patients with chronic for mild inflammation of the gastric mucosa (stomach lining). cutaneous leishmaniasis (CCL) involved the application of an The German Standard License for marshmallow leaf or root teas herbal paste to lesions. The herbal paste was prepared from a indicates their use to alleviate irritation of the mucous membranes special extract designated as “Z-HE,” which was modified from a of the mouth and throat accompanied by dry irritated cough, traditional Iranian medicine formula. The Z-HE extract contained and for mild inflammation of the gastric mucosa.3 As all national extractives of marshmallow and the related hollyhock (A. rosea) pharmacopeias and formularies of European Community member (plant parts not specified in study), as well as other herbs. The states are in the process of harmonization, a European Community study reported that 69% had a complete cure, 12% had partial Herbal Monograph for marshmallow root is in development. This cure, and 19% failed to respond to the therapy. In a subsequent monograph will eventually become official in all 27 member states open-label trial, the authors concluded that although the active for the purpose of uniform product licensing and labeling for drug ingredient(s) and the mechanism(s) of action of Z-HE are not preparations containing marshmallow root.16 known, its ease of preparation, topical application, lack of adverse The non-official British Herbal Compendium, 1st edition, indi- effects, low cost, and satisfactory cosmetic effects make it a promis- cates marshmallow root internally for soothing the stomach and ing drug for use in the treatment of lesions of CCL.23 intestinal tract.8 Topically, liquid preparations made from marsh- An open-label clinical study containing 62 patients with irri- mallow root are indicated as a mouthwash or gargle for soothing tating cough used a combination syrup (Weleda Hustenelixier, inflammations in the mouth and throat.8 Weleda, Schwäbisch Gmünd, Germany) containing extracts of For marshmallow leaf, the British Herbal Compendium, 2nd English ivy leaf (Hedera helix, Araliaceae), thyme leaf and wild edition, states that no indications are adequately substantiated by thyme leaf (Thymus vulgaris and T. serpyllum, Lamiaceae), anise pharmacological or clinical studies. However, uses based on expe- fruit (Pimpinella anisum, Apiaceae), and marshmallow root. The rience or tradition include internal use of the tea infusion or liquid syrup alleviated coughs resulting from the common cold, bronchi- extract for irritation and inflammation of the oral and pharyngeal tis, and respiratory tract diseases that formed mucous.24 mucosa, dry irritating coughs, respiratory catarrh and bronchitis, A double-blind, placebo-controlled study contained 60 patients digestive tract disorders (peptic ulcer), and urinary tract disorders diagnosed with acute pharyngitis. The patients were treated with (cystitis).17 an herbal tea (Throat Coat®, Traditional Medicinals, Sebastopol, Similarly, the European Scientific Cooperative on Phytotherapy CA) that contained marshmallow root, licorice root (Glycyrrhiza (ESCOP) indicates marshmallow aqueous cold macerate or syrup glabra, Fabaceae), slippery elm bark (Ulmus rubra, Ulmaceae), and for dry cough and irritation of the oral or pharyngeal (throat), and wild cherry bark (Prunus serotina, Rosaceae), among others. The the cold macerate form for gastrointestinal irritation.18 However, tea was found to be significantly superior to placebo and provided the World Health Organization (WHO) monograph states that a rapid, temporary relief of sore throat pain.25 medicinal uses for marshmallow root are not supported by clini- cal data. For uses described in pharmacopeias and in traditional FUTURE OUTLOOK systems of medicine, the WHO lists the same aforementioned indications citing the monographs of the British Herbal Compen- Wild marshmallow is considered a threatened plant in Germany dium, ESCOP, and the German Commission E.19 and is listed in the German Federal Ordinance on the Conserva- 26 In the United States, marshmallow leaves and roots are used as tion of Species. A permit is necessary for import or export of components of herbal teas, dietary supplement products, and topi- any wild-collected material. Marshmallow is also listed as “nation- 27 cal demulcent preparations.11 Marshmallow flower and root, and ally scarce” in the United Kingdom, and due to its scarcity in 28 extracts thereof, are also classified by the Food and Drug Admin- Bulgaria, it is prohibited from collection in the wild. Commer- istration (FDA) as generally recognized as safe (GRAS) natural cial marshmallow is, and should continue to be, harvested only flavoring substances when used in the
Recommended publications
  • Phytochemicals Are Natural Resources of Food Supplement for Happier People
    Horticulture International Journal Review Article Open Access Phytochemicals are natural resources of food supplement for happier people Abstract Volume 3 Issue 6 - 2019 Cacao plants are used for a widespread range of diseases and used in different forms such 1 2 as the full of magnesium for a healthy heart, brain for human, highest plant-based source Fakhrul Islam Sukorno, Shariful Islam, Ak of iron and used as mood elevator like a natural mood elevator and anti-depressant. Maca Lutful Kabir,3 Celia Vargas de la Cruz,4 Sakila are widely used in increases energy level and stamina. It is effectively used in women’s Zaman,5 Gali Adamu Ishaku6 health and mood like alleviates menstrual and menopause issues. Quinoa contains all the 1Department of Pharmacy, North south University, Bangladesh nine essential amino acids, almost twice as much fiber as most other grains and perfect 2Department of Pharmacy, Southeast University, Bangladesh for people with gluten intolerance. Goldenberry helps to prevent certain chronic diseases; 3Faculty of Pharmaceutical Technology, University of Dhaka, low in calories only has about 53 calories per 100 grams and modulates immune function. Bangladesh 4 Lucuma contains beneficial nutrients that sugar lacks. It can help the digestive system Faculty of Pharmacy and Biochemistry - Centro work properly and improves the transportation of oxygen into cells. Purple Corn helps Latinoamericano de Enseñanza e Investigación en Bacteriología the regeneration of cells and connective tissues. Could reduce cancer risk as anthocyanins Alimentaria, Universidad Nacional Mayor de San Marcos, Perú 5Department of Pharmacy, Daffodil International University, could kill cancer cells. Prevents degeneration of cells and slows aging process.
    [Show full text]
  • Marketplace Plants Used in Ceremonial Cleansing Among Andean Qechuans of Ecuador
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Marshall University Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 2007 Marketplace plants used in ceremonial cleansing among Andean Qechuans of Ecuador Sushma Shrestha Follow this and additional works at: https://mds.marshall.edu/etd Part of the Folklore Commons, Indigenous Studies Commons, and the Social and Cultural Anthropology Commons Recommended Citation Shrestha, Sushma, "Marketplace plants used in ceremonial cleansing among Andean Qechuans of Ecuador" (2007). Theses, Dissertations and Capstones. 1275. https://mds.marshall.edu/etd/1275 This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. Marketplace plants used in ceremonial cleansing among Andean Qechuans of Ecuador Thesis submitted to The Graduate School of Marshall University In partial fulfilment of the Requirements for the degree of Master of Science in Biological Sciences by Sushma Shrestha Dr. Dan K. Evans, Ph.D., Chairperson Dr. Charles Somerville, Ph.D. Dr. Tom Pauley, Ph.D. Marshall University 2007 ii TO MY FAMILY and INDIGINOUS PEOPLE AROUND THE WORLD iii ACKNOWLEDGEMENT I am grateful to Dr. Evans for further igniting my interest in plant and indigenous people. I appreciate all your help in Ecuador and here during the research and beyond with both academic and financial support for the work. You are a wonderful professor, advisor and a travel companion.
    [Show full text]
  • Lamiales Newsletter
    LAMIALES NEWSLETTER LAMIALES Issue number 4 February 1996 ISSN 1358-2305 EDITORIAL CONTENTS R.M. Harley & A. Paton Editorial 1 Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK The Lavender Bag 1 Welcome to the fourth Lamiales Universitaria, Coyoacan 04510, Newsletter. As usual, we still Mexico D.F. Mexico. Tel: Lamiaceae research in require articles for inclusion in the +5256224448. Fax: +525616 22 17. Hungary 1 next edition. If you would like to e-mail: [email protected] receive this or future Newsletters and T.P. Ramamoorthy, 412 Heart- Alien Salvia in Ethiopia 3 and are not already on our mailing wood Dr., Austin, TX 78745, USA. list, or wish to contribute an article, They are anxious to hear from any- Pollination ecology of please do not hesitate to contact us. one willing to help organise the con- Labiatae in Mediterranean 4 The editors’ e-mail addresses are: ference or who have ideas for sym- [email protected] or posium content. Studies on the genus Thymus 6 [email protected]. As reported in the last Newsletter the This edition of the Newsletter and Relationships of Subfamily Instituto de Quimica (UNAM, Mexi- the third edition (October 1994) will Pogostemonoideae 8 co City) have agreed to sponsor the shortly be available on the world Controversies over the next Lamiales conference. Due to wide web (http://www.rbgkew.org. Satureja complex 10 the current economic conditions in uk/science/lamiales). Mexico and to allow potential partici- This also gives a summary of what Obituary - Silvia Botta pants to plan ahead, it has been the Lamiales are and some of their de Miconi 11 decided to delay the conference until uses, details of Lamiales research at November 1998.
    [Show full text]
  • Unnatural Spirocyclic Oxindole Alkaloids Biosynthesis in Uncaria Guianensis Received: 2 July 2018 Adriana A
    www.nature.com/scientificreports OPEN Unnatural spirocyclic oxindole alkaloids biosynthesis in Uncaria guianensis Received: 2 July 2018 Adriana A. Lopes1, Bianca Chioca1, Bruno Musquiari1, Eduardo J. Crevelin2, Accepted: 15 July 2019 Suzelei de C. França 1, Maria Fatima das G. Fernandes da Silva 3 & Ana Maria S. Pereira1 Published: xx xx xxxx Spiro-oxindole scafolds have been studied due to their promising therapeutic potential. In the Amazon rainforest there are two important Uncaria species known as “cat’s claw”, which biosynthesize spirocyclic oxindole alkaloids; Uncaria tomentosa (Willd. ex Schult.) DC. and Uncaria guianensis (Aublet) Gmell. We carried out a precursor-directed biosynthesis approach with U. guianensis and successfully obtained oxindole alkaloid analogues with molecular mass corresponding to the addition of a methyl or fuorine group on the oxindole ring using tryptamine analogue precursors. Two of these novel oxindole alkaloid analogues (3b-7-methyl-isomitraphylline and 3c-6-fuoro-isomitraphylline) were isolated and characterized by NMR spectroscopy and ESI-QTOF-MS/MS. Having established a substrate feeding protocol for these plantlets, the biosynthetic route for mitraphylline (1), rhynchophylline (2), isomitraphylline (3) and isorhynchophylline (4) was also investigated using 13C-precursors (1-13C-D- glucose, 2-13C-tryptophan, 1-13C-DL-glyceraldehyde, and methyl-13C-D-methionine). Natural products and their derivatives have been, and continue to be, a source of inspiration in the drug discovery domain. Currently, between 50–70% of all small molecule therapeutics used today are natural product inspired1. In general, modifcations to the natural product structure to yield “new-to-nature compounds” ofen result in either improved biological or pharmacological activity.
    [Show full text]
  • Relative Importance and Knowledge Distribution of Medicinal Plants in a Kichwa Community in the Ecuadorian Amazon
    Research Communications Relative Importance and Knowledge Distribution of Medicinal Plants in a Kichwa Community in the Ecuadorian Amazon Brian J. Doyle1*, Caroline M. Asiala1, and Diana M. Fernández2 1Department of Biology and Department of Biochemistry, Alma College, Alma, MI, USA. 2National Institute of Biodiversity, National Herbarium of Ecuador, Quito, Ecuador. *[email protected] Abstract Traditional knowledge, such as knowledge of the use of plants as medicine, influences how indigenous people manage forest resources. Gender and age-associated differences in traditional knowledge may impact forest resource management because of the traditional division of labor. We interviewed 18 men and 18 women between 9 and 74 years old in San José de Payamino, an indigenous community of the Kichwa ethnicity in the Ecuadorian Amazon, to determine if there are gender or age-associated differences in medicinal plant knowledge among the Payamino people and to identify the most important species from a sample of medicinal plants. Individuals were interviewed using a tablet that displayed images of 34 plants, which had been cited by traditional healers in the community. Quantitative analysis provided insight into the relative importance of plants in the sample as well as the distribution of medicinal plant knowledge among members of the community. The most important plants were Tradescantia zanonia and Monolena primuliflora. These plants should be considered candidates for further investigation. There was a positive correlation between age and knowledge of medicinal plants, but no significant difference between genders. Our results suggest that an interview method that relies on digital images can reveal differences in the importance of medicinal plants as well as provide insight into the distribution of traditional medical knowledge.
    [Show full text]
  • Physic Nut and Sacha Inchi): a Cultivable-Based Assessment for Abundance, Diversity, and Plant Growth-Promoting Potentials
    plants Article Rhizobacteria and Arbuscular Mycorrhizal Fungi of Oil Crops (Physic Nut and Sacha Inchi): A Cultivable-Based Assessment for Abundance, Diversity, and Plant Growth-Promoting Potentials Janjira Wiriya 1,2, Chakrapong Rangjaroen 3 , Neung Teaumroong 4 , Rungroch Sungthong 5,* and Saisamorn Lumyong 1,6,7,* 1 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; [email protected] 2 Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand 3 Department of Agricultural Management Technology, Faculty of Science and Technology, Phranakhon Rajabhat University, Bangkok 10220, Thailand; [email protected] 4 School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; [email protected] 5 Laboratory of Hydrology and Geochemistry of Strasbourg, University of Strasbourg, UMR 7517 CNRS/EOST, Strasbourg CEDEX 67084, France 6 Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand 7 Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand * Correspondence: [email protected] (R.S.); [email protected] (S.L.) Received: 7 November 2020; Accepted: 10 December 2020; Published: 14 December 2020 Abstract: Nowadays, oil crops are very attractive both for human consumption and biodiesel production; however, little is known about their commensal rhizosphere microbes. In this study, rhizosphere samples were collected from physic nut and sacha inchi plants grown in several areas of Thailand. Rhizobacteria, cultivable in nitrogen-free media, and arbuscular mycorrhizal (AM) fungi were isolated and examined for abundance, diversity, and plant growth-promoting activities (indole-3-acetic acid (IAA) and siderophore production, nitrogen fixation, and phosphate solubilization).
    [Show full text]
  • Natural Surfactant Saponin from Tissue of Litsea Glutinosa and Its Alternative Sustainable Production
    plants Article Natural Surfactant Saponin from Tissue of Litsea glutinosa and Its Alternative Sustainable Production Jiratchaya Wisetkomolmat 1,2, Ratchuporn Suksathan 3, Ratchadawan Puangpradab 3, Keawalin Kunasakdakul 4, Kittisak Jantanasakulwong 5,6, Pornchai Rachtanapun 5,6 and Sarana Rose Sommano 2,5,7,* 1 Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand; [email protected] 2 Plant Bioactive Compound Laboratory, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 3 Research and Product Development, Department of Research and Conservation, Queen Sirikit Botanic Garden, The Botanical Garden Organisation, Chiang Mai 50180, Thailand; [email protected] (R.S.); [email protected] (R.P.) 4 Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; [email protected] 5 Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; [email protected] (K.J.); [email protected] (P.R.) 6 Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand 7 Innovative Agriculture Research Centre, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand * Correspondence: [email protected]; Tel.: +66-53944040 Received: 8 October 2020; Accepted: 6 November 2020; Published: 9 November 2020 Abstract: In this research, we assessed the detergency properties along with chemical characteristic of the surfactant extracts from the most frequently cited detergent plants in Northern Thailand, namely, Sapindus rarak, Acacia concinna, and Litsea glutinosa. Moreover, as to provide the sustainable option for production of such valuable ingredients, plant tissue culture (PTC) as alternative method for industrial metabolite cultivation was also proposed herein.
    [Show full text]
  • SWEET CHEEKS- Zinc Oxide Ointment Saje Natural Business Inc
    SWEET CHEEKS- zinc oxide ointment Saje Natural Business Inc. Disclaimer: Most OTC drugs are not reviewed and approved by FDA, however they may be marketed if they comply with applicable regulations and policies. FDA has not evaluated whether this product complies. ---------- Sweet cheeks Active ingredient Zinc Oxide 12% Purpose Skin protectant Uses helps treat and prevent diaper rash. protects chafed skin or minor skin irritations due to diaper rash. seals out wetness. Warnings Warnings -Stop use and ask a doctor if condition worsens, or if symptoms persist for more than 7 days. Warnings -Do not use if allergic to plants of the marshmallow or asteraceae/compositae/daisy family. Warnings -When using this product, avoid contact with the eyes and mucous membranes. Warnings -Keep out of reach of children. If product is swallowed, get medical help or contact a Poison Control Center right away. Directions -Change wet and soiled diapers promptly, cleanse the diaper area, and allow to dry. -Apply ointment liberally as often as necessary, with each diaper change, especially at bedtime or anytime when exposure to wet diapers may be prolonged. Other information -Store at room temperature. Inactive ingredients Olive oil, beeswax (yellow), butyrospermum parkii (shea) butter, coconut oil, castor oil, aloe barbadensis leaf extract, glycerin, vitamin e, calendula officinalis flower extract, hypericum perforatum flower extract (st john's wort), sunflower oil, rosmarinus officinalis (rosemary) leaf extract, echinacea angustifolia extract, camellia sinensis leaf extract (green tea), althaea officinalis root (marshmallow root), daucus carota sativa (carrot) seed oil, lavender oil Questions? 1-877-275-7253 Principal display panel information daily diaper rash ointment net wt.
    [Show full text]
  • 35. ORCHIDACEAE/SCAPHYGLOTTIS 301 PSYGMORCHIS Dods
    35. ORCHIDACEAE/SCAPHYGLOTTIS 301 PSYGMORCHIS Dods. & Dressl. each segment, usually only the uppermost persisting, linear, 5-25 cm long, 1.5-4.5 mm broad, obscurely emar- Psygmorchis pusilla (L.) Dods. & Dressl., Phytologia ginate at apex. Inflorescences single flowers or more com- 24:288. 1972 monly few-flowered fascicles or abbreviated, few-flowered Oncidium pusillum (L.) Reichb.f. racemes, borne at apex of stems; flowers white, 3.5-4.5 Dwarf epiphyte, to 8 cm tall; pseudobulbs lacking. Leaves mm long; sepals 3-4.5 mm long, 1-2 mm wide; petals as ± dense, spreading like a fan, equitant, ± linear, 2-6 cm long as sepals, 0.5-1 mm wide; lip 3.5-5 mm long, 2-3.5 long, to 1 cm wide. Inflorescences 1-6 from base of mm wide, entire or obscurely trilobate; column narrowly leaves, about equaling leaves, consisting of long scapes, winged. Fruits oblong-elliptic, ca 1 cm long (including the apices with several acute, strongly compressed, im- the long narrowly tapered base), ca 2 mm wide. Croat bricating sheaths; flowers produced in succession from 8079. axils of sheaths; flowers 2-2.5 cm long; sepals free, Common in the forest, usually high in trees. Flowers spreading, bright yellow, keeled and apiculate, the dorsal in the early dry season (December to March), especially sepal ca 5 mm long, nearly as wide, the lateral sepals in January and February. The fruits mature in the middle 4-5 mm long, 1-1.5 mm wide, hidden by lateral lobes to late dry season. of lip; petals to 8 mm long and 4 mm wide, bright yellow Confused with S.
    [Show full text]
  • The Evolutionary Fate of Rpl32 and Rps16 Losses in the Euphorbia Schimperi (Euphorbiaceae) Plastome Aldanah A
    www.nature.com/scientificreports OPEN The evolutionary fate of rpl32 and rps16 losses in the Euphorbia schimperi (Euphorbiaceae) plastome Aldanah A. Alqahtani1,2* & Robert K. Jansen1,3 Gene transfers from mitochondria and plastids to the nucleus are an important process in the evolution of the eukaryotic cell. Plastid (pt) gene losses have been documented in multiple angiosperm lineages and are often associated with functional transfers to the nucleus or substitutions by duplicated nuclear genes targeted to both the plastid and mitochondrion. The plastid genome sequence of Euphorbia schimperi was assembled and three major genomic changes were detected, the complete loss of rpl32 and pseudogenization of rps16 and infA. The nuclear transcriptome of E. schimperi was sequenced to investigate the transfer/substitution of the rpl32 and rps16 genes to the nucleus. Transfer of plastid-encoded rpl32 to the nucleus was identifed previously in three families of Malpighiales, Rhizophoraceae, Salicaceae and Passiforaceae. An E. schimperi transcript of pt SOD-1- RPL32 confrmed that the transfer in Euphorbiaceae is similar to other Malpighiales indicating that it occurred early in the divergence of the order. Ribosomal protein S16 (rps16) is encoded in the plastome in most angiosperms but not in Salicaceae and Passiforaceae. Substitution of the E. schimperi pt rps16 was likely due to a duplication of nuclear-encoded mitochondrial-targeted rps16 resulting in copies dually targeted to the mitochondrion and plastid. Sequences of RPS16-1 and RPS16-2 in the three families of Malpighiales (Salicaceae, Passiforaceae and Euphorbiaceae) have high sequence identity suggesting that the substitution event dates to the early divergence within Malpighiales.
    [Show full text]
  • Ficha Capirona.Pmd 1 18/07/2006, 14:34 Guía De Procesamiento Industrial Fabricación De Muebles Con Maderas Poco Conocidas - LKS
    3 Capirona Calycophyllum spruceanum Guía de Procesamiento Fabricación de muebles con maderas poco conocidas - LKS Industrial 1 GuÌa de Procesamiento Industrial ficha capirona.pmd 1 18/07/2006, 14:34 Guía de Procesamiento Industrial Fabricación de Muebles con Maderas Poco Conocidas - LKS Esta guía ha sido preparada bajo la dirección de la ingeniera Ana María Sibille Martina, ([email protected]) consultora forestal de WWF - Perú, contándose con la participación de las siguientes instituciones: Carlos Rincón La Torre Ana María Sibille M. José Garrido Lecca Elvar Villavicencio Julio Kooseng Carlos Samanez Eduardo Gonzáles Esta publicación es posible gracias al financiamiento de: 2 GuÌa de Procesamiento Industrial ficha capirona.pmd 2 18/07/2006, 14:34 3 Guía de Procesamiento Industrial ficha capirona.pmd 3 19/07/2006, 14:30 4 Guía de Procesamiento Industrial ficha capirona.pmd 4 19/07/2006, 14:30 CAPIRONA Capirona ESPECIE : Calycophyllum spruceanum (Benth) Hook f. ex Schumann. FAMILIA : Rubiaceae SINONIMIA : Eukylista spruceana Benth NOMBRES COMUNES: Perú: Capirona Negra, Palo Mulato. Bolivia: Guayabochi, Palo Blanco. Argentina: Ibiro Moroti. Brasil: Pau Mulato, Bayabichi. Colombia: Capirona de Altura, Guayabete. Ecuador: Capirona, Corusicao. Venezuela: Araguato. NOMBRE COMERCIAL INTERNACIONAL : Pau Mulato. CARACTERÍSTICAS DE LA ESPECIE Distribución geográfica: La Capirona se encuentra en los bosques primarios y secundarios de la Amazonía del Perú y Brasil, en terrenos periódicamente inundados o no y en las formaciones ecológicas de bosque seco tropical (bs-T), bosque húmedo tropical (bh-T) y bosque muy húmedo tropical (bmh-T), por debajo de los 1 200 metros sobre el nivel del mar. Es común en bosques secundarios, pioneros y tardíos en los departamentos de Amazonas, San Martín, Huánuco, Madre de Dios, Loreto y Ucayali.
    [Show full text]
  • Sapindus Emarginatus: Phytochemistry & Various Biological Activities
    Indo Global Journal of Pharmaceutical Sciences, 2012; 2(3): 250-257 INDO GLOBAL JOURNAL OF PHARMACEUTICAL SCIENCES ISSN 2249- 1023 Sapindus emarginatus: Phytochemistry & Various Biological Activities Bharti Aroraa*, Preeti Bhadauriab, Deepak Tripathic, Alok Sharmad a Department of Pharmaceutical Chemistry, A.P.I.T.C.E, Agra(Uttar Pradesh), India b Department of Pharmaceutical Sciences, A.P.I.T.C.E, Agra(Uttar Pradesh), India c Department of Pharmaceutics, Sir Madanlal Institute of Pharmacy, Etawah, India d Department of Pharmaceutics, IIMT College of Medical Sciences, India Address for Correspondance: [email protected] ABSTRACT: Sapindus emarginatus is important indigenous plant with lots of traditional importance belongs to family sapindaceae. It is commonly called as Soap nut tree which is found in most of the hilly regions of India. Each and every part of the plant is used traditionally in various ailments. Trees of genus Sapindus are cultivated in many parts of India. The secondary metabolites present in Sapindus emarginatus were found to be alkaloids, carbohydrates, phenols, flavonoids, saponins fixed oils & fats. It possesses various activities such as surfactant, mild detergent, anti-inflammatory, antipruritic, antihyperlipidemic, antimicrobial, CNS, emetic, hair tonic, nasal insufflations. Therefore the aim of the present review is to summarize the taxonomy, chemical constituents and various studies on the biological activities of the plant Sapindus emarginatus. © 2011 IGJPS. All rights reserved. KEYWORDS: Sapindus emarginatus; Secondary metabolites; Phytochemicals; Biological activity. INTRODUCTION Medicinal plants are gifts of nature which are used in curement of various human ailments. Sapindus emarginatus Vahl belongs to family sapindaceae and genus Sapindus is a medium sized deciduous tree found in south India[1].
    [Show full text]