Sclerocarya Birrea

Total Page:16

File Type:pdf, Size:1020Kb

Sclerocarya Birrea SCLEROCARYA BIRREA A MONOGRAPH SCLEROCARYA BIRREA A MONOGRAPH Edited by John B. Hall, E. M. O'Brien and Fergus L. Sinclair School of Agricultural and Forest Sciences, University of Wales, Bangor, U.K. 2002 Veld Products Research & Development Cite as: Hall, J.B., O'Brien, E.M., Sinclair, F.L. 2002. Sclerocarya birrea: a monograph. School of Agricultural and Forest Sciences Publication Number 19, University of Wales, Bangor. 157 pp. ISSN: 0962-7766 ISBN: 1 84220 049 6 School of Agricultural and Forest Sciences Publication Number: 19 © 2002 University of Wales, Bangor. All rights reserved. Front cover: Extracting marula juice manually in Namibia, using a cow horn to separate the skin from the flesh. Oil is later extracted from the kernels. (PRshots.com and The Body Shop) Back cover: Sclerocarya birrea subsp. caffra: extracted whole kernels – South Africa (C Geldenhuys) DEDICATION This monograph is dedicated to the memory of Dr Abdou-Salam Ouédraogo, whose knowledge of the ecology and biology of the economic trees of West Africa’s parklands was unrivalled. Dr Ouédraogo, of the Centre National de Semences Forestières, Burkina Faso, and the International Plant Genetic Resources Institute, was tragically a victim of the air disaster off the West African coast on the 30th January 2000. i ACKNOWLEDGEMENTS We take this opportunity to thank in particular several research and rural development specialists who have generously given access to documents reporting important new surveys and evaluations of Sclerocarya birrea: Sheona and Charlie Shackleton of Rhodes University, South Africa; Roger Leakey of James Cook University, Australia; Caroline Agufa of ICRAF, Kenya and Susan Barton, Mineworkers Development Agency, South Africa. We are grateful to Coert Geldenhuys, PRshots.com and The Body Shop for making their photographic images available for use in this publication. Karen Cooper, Michelle Jones and Emma Youde, School of Agricultural and Forest Sciences, University of Wales, Bangor, have provided extensive office support and organized the final document. Jeremy Williams, using the School’s Geographic Information Systems facility, prepared the maps. Pat Denne, Mike Hale and Jon Tuson assisted with comments and illustrations for the account of the wood of the species. Charlie Shackleton and Susan Barton provided welcome comment on several other chapters. Permission for Eileen O’Brien to examine holdings of Sclerocarya at the Royal Botanic Gardens (Kew), the Natural History Museum (London), the Daubeny Herbarium (Oxford), Muséum National d’Histoire Naturelle (Paris) and the National Botanic Garden of Belgium (Meise) is gratefully acknowledged. This publication is an output from a research project funded by the United Kingdom Department for International Development (DFID) for the benefit of developing countries. The views expressed are not necessarily those of DFID. R7227, Forestry Research Programme. iii FOREWORD Sclerocarya birrea ranks among a select group of wide-ranging African trees that have remained essentially wild, despite having had major cultural and economic roles dating back for centuries. Sclerocarya is still important for sustaining rural livelihoods today and there is much recent interest in its domestication and commercialisation, both to protect the tree as a resource and to sustainably exploit it to increase the income and food security of rural people within its natural range. A little over 20 years ago, A K Shone drew together a wealth of information about this fascinating tree in a Bulletin published by the South African Department of Forestry, which remains an indispensable study for anyone concerned with the species in the South African part of the range. There have been many developments involving Sclerocarya since Shone wrote his bulletin, notably a burgeoning interest in its commercial potential and increasing awareness of its significance elsewhere in Africa, on both sides of the equator. This new monograph on the species re-assesses our knowledge of the species and brings it up to date, expanding the context in which the tree is considered to cover the whole of its vast natural range, and covering its emerging commercial potential that is making the tree significant far beyond the local communities which have used and conserved it into present times. Fergus L. Sinclair School of Agricultural and Forest Sciences University of Wales, Bangor v LIST OF CONTRIBUTORS Name Institution Professor O.T. Edje Crop Production Department, Faculty of Agriculture, University of Swaziland, Luyengo, Swaziland Dr John B. Hall School of Agricultural and Forest Sciences, University of Wales, Bangor, Gwynedd, LL57 2UW, UK Tel: +44 1248 382446; Fax: +44 1248 38 2459 Email: [email protected] Dr Hannah Jaenicke World Agroforestry Centre, PO Box 30677, Nairobi, Kenya Mr Moses Munjuga World Agroforestry Centre, PO Box 30677, Nairobi, Kenya Dr Bernard Muok Kenya Forestry Research Institute, P O Box 892, Kitui, Kenya Dr Eileen M. O’Brien School of Agricultural and Forest Sciences, University of Wales, Bangor, Gwynedd, LL57 2UW, UK Mr Kago Phofuetsile Veld Products Research & Development, Box 2020, Gaborone, Botswana Dr Fergus L. Sinclair School of Agricultural and Forest Sciences, University of Wales, Bangor, Gwynedd, LL57 2UW, UK Ms Margaret K. Thiong’o World Agroforestry Centre, P O Box 30677, Nairobi, Kenya Ms Emma Youde School of Agricultural and Forest Sciences, University of Wales, Bangor, Gwynedd, LL57 2UW, UK vii TABLE OF CONTENTS DEDICATION..........................................................................................................................I ACKNOWLEDGEMENTS..................................................................................................III FOREWORD...........................................................................................................................V LIST OF CONTRIBUTORS.............................................................................................. VII 1 IMPORTANCE ...................................................................................................................1 2 ECOLOGY........................................................................................................................... 7 2.1 DISTRIBUTIONAL CONTEXT ................................................................................... 7 2.1.1 Affinities................................................................................................................... 7 2.1.2 Fossil record............................................................................................................8 2.1.3 Origin ...................................................................................................................... 8 2.1.4 Present distribution ............................................................................................... 10 2.2 ENVIRONMENTAL FACTORS IN DISTRIBUTION .............................................. 11 2.2.1 Elevation................................................................................................................11 2.2.2 Climate ..................................................................................................................11 2.2.3 Geology and soils .................................................................................................. 14 2.2.4 Toposequences....................................................................................................... 15 2.3 SITE.............................................................................................................................. 16 2.4 SCLEROCARYA BIRREA AS A VEGETATION COMPONENT............................... 16 2.4.1 Chorology and vegetation types ............................................................................ 16 2.4.2 Community composition ........................................................................................ 17 2.4.3 Prominence, population levels and representation ............................................... 30 2.4.4 Interactions involving Sclerocarya birrea within communities............................. 35 3 BIOLOGY.......................................................................................................................... 45 3.1 CHROMOSOME COMPLEMENT............................................................................. 45 3.2 LIFE CYCLE AND PHENOLOGY............................................................................. 45 3.2.1 Life cycle................................................................................................................ 45 3.2.2 Phenology.............................................................................................................. 48 3.2.3 Year-to-year variation in flowering and fruiting................................................... 49 3.3 REPRODUCTIVE BIOLOGY..................................................................................... 49 3.3.1 Pollen..................................................................................................................... 49 3.3.2 Sexuality ................................................................................................................50 3.3.3 Anthesis .................................................................................................................50 3.3.4 Pollination and potential pollinators .................................................................... 50 3.3.5 Fruit development and seed set ............................................................................
Recommended publications
  • ENERGY COUNTRY REVIEW Sudan
    ENERGY COUNTRY REVIEW Sudan keyfactsenergy.com KEYFACTS Energy Country Review Sudan Most of Sudan's and South Sudan's proved reserves of oil and natural gas are located in the Muglad and Melut Basins, which extend into both countries. Natural gas associated with oil production is flared or reinjected into wells to improve oil output rates. Neither country currently produces or consumes dry natural gas. In Sudan, the Ministry of Finance and National Economy (MOFNE) regulates domestic refining operations and oil imports. The Sudanese Petroleum Corporation (SPC), an arm of the Ministry of Petroleum, is responsible for exploration, production, and distribution of crude oil and petroleum products in accordance with regulations set by the MOFNE. The SPC purchases crude oil at a subsidized cost from MOFNE and the China National Petroleum Corporation (CNPC). The Sudan National Petroleum Corporation (Sudapet) is the national oil company in Sudan. History Sudan (the Republic of the Sudan) is bordered by Egypt (north), the Red Sea, Eritrea, and Ethiopia (east), South Sudan (south), the Central African Republic (southwest), Chad (west) and Libya (northwest). People lived in the Nile valley over 10,000 years ago. Rule by Egypt was replaced by the Nubian Kingdom of Kush in 1700 BC, persisting until 400 AD when Sudan became an outpost of the Byzantine empire. During the 16th century the Funj people, migrating from the south, dominated until 1821 when Egypt, under the Ottomans, Country Key Facts Official name: Republic of the Sudan Capital: Khartoum Population: 42,089,084 (2019) Area: 1.86 million square kilometers Form of government: Presidential Democratic Republic Language: Arabic, English Religion Sunni Muslim, small Christian minority Currency: Sudanese pound Calling code: +249 KEYFACTS Energy Country Review Sudan invaded.
    [Show full text]
  • Redacted for Privacy
    AN ABSTRACT OF THE THESIS OF Ian B. Edwards for the degree of Master of Arts in Applied Anthropology presented on April 30. 2003. Title: The Fetish Market and Animal Parts Trade of Mali. West Africa: An Ethnographic Investigation into Cultural Use and Significance. Abstract approved: Redacted for Privacy David While much research has examined the intricate interactions associated with the harvesting of wild animals for human consumption, little work has been undertaken in attempting to understand the greater socio-cultural significance of such use. In addition, to properly understand such systems of interaction, an intimate knowledge is required with regard to the rationale or motivation of resource users. In present day Mali, West Africa, the population perceives and upholds wildlife as a resource not only of valuable animal protein, in a region of famine and drought, but a means of generating income. The animal parts trade is but one mechanism within the larger socio-cultural structure that exploits wildlife through a complex human-environmental system to the benefit of those who participate. Moreover, this informal, yet highly structured system serves both cultural and outsider demand through its goods and services. By using traditional ethnographic investigation techniques (participant observation and semi-structured interviews) in combination with thick narration and multidisciplinary analysis (socio- cultural and biological-environmental), it is possible to construct a better understanding of the functions, processes, and motivation of those who participate. In a world where there is butonlya limited supply of natural and wild resources, understanding human- environmental systems is of critical value. ©Copyright by Ian B.
    [Show full text]
  • 1 Name 2 History
    Sudan This article is about the country. For the geographical two civil wars and the War in the Darfur region. Sudan region, see Sudan (region). suffers from poor human rights most particularly deal- “North Sudan” redirects here. For the Kingdom of North ing with the issues of ethnic cleansing and slavery in the Sudan, see Bir Tawil. nation.[18] For other uses, see Sudan (disambiguation). i as-Sūdān /suːˈdæn/ or 1 Name السودان :Sudan (Arabic /suːˈdɑːn/;[11]), officially the Republic of the Sudan[12] Jumhūrīyat as-Sūdān), is an Arab The country’s place name Sudan is a name given to a جمهورية السودان :Arabic) republic in the Nile Valley of North Africa, bordered by geographic region to the south of the Sahara, stretching Egypt to the north, the Red Sea, Eritrea and Ethiopia to from Western to eastern Central Africa. The name de- the east, South Sudan to the south, the Central African or “the ,(بلاد السودان) rives from the Arabic bilād as-sūdān Republic to the southwest, Chad to the west and Libya lands of the Blacks", an expression denoting West Africa to the northwest. It is the third largest country in Africa. and northern-Central Africa.[19] The Nile River divides the country into eastern and west- ern halves.[13] Its predominant religion is Islam.[14] Sudan was home to numerous ancient civilizations, such 2 History as the Kingdom of Kush, Kerma, Nobatia, Alodia, Makuria, Meroë and others, most of which flourished Main article: History of Sudan along the Nile River. During the predynastic period Nu- bia and Nagadan Upper Egypt were identical, simulta- neously evolved systems of pharaonic kingship by 3300 [15] BC.
    [Show full text]
  • Seasonal Selection Preferences for Woody Plants by Breeding Herds of African Elephants (Loxodonta Africana)In a Woodland Savanna
    Hindawi Publishing Corporation International Journal of Ecology Volume 2013, Article ID 769587, 10 pages http://dx.doi.org/10.1155/2013/769587 Research Article Seasonal Selection Preferences for Woody Plants by Breeding Herds of African Elephants (Loxodonta africana)in a Woodland Savanna J. J. Viljoen,1 H. C. Reynecke,1 M. D. Panagos,1 W. R. Langbauer Jr.,2 and A. Ganswindt3,4 1 Department of Nature Conservation, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa 2 ButtonwoodParkZoo,NewBedford,MA02740,USA 3 Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa 4 Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa Correspondence should be addressed to J. J. Viljoen; [email protected] Received 19 November 2012; Revised 25 February 2013; Accepted 25 February 2013 Academic Editor: Bruce Leopold Copyright © 2013 J. J. Viljoen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. To evaluate dynamics of elephant herbivory, we assessed seasonal preferences for woody plants by African elephant breeding herds in the southeastern part of Kruger National Park (KNP) between 2002 and 2005. Breeding herds had access to a variety of woody plants, and, of the 98 woody plant species that were recorded in the elephant’s feeding areas, 63 species were utilized by observed animals. Data were recorded at 948 circular feeding sites (radius 5 m) during wet and dry seasons. Seasonal preference was measured by comparing selection of woody species in proportion to their estimated availability and then ranked according to the Manly alpha () index of preference.
    [Show full text]
  • Phytochemical Constituents of Combretum Loefl. (Combretaceae)
    Send Orders for Reprints to [email protected] 38 Pharmaceutical Crops, 2013, 4, 38-59 Open Access Phytochemical Constituents of Combretum Loefl. (Combretaceae) Amadou Dawe1,*, Saotoing Pierre2, David Emery Tsala2 and Solomon Habtemariam3 1Department of Chemistry, Higher Teachers’ Training College, University of Maroua, P.O.Box 55 Maroua, Cameroon, 2Department of Earth and Life Sciences, Higher Teachers’ Training College, University of Maroua, P.O.Box 55 Ma- roua, Cameroon, 3Pharmacognosy Research Laboratories, Medway School of Science, University of Greenwich, Cen- tral Avenue, Chatham-Maritime, Kent ME4 4TB, UK Abstract: Combretum is the largest and most widespread genus of Combretaceae. The genus comprises approximately 250 species distributed throughout the tropical regions mainly in Africa and Asia. With increasing chemical and pharma- cological investigations, Combretum has shown its potential as a source of various secondary metabolites. Combretum ex- tracts or isolates have shown in vitro bioactivitities such as antibacterial, antifungal, antihyperglycemic, cytotoxicity against various human tumor cell lines, anti-inflammatory, anti-snake, antimalarial and antioxidant effects. In vivo studies through various animal models have also shown promising results. However, chemical constituents and bioactivities of most species of this highly diversified genus have not been investigated. The molecular mechanism of bioactivities of Combretum isolates remains elusive. This review focuses on the chemistry of 261 compounds isolated and identified from 31 species of Combretum. The phytochemicals of interest are non-essential oil compounds belonging to the various struc- tural groups such as terpenoids, flavonoids, phenanthrenes and stilbenoids. Keywords: Combretum, phytochemistry, pharmacology, terpenoids, polyphenolic compounds, antibacterial activity, antifungal activity. INTRODUCTION is sometimes persistant, and especially in climbers it forms a hooked wooded spine when the leaf abscises.
    [Show full text]
  • Integrated Arthropod Pest Management Systems for Human Health Improvement in Africa
    Insect Sci. Applic. Vol. 23, No. 2, pp. 85-98, 2003 0191-9040/03 $3.00 + 0.00 Printed in Kenya. All rights reserved © 2003 ICIPE MINI REVIEW- INTEGRATED ARTHROPOD PEST MANAGEMENT SYSTEMS FOR HUMAN HEALTH IMPROVEMENT IN AFRICA JOHANN BAUMGARTNER1, FRITZ SCHULTHESS2 AND YUNLONG XIA3 'International Centre of Insect Physiology and Ecology (ICIPE), P. O. Box 17319, Addis Ababa, Ethiopia; 2Postfach 112-4, Chur, Switzerland; international Centre of Insect Physiology and Ecology (ICIPE), P. O. Box 30772, Nairobi 00100, Kenya (Accepted 12 March'2003) Abstract— In a sub-Saharan African context, limited natural resources, infectious diseases, including those transmitted by arthropod vectors, and chronic exposure to food contaminated with mycotoxin- producing fungi which, among others, are vectored by insects, are among the major constraints to human health. Thus, pest control should be an important component in human health improvement projects. It appears that the advantages of preventive over curative methods are rarely recognised in Africa, with more emphasis being given to the search for the 'silver bullet' than to integrated control approaches. Integrated pest management (IPM) systems can be assigned to different decision- making levels as well as to different integration levels, combining ecological (individual pest species, species communities, species assemblages) and management (crop, cropping systems, farms, communities) levels with the respective control systems. These levels produce a highly structured environment for decision-making, in which the use of modern information technology is important. Case studies show that IPM systems are developed and implemented at four integration levels, whereby most work is done on the lowest integration level, addressing a single pest or pest complex attacking a particular crop, group of livestock or human population, and the respective control measures undertaken.
    [Show full text]
  • Review: Organic Foods from Annona Squamosa (Gishta) and Catunaregam Nilotica (Kirkir)
    Journal of Science and Technology 12 (03) December 2011 ISSN 1605 – 427X © Sudan University of Science and Technology www.sustech.edu Review: Organic foods from Annona squamosa (Gishta) and Catunaregam nilotica (Kirkir) Abdalbasit Adam Mariod1, Sara Elkheir1, Yousif Mohamed Ahmed1, Bertrand Matthaus2 1.Food Science & Technology Department, College of Agricultural Studies, Sudan University of Science & Technology, P.O Box 71 Khartoum North, Sudan. 2Max Rubner-Institute, Federal Research Institute for Nutrition and Food, Department for Lipid Research, D-48147 Münster, Germany E-mail: [email protected] ABSTRACT: Non-conventional fruits, which grow wildly, are being considered because their constituents have unique chemical properties and may augment the supply of organic food. Annona squamosa and Catunaregam nilotica are considered an important source for wild organic fruits in Sudan. The two fruits are produced without using any fertilizers and chemicals. The fruits are used as organic food by rural populations mainly for domestic consumption in many Sudanese states. They have multiple uses, including the fruits, seeds, oil, bark, and leaves. The oil and protein contents of Annona squamosa and Catunaregam nilotica are very high. The major fatty acids in A. squamosa and Catunaregam nilotica oils are oleic, linoleic, palmitic, and stearic. The tocopherol content of the extracted oils is very high with delta-tocopherol as the predominant tocopherol in A. squamosa oil, and beta- tocopherol in C. nilotica oil. The two fruits contained mainly protein and oil components and can be considered a good source for organic food. KEYWORDS: Amino Acids, Annona squamosa, Catunaregam nilotica, Fatty Acids, Organic food, Seed oil, Tocopherols INTRODUCTION compared with commercial foods has Organic foods are made in a way that been studied many times.
    [Show full text]
  • Research Opinions in Animal & Veterinary Sciences
    www.roavs.com EISSN: 2223-0343 ReseaRch OpiniOns in animal & VeteRinaRy sciences Research article DOI: 10.20490/ROAVS/16-023 Effect of Olibanum (Boswellia thurifera) as a feed additive on performance, some blood biochemical and intestinal morphology in broiler chicks Sayeed Nouraldin Tabatabaei Department of Animal Sciences, Khorasgan (Isfahan) Branch, Islamic Azad University, Isfahan, Iran Article history Abstract Received: 7 Mar, 2016 To determine the effect of Olibanum on performance, some blood biochemical and Revised: 20 May, 2016 intestinal morphology of broiler chicks, a total 360 one day Ross 308 broiler chicks Accepted: 27 May, 2016 were divided into 6 dietary treatments. The chicks were fed a basal diet as control; basal diet with 0.01% (T1), 0.015% (T2), 0.02% (T3), 0.03% (T4) and 0.05% (T5) of Olibanum. No significant difference was found in feed intake, weight gain and feed conversion ratio between the control and treated groups. Serum triglyceride level decreased significantly (P<0.05) in T1, T2 and T3 compared to the control. Villus length of ilium increased significantly (P<0.05) in T2. In conclusion, it seems that inclusion of Olibanum as feed additive may have significantly enhanced effects on performance and some blood biochemical in broiler chicks. Keywords: Performance; broilers; blood parameters; Olibanum; intestinal morphology To cite this article: Tabatabaie SN, 2016. Effect of Olibanum (Boswellia thurifera) as a feed additive on performance, some blood biochemical and intestinal morphology in broiler chicks. Res. Opin. Anim. Vet. Sci., 6(4): 130-134. Introduction possess anti diarrheal effect, which may be related to anti cholinergic mechanisms (Etuk et al., 2006).
    [Show full text]
  • Segoma Forest Reserve: a Biodiversity Survey. East Usambara Conservation Area Management Programme Technical Paper No
    TECHNICAL PAPER 50 Segoma Forest Reserve A biodiversity survey Frontier Tanzania 2001 East Usambara Conservation Area Management Programme Technical Paper 50 Segoma Forest Reserve A biodiversity survey Doody, K. Z., Howell, K. M. and Fanning, E. (eds.) Ministry of Natural Resources and Tourism, Tanzania Forestry and Beekeeping Division Department of International Frontier-Tanzania Development Co-operation, Finland University of Dar es Salaam Metsähallitus Consulting Society for Environmental Exploration Tanga 2001 © Metsähallitus - Forest and Park Service Cover painting: Jaffary Aussi (1995) ISSN 1236-630X ISBN 9987-646-06-9 Suggested citation: Frontier Tanzania 2001. Doody, K. Z., Howell, K. M., and Fanning, E., (eds.). Segoma Forest Reserve: A biodiversity survey. East Usambara Conservation Area Management Programme Technical Paper No. 50. Frontier Tanzania, Forestry and Beekeeping Division & Metsähallitus Consulting , Dar es Salaam & Vantaa, Finland. East Usambara Conservation Area Management Programme (EUCAMP) The East Usambara rain forests are one of the most valuable conservation areas in Africa, several plant and animal species are found only in the East Usambara mountains. The rain forests secure the water supply of 200,000 people and the local people in the mountains depend on these forests. The East Usambara Conservation Area Management Programme has established the Amani Nature Reserve, and aims at protecting water sources; establishing and protecting forest reserves; sustaining villager’s benefits from the forest; and rehabilitating the Amani Botanical Garden. The Forestry and Beekeeping Division of the Ministry of Natural Resources and Tourism implement the programme with financial support from the Government of Finland, and implementation support from the Metsahallitus Consulting . To monitor the impact of the project, both baseline biodiversity assessments and development of a monitoring system are needed.
    [Show full text]
  • Companion Planting and Insect Pest Control
    Chapter 1 Companion Planting and Insect Pest Control Joyce E. Parker, William E. Snyder, George C. Hamilton and Cesar Rodriguez‐Saona Additional information is available at the end of the chapter http://dx.doi.org/10.5772/55044 1. Introduction There is growing public concern about pesticides’ non-target effects on humans and other organisms, and many pests have evolved resistance to some of the most commonly-used pesticides. Together, these factors have led to increasing interest in non-chemical, ecologically- sound ways to manage pests [1]. One pest-management alternative is the diversification of agricultural fields by establishing “polycultures” that include one or more different crop varieties or species within the same field, to more-closely match the higher species richness typical of natural systems [2, 3]. After all, destructive, explosive herbivore outbreaks typical of agricultural monocultures are rarely seen in highly-diverse unmanaged communities. There are several reasons that diverse plantings might experience fewer pest problems. First, it can be more difficult for specialized herbivores to “find” their host plant against a back‐ ground of one or more non-host species [4]. Second, diverse plantings may provide a broader base of resources for natural enemies to exploit, both in terms of non-pest prey species and resources such as pollen and nectar provided by the plant themselves, building natural enemy communities and strengthening their impacts on pests [4]. Both host-hiding and encourage‐ ment of natural enemies have the potential to depress pest populations, reducing the need for pesticide applications and increasing crop yields [5, 6]. On the other hand, crop diversification can present management and economic challenges for farmers, making these schemes difficult to implement.
    [Show full text]
  • Tree Composition and Ecological Structure of Akak Forest Area
    Environment and Natural Resources Research; Vol. 9, No. 4; 2019 ISSN 1927-0488 E-ISSN 1927-0496 Published by Canadian Center of Science and Education Tree Composition and Ecological Structure of Akak Forest Area Agbor James Ayamba1,2, Nkwatoh Athanasius Fuashi1, & Ayuk Elizabeth Orock1 1 Department of Environmental Science, University of Buea, Cameroon 2 Ajemalebu Self Help, Kumba, South West Region, Cameroon Correspondence: Agbor James Ayamba, Department of Environmental Science, University of Buea, Cameroon. Tel: 237-652-079-481. E-mail: [email protected] Received: August 2, 2019 Accepted: September 11, 2019 Online Published: October 12, 2019 doi:10.5539/enrr.v9n4p23 URL: https://doi.org/10.5539/enrr.v9n4p23 Abstract Tree composition and ecological structure were assessed in Akak forest area with the objective of assessing the floristic composition and the regeneration potentials. The study was carried out between April 2018 to February 2019. A total of 49 logged stumps were selected within the Akak forest spanning a period of 5 years and 20m x 20m transects were demarcated. All plants species <1cm and above were identified and recorded. Results revealed that a total of 5239 individuals from 71 families, 216 genera and 384species were identified in the study area. The maximum plants species was recorded in the year 2015 (376 species). The maximum number of species and regeneration potentials was found in the family Fabaceae, (99 species) and (31) respectively. Baphia nitida, Musanga cecropioides and Angylocalyx pynaertii were the most dominant plants specie in the years 2013, 2015 and 2017 respectively. The year 2017 depicts the highest Simpson diversity with value of (0.989) while the year 2015 show the highest Simpson dominance with value of (0.013).
    [Show full text]
  • Ngoka, Thesis Final 2012
    RELATIVE ABUNDANCE OF THE WILD SILKMOTH, Argema mimosae BOISDUVAL ON DIFFERENT HOST PLANTS AND HOST SELECTION BEHAVIOUR OF PARASITOIDS, AT ARABUKO SOKOKE FOREST BY Boniface M. Ngoka (M.Sc.) I84/15320/05 Department of Zoological Sciences A THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE SCHOOL OF PURE AND APPLIED SCIENCES OF KENYATTA UNIVERSITY NOVEMBER, 2012 ii DECLARATION This thesis is my original work and has not been presented for a degree in any other university or any other award. Signature----------------------------------------------Date--------------------------------- SUPERVISORS We confirm that the thesis is submitted with our approval as supervisors Professor Jones M. Mueke Department of Zoological Sciences, School of Pure and Applied Sciences Kenyatta University Nairobi, Kenya Signature----------------------------------------------Date--------------------------------- Dr. Esther N. Kioko Zoology Department National Museums of Kenya Nairobi, Kenya Signature----------------------------------------------Date--------------------------------- Professor Suresh K. Raina International Center of Insect Physiology and Ecology Commercial Insects Programme Nairobi, Kenya Signature----------------------------------------------Date--------------------------------- iii DEDICATION This thesis is dedicated to my family, parents, brothers and sisters for their perseverance, love and understanding which made this task possible. iv ACKNOWLEDGEMENTS My sincere thanks are due to Prof. Suresh K. Raina, Senior icipe supervisor and Commercial Insects Programme Leader, whose contribution ranged from useful suggestions and discussions throughout the study period. My sincere appreciations are also due to Dr. Esther N. Kioko, icipe immediate supervisor who provided me with wealth of literature and made many suggestions that shaped the research methodologies. Her support and keen supervision throughout the study period gave me a lot of inspiration. I would like to thank Prof.
    [Show full text]