Oddpols 2021 International Conference on Transcription Mechanism and Regulation Table of Contents: Oddpols 2021 Organizers and Sponsors

Total Page:16

File Type:pdf, Size:1020Kb

Oddpols 2021 International Conference on Transcription Mechanism and Regulation Table of Contents: Oddpols 2021 Organizers and Sponsors OddPols 2021 International Conference on Transcription Mechanism and Regulation Table of Contents: OddPols 2021 Organizers and Sponsors.............................................................................1 Call for Summations and Papers............................................................................................2 Information for Zoom Breakout Rooms and Socialization.....................................................3 OddPols 2021 Virtual Schedule .............................................................................................4 Day 1.............................................................................................................................4 Day 2.............................................................................................................................6 Day 3.............................................................................................................................8 Day 4...........................................................................................................................10 Day 5...........................................................................................................................12 Abstracts..............................................................................................................................14 Participant Directory..........................................................................................................137 Organizing Committee: Craig Cameron, U. of North Carolina Astrid Roy-Engel, Tulane U. David Engelke, U. of Colorado Tom Santangelo, Colorado State U. Olivier Gadal, CNRS, CBI, Toulouse David Schneider, U. of Alabama Ross Hannan, Austrailian National U. Linda Van Dyk, U. of Colorado Rich Maraia, NICHD, NIH, Bethesda Alessandro Vannini, Institute of Christoph Müller, EMBL, Heidelberg Cancer Research, London Craig Pikaard, Indiana U. Finn Werner, U. College, London Thank you to our sponsors: And to those who helped produce this book and virtual conference: Lauren Field Ashley Knox Susan Nagel James Till Jordan Schiefer Cydney Pittenger Betty Downes Christian Crisologo Guidance for Zoom Participation Please see the guidance found on the conference web site (https://gs.ucdenver.edu/oddpols2021/) under “Information for Zoom Participation” COVER IMAGE: “Structure of RNA Polymerase III pre-initiation complex”. Image is from Alessandro Vannini/Jeroen Claus (Phospho Biomedical Animation). The corresponding citation is: Abascal-Palacios, G., Ramsay, E., Beuron, F. et al. Structural basis of RNA polymerase III transcription initiation. Nature 553, 301–306 (2018). https://doi.org/10.1038/nature25441 1 Call for Summations and Papers The OddPols 2021 meeting will be the basis for a Special Edition issue of the journal GENE, edited by Astrid Engel. 1] If you would like your presentation to be included (optional) and summarized accurately in the meeting report, please send the Title, Authors, and a short (100-- 200 word) summary to Astrid by July 15, 2021. We understand that the abstract in the book will not always accurately reflect the final detail in your actual presentation or that you may not wish to include some scientific details of unpublished work. 2] If you would like to publish an original research paper in this volume related to your presentation (though not necessarily identical), please submit your manuscript to GENE (http://www.journals.elsevier.com/gene/) by July 15, 2021, along with suggestions for appropriate reviewers. When submitting, select the option for the special issue (SI OddPols 2021: International Conference on Transcription Mechanism and Regulation) under “choose article type”. Similarly, short communications, long or short review articles on the topic, and methodology reports are encouraged and desired. It would be best to check with Astrid on the topic beforehand to avoid substantial overlap. For examples, see the 2012 and 2014 Special edition: http://www.sciencedirect.com/science/journal/03781119/526/1 Details on format can be found here: https://www.elsevier.com/journals/gene/0378- 1119/guide-for-authors If you have any questions, feel free to contact Astrid ([email protected]). 2 Socialization Zoom Breakout Rooms – During the entirety of the conference (5 hours/day plus optional 6th hour) there will be 30 Zoom breakout rooms devoted to conversations. To go to one of these rooms, simply click on the “Breakout Rooms” icon at the bottom of the Zoom screen and choose the room you want to enter by clicking on the # to the right of it and entering the room. To go back to the main Zoom, just click the “leave room” button These will be numbered as follows: [1] Structure and Function of OddPols and Transcription machinery [2] Regulation of transcription –activators and repressors [3] Regulation of transcription –elongation and termination [4] Chromatin and transcription, including gene silencing [5] Transcription related to genome organization and nuclear structures [6] OddPols in development, genetic disorders, cancer and disease [7] Oddpols links to physiology, aging, and beyond [8] Pol I [9] Pol III [10] Pol IV/V [11] organelle Pols [12] Archaeal Pols [13] Other Pols [14] New England Biolabs display and discussion during Breaks [15] Meet the Editor -Publication and Reviewing Advice for Trainees, Sponsored by Developmental Dynamics (Wednesday Break, or by Appointment with Paul Trainor) [16-30] fifteen numbered but unnamed Zoom rooms for discussion of whatever you like with whomever you like. If you would like to meet another participant for a discussion in a Zoom room, the best tactic is likely to e-mail them which # room you would like to meet them and when. You could also put a private message to them in the Zoom Chat, but these are easy to miss if the recipient is not watching the chat. E-mails of conference participants are at the back of the Abstract book on the web site. 3 OddPols 2021 Virtual Schedule The times shown for the OddPols 2021 sessions reflect the Denver time zone (Mountain Daylight time). Each day the conference will begin promptly at 7:00 AM MDT. Time Zone Conversions for Start Times: Denver New York London Heidelberg Shanghai Canberra 7:00 (AM) 9:00 14:00 15:00 21:00 23:00 Schedule of Sessions (12MT= 12 minute talks, 8MT= 8 minute talks, 3MT= special 3 minute talks) Day 1 (Monday, June 14) 7:00: Introduction, Dave Engelke 7:07 Session 1 (12MT) Marv Paule, Chair Abstract # Speaker Title N/A Marv Paule History of OddPols 15 Kenneth A. Johnson Kinetic and structural basis for inhibition of the SARS coronavirus RNA- dependent RNA polymerase by Remdesivir 16 Katsuhiko Murakami Direct binding of TFEα opens DNA binding cleft of archaeal RNA polymerase 17 Simona Pilotto The structural basis of RNA polymerase inhibition in archaea 8:00 Session 2 (3MT) Elaine Sanij, Chair Abstract # Speaker Title 19 Natalia Zawrotna Depletion of ribosome biogenesis proteins during yeast replicative aging 20 Christophe Dez Investigating RNA Polymerase I regulation using a super-active mutant 21 Alana Belkevich Exploring the interaction specificity between the eukaryotic RNA polymerase ⍺-like subunits 22 Julia Daiß Preparation of human RNA polymerase in close-to-native states 23 Florian B. Heiss Conserved strategies of RNA polymerase I hibernation and activation 24 Nathan Munoff Defining the critical DNA features targeted by RNA polymerase I Core Factor 25 Michael Pilsl Structural basis of RNA polymerase I pre-initiation complex formation and promoter melting 26 Qianmin Wang Structural insights into transcriptional regulation of human RNA polymerase III 27 Robyn Moir Functional characterization of Polr3a hypomyelinating leukodystrophy mutations in the S. cerevisiae homolog, RPC160 4 9:00 Break - Zoom Breakout Rooms 10:00 Session 3 (8MT) Astrid Roy-Engel, Chair Abstract # Speaker Title 29 Izabela Rudzińska Defect in RNA polymerase III assembly in yeast Saccharomyces cerevisiae results in reprogramming of mRNA expression 30 Alexandria Cockrell Transcription drives rDNA spatial organization and nucleolar morphology in fission yeast 31 Jorge Perez-Fernandez Structure probing with MNase tethered to ribosome assembly factors provides insight into the structure of nascent pre-ribosomal RNA 32 Sui Huang Nucleolar Homeostasis Connects with Nuclear Organization 33 Dalen Fultz Assembly of Arabidopsis NOR sequences using ultra-long DNA sequencing and analysis of patterns of rRNA gene variation 34 Emiliana Weiss Unveiling the variability and organization of the ribosomal RNA gene repeats with long sequencing technologies 11:00 Session 4 (12MT) Christoph Mueller, Chair Abstract # Speaker Title 36 Magdalena Boguta Biogenesis of yeast RNA polymerases III involves co- translational assembly mechanism 37 Carlos Fernández-Tornero The role of RNA polymerase I in ribosomal DNA protection against UV light-induced DNA damage 38 Ruth Q. Jacobs Defining the divergent enzymatic properties of the eukaryotic RNA polymerases 39 Akihito Fukudome Structure of RNA-dependent RNA polymerase 2 and its implications for double-stranded RNA synthesis in RNA- directed DNA methylation 12:00 Social Hour in Zoom Breakout Rooms 5 Day 2 (Tuesday, June 15) 7:00 Session 5 (12MT) Finn Werner, Chair Abstract # Speaker Title 41 Rachel McNamar Mammalian PAF49, the ortholog of the nonessential yeast RNA polymerase I subunit RPA34, is essential for rDNA transcription 42 Christoph Engel Structural basis of RNA polymerase I transcription 43 Bruce A. Knutson Molecular Topology of RNA Polymerase I Upstream
Recommended publications
  • Analysis of Gene Expression Data for Gene Ontology
    ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins.
    [Show full text]
  • Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-Like Mouse Models: Tracking the Role of the Hairless Gene
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2006 Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene Yutao Liu University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Life Sciences Commons Recommended Citation Liu, Yutao, "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino- like Mouse Models: Tracking the Role of the Hairless Gene. " PhD diss., University of Tennessee, 2006. https://trace.tennessee.edu/utk_graddiss/1824 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Yutao Liu entitled "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Life Sciences. Brynn H. Voy, Major Professor We have read this dissertation and recommend its acceptance: Naima Moustaid-Moussa, Yisong Wang, Rogert Hettich Accepted for the Council: Carolyn R.
    [Show full text]
  • Proteomics Provides Insights Into the Inhibition of Chinese Hamster V79
    www.nature.com/scientificreports OPEN Proteomics provides insights into the inhibition of Chinese hamster V79 cell proliferation in the deep underground environment Jifeng Liu1,2, Tengfei Ma1,2, Mingzhong Gao3, Yilin Liu4, Jun Liu1, Shichao Wang2, Yike Xie2, Ling Wang2, Juan Cheng2, Shixi Liu1*, Jian Zou1,2*, Jiang Wu2, Weimin Li2 & Heping Xie2,3,5 As resources in the shallow depths of the earth exhausted, people will spend extended periods of time in the deep underground space. However, little is known about the deep underground environment afecting the health of organisms. Hence, we established both deep underground laboratory (DUGL) and above ground laboratory (AGL) to investigate the efect of environmental factors on organisms. Six environmental parameters were monitored in the DUGL and AGL. Growth curves were recorded and tandem mass tag (TMT) proteomics analysis were performed to explore the proliferative ability and diferentially abundant proteins (DAPs) in V79 cells (a cell line widely used in biological study in DUGLs) cultured in the DUGL and AGL. Parallel Reaction Monitoring was conducted to verify the TMT results. γ ray dose rate showed the most detectable diference between the two laboratories, whereby γ ray dose rate was signifcantly lower in the DUGL compared to the AGL. V79 cell proliferation was slower in the DUGL. Quantitative proteomics detected 980 DAPs (absolute fold change ≥ 1.2, p < 0.05) between V79 cells cultured in the DUGL and AGL. Of these, 576 proteins were up-regulated and 404 proteins were down-regulated in V79 cells cultured in the DUGL. KEGG pathway analysis revealed that seven pathways (e.g.
    [Show full text]
  • Supplemental Table 1. Complete Gene Lists and GO Terms from Figure 3C
    Supplemental Table 1. Complete gene lists and GO terms from Figure 3C. Path 1 Genes: RP11-34P13.15, RP4-758J18.10, VWA1, CHD5, AZIN2, FOXO6, RP11-403I13.8, ARHGAP30, RGS4, LRRN2, RASSF5, SERTAD4, GJC2, RHOU, REEP1, FOXI3, SH3RF3, COL4A4, ZDHHC23, FGFR3, PPP2R2C, CTD-2031P19.4, RNF182, GRM4, PRR15, DGKI, CHMP4C, CALB1, SPAG1, KLF4, ENG, RET, GDF10, ADAMTS14, SPOCK2, MBL1P, ADAM8, LRP4-AS1, CARNS1, DGAT2, CRYAB, AP000783.1, OPCML, PLEKHG6, GDF3, EMP1, RASSF9, FAM101A, STON2, GREM1, ACTC1, CORO2B, FURIN, WFIKKN1, BAIAP3, TMC5, HS3ST4, ZFHX3, NLRP1, RASD1, CACNG4, EMILIN2, L3MBTL4, KLHL14, HMSD, RP11-849I19.1, SALL3, GADD45B, KANK3, CTC- 526N19.1, ZNF888, MMP9, BMP7, PIK3IP1, MCHR1, SYTL5, CAMK2N1, PINK1, ID3, PTPRU, MANEAL, MCOLN3, LRRC8C, NTNG1, KCNC4, RP11, 430C7.5, C1orf95, ID2-AS1, ID2, GDF7, KCNG3, RGPD8, PSD4, CCDC74B, BMPR2, KAT2B, LINC00693, ZNF654, FILIP1L, SH3TC1, CPEB2, NPFFR2, TRPC3, RP11-752L20.3, FAM198B, TLL1, CDH9, PDZD2, CHSY3, GALNT10, FOXQ1, ATXN1, ID4, COL11A2, CNR1, GTF2IP4, FZD1, PAX5, RP11-35N6.1, UNC5B, NKX1-2, FAM196A, EBF3, PRRG4, LRP4, SYT7, PLBD1, GRASP, ALX1, HIP1R, LPAR6, SLITRK6, C16orf89, RP11-491F9.1, MMP2, B3GNT9, NXPH3, TNRC6C-AS1, LDLRAD4, NOL4, SMAD7, HCN2, PDE4A, KANK2, SAMD1, EXOC3L2, IL11, EMILIN3, KCNB1, DOK5, EEF1A2, A4GALT, ADGRG2, ELF4, ABCD1 Term Count % PValue Genes regulation of pathway-restricted GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, SMAD protein phosphorylation 9 6.34 1.31E-08 ENG pathway-restricted SMAD protein GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, phosphorylation
    [Show full text]
  • Trna GENES AFFECT MULTIPLE ASPECTS of LOCAL CHROMOSOME BEHAVIOR
    tRNA GENES AFFECT MULTIPLE ASPECTS OF LOCAL CHROMOSOME BEHAVIOR by Matthew J Pratt-Hyatt A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Cellular and Molecular Biology) in The University of Michigan 2008 Doctoral Committee: Professor David R. Engelke, Chair Professor Robert S. Fuller Associate Professor Mats E. Ljungman Associate Professor Thomas E. Wilson Assistant Professor Daniel A. Bochar © Matthew J. Pratt-Hyatt All rights reserved 2008 . To my loving family Who’ve helped me so much ii Acknowledgements I would first like to thank my mentor, David Engelke. His help has been imperative to the development of my scientific reasoning, writing, and public speaking. He has been incredibly supportive at each phase of my graduate career here at the University of Michigan. Second, I would like to thank the past and present members of the Engelke lab. I would especially like to thank Paul Good, May Tsoi, Glenn Wozniak, Kevin Kapadia, and Becky Haeusler for all of their help. For this dissertation I would like to thank the following people for their assistance. For Chapter II, I would like to thank Kevin Kapadia and Paul Good for technical assistance. I would also like to thank David Engelke and Tom Wilson for help with critical thinking and writing. For Chapter III, I would like to thank David Engelke and Rebecca Haeusler for their major writing contribution. I would also like to acknowledge that Rebecca Haeusler did the majority of the work that led to figures 1-3 in that chapter. For Chapter IV, I would like to thank Anita Hopper, David Engelke and Rebecca Haeusler for their writing contributions.
    [Show full text]
  • Supplementary Table 3: Genes Only Influenced By
    Supplementary Table 3: Genes only influenced by X10 Illumina ID Gene ID Entrez Gene Name Fold change compared to vehicle 1810058M03RIK -1.104 2210008F06RIK 1.090 2310005E10RIK -1.175 2610016F04RIK 1.081 2610029K11RIK 1.130 381484 Gm5150 predicted gene 5150 -1.230 4833425P12RIK -1.127 4933412E12RIK -1.333 6030458P06RIK -1.131 6430550H21RIK 1.073 6530401D06RIK 1.229 9030607L17RIK -1.122 A330043C08RIK 1.113 A330043L12 1.054 A530092L01RIK -1.069 A630054D14 1.072 A630097D09RIK -1.102 AA409316 FAM83H family with sequence similarity 83, member H 1.142 AAAS AAAS achalasia, adrenocortical insufficiency, alacrimia 1.144 ACADL ACADL acyl-CoA dehydrogenase, long chain -1.135 ACOT1 ACOT1 acyl-CoA thioesterase 1 -1.191 ADAMTSL5 ADAMTSL5 ADAMTS-like 5 1.210 AFG3L2 AFG3L2 AFG3 ATPase family gene 3-like 2 (S. cerevisiae) 1.212 AI256775 RFESD Rieske (Fe-S) domain containing 1.134 Lipo1 (includes AI747699 others) lipase, member O2 -1.083 AKAP8L AKAP8L A kinase (PRKA) anchor protein 8-like -1.263 AKR7A5 -1.225 AMBP AMBP alpha-1-microglobulin/bikunin precursor 1.074 ANAPC2 ANAPC2 anaphase promoting complex subunit 2 -1.134 ANKRD1 ANKRD1 ankyrin repeat domain 1 (cardiac muscle) 1.314 APOA1 APOA1 apolipoprotein A-I -1.086 ARHGAP26 ARHGAP26 Rho GTPase activating protein 26 -1.083 ARL5A ARL5A ADP-ribosylation factor-like 5A -1.212 ARMC3 ARMC3 armadillo repeat containing 3 -1.077 ARPC5 ARPC5 actin related protein 2/3 complex, subunit 5, 16kDa -1.190 activating transcription factor 4 (tax-responsive enhancer element ATF4 ATF4 B67) 1.481 AU014645 NCBP1 nuclear cap
    [Show full text]
  • Structure-Function Analysis of the RNA Polymerase III Subcomplex C17/25 and Genome-Wide Distribution of RNA Polymerase II
    Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München Structure-function analysis of the RNA polymerase III subcomplex C17/25 and genome-wide distribution of RNA polymerase II Anna Justyna Jasiak aus Kedzierzyn-Kozle, Polen 2008 Erklärung II Erklärung Diese Dissertation wurde im Sinne von §13 Abs. 3 der Promotionsordnung vom 29. Januar 1998 von Herrn Prof. Dr. Patrick Cramer betreut. Ehrenwörtliche Versicherung Diese Dissertation wurde selbständig und ohne unerlaubte Hilfe erarbeitet. München, am 21. November 2008 Anna J. Jasiak Dissertation eingereicht am 21. November 2008 1. Gutachter: Prof. Dr. Patrick Cramer 2. Gutachter: Prof. Dr. Klaus Förstemann Mündliche Prüfung am 14. Januar 2009 Acknowledgements III Acknowledgements I would like to thank my supervisor Prof. Patrick Cramer for creating a highly motivating scientific environment and his open-minded attitude in trying new methods. I have started my PhD with a purely crystallographic project and thanks to his never-ending enthusiasms and ideas I have got a unique opportunity to gain an insight into a broad range of in vivo and in vitro techniques. I have enjoyed it very much. I am deeply grateful for his support and understanding shown during the last phase of my PhD. Special thanks to Karim Armache and Laurent Larivière for their help in solving C17/25 structure, to Michaela Bertero for teaching me how to handle the protein crystals and to Dietmar Martin for the discussion and help on the ChIP-chip project. Moreover, I would like to thank to my collaborators Johannes Söding and Holger Hartmann for their input in microarray data analysis and Birgit Märtens for yeast complementation studies.
    [Show full text]
  • Egfr Activates a Taz-Driven Oncogenic Program in Glioblastoma
    EGFR ACTIVATES A TAZ-DRIVEN ONCOGENIC PROGRAM IN GLIOBLASTOMA by Minling Gao A thesis submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland March 2020 ©2020 Minling Gao All rights reserved Abstract Hyperactivated EGFR signaling is associated with about 45% of Glioblastoma (GBM), the most aggressive and lethal primary brain tumor in humans. However, the oncogenic transcriptional events driven by EGFR are still incompletely understood. We studied the role of the transcription factor TAZ to better understand master transcriptional regulators in mediating the EGFR signaling pathway in GBM. The transcriptional coactivator with PDZ- binding motif (TAZ) and its paralog gene, the Yes-associated protein (YAP) are two transcriptional co-activators that play important roles in multiple cancer types and are regulated in a context-dependent manner by various upstream signaling pathways, e.g. the Hippo, WNT and GPCR signaling. In GBM cells, TAZ functions as an oncogene that drives mesenchymal transition and radioresistance. This thesis intends to broaden our understanding of EGFR signaling and TAZ regulation in GBM. In patient-derived GBM cell models, EGF induced TAZ and its known gene targets through EGFR and downstream tyrosine kinases (ERK1/2 and STAT3). In GBM cells with EGFRvIII, an EGF-independent and constitutively active mutation, TAZ showed EGF- independent hyperactivation when compared to EGFRvIII-negative cells. These results revealed a novel EGFR-TAZ signaling axis in GBM cells. The second contribution of this thesis is that we performed next-generation sequencing to establish the first genome-wide map of EGF-induced TAZ target genes.
    [Show full text]
  • Heterogeneity Between Primary Colon Carcinoma and Paired Lymphatic and Hepatic Metastases
    MOLECULAR MEDICINE REPORTS 6: 1057-1068, 2012 Heterogeneity between primary colon carcinoma and paired lymphatic and hepatic metastases HUANRONG LAN1, KETAO JIN2,3, BOJIAN XIE4, NA HAN5, BINBIN CUI2, FEILIN CAO2 and LISONG TENG3 Departments of 1Gynecology and Obstetrics, and 2Surgical Oncology, Taizhou Hospital, Wenzhou Medical College, Linhai, Zhejiang; 3Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang; 4Department of Surgical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang; 5Cancer Chemotherapy Center, Zhejiang Cancer Hospital, Zhejiang University of Chinese Medicine, Hangzhou, Zhejiang, P.R. China Received January 26, 2012; Accepted May 8, 2012 DOI: 10.3892/mmr.2012.1051 Abstract. Heterogeneity is one of the recognized characteris- Introduction tics of human tumors, and occurs on multiple levels in a wide range of tumors. A number of studies have focused on the Intratumor heterogeneity is one of the recognized charac- heterogeneity found in primary tumors and related metastases teristics of human tumors, which occurs on multiple levels, with the consideration that the evaluation of metastatic rather including genetic, protein and macroscopic, in a wide range than primary sites could be of clinical relevance. Numerous of tumors, including breast, colorectal cancer (CRC), non- studies have demonstrated particularly high rates of hetero- small cell lung cancer (NSCLC), prostate, ovarian, pancreatic, geneity between primary colorectal tumors and their paired gastric, brain and renal clear cell carcinoma (1). Over the past lymphatic and hepatic metastases. It has also been proposed decade, a number of studies have focused on the heterogeneity that the heterogeneity between primary colon carcinomas and found in primary tumors and related metastases with the their paired lymphatic and hepatic metastases may result in consideration that the evaluation of metastatic rather than different responses to anticancer therapies.
    [Show full text]
  • Gene Duplication and Neofunctionalization: POLR3G and POLR3GL
    Downloaded from genome.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Research Gene duplication and neofunctionalization: POLR3G and POLR3GL Marianne Renaud,1 Viviane Praz,1,2 Erwann Vieu,1,5 Laurence Florens,3 Michael P. Washburn,3,4 Philippe l’Hoˆte,1 and Nouria Hernandez1,6 1Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; 2Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; 3Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; 4Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA RNA polymerase III (Pol III) occurs in two versions, one containing the POLR3G subunit and the other the closely related POLR3GL subunit. It is not clear whether these two Pol III forms have the same function, in particular whether they recognize the same target genes. We show that the POLR3G and POLR3GL genes arose from a DNA-based gene duplication, probably in a common ancestor of vertebrates. POLR3G- as well as POLR3GL-containing Pol III are present in cultured cell lines and in normal mouse liver, although the relative amounts of the two forms vary, with the POLR3G-containing Pol III relatively more abundant in dividing cells. Genome-wide chromatin immunoprecipitations followed by high-throughput sequencing (ChIP-seq) reveal that both forms of Pol III occupy the same target genes, in very constant proportions within one cell line, suggesting that the two forms of Pol III have a similar function with regard to specificity for target genes. In contrast, the POLR3G promoter—not the POLR3GL promoter—binds the transcription factor MYC, as do all other pro- moters of genes encoding Pol III subunits.
    [Show full text]
  • Molecular Basis of RNA Polymerase III Transcription Repression by Maf1
    Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München Molecular basis of RNA polymerase III transcription repression by Maf1 & Structure of human mitochondrial RNA polymerase Eva Rieke Ringel aus Essen 2011 Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München Molecular basis of RNA polymerase III transcription repression by Maf1 & Structure of human mitochondrial RNA polymerase Eva Rieke Ringel aus Essen 2011 Erklärung Diese Dissertation wurde im Sinne von § 13 Abs. 3 bzw. 4 der Promotionsordnung vom 29. Januar 1998 (in der Fassung der sechsten Änderungssatzung vom 16. August 2010) von Herrn Prof. Dr. Patrick Cramer betreut. Ehrenwörtliche Versicherung Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet. München, ..................................... .................................................................... Eva Rieke Ringel Dissertation eingereicht am 26.05.2011 1. Gutachter Prof. Dr. Patrick Cramer 2. Gutachter Prof. Dr. Dietmar Martin Mündliche Prüfung am 26.07.2011 Acknowledgements Life-science is like teamsports. If you want to play in a high league, you need to have good players and, even more importantly, a strong and diehard team effort. Without good passes from your teammates you would never score a goal and without the right tactics, training input and motivation from your coach, there would be nothing to win. I am very grateful that I was part of such a successful and inspiring squad, the Cramer lab team. I want to thank Patrick, the coach, not only for letting me be part of this team but also for his leadership. You gave me at the right time a lot of freedom to decide over my daily labwork and provided helpful feedback and project plans, when it was required.
    [Show full text]
  • MAF1 Sirna (M): Sc-75732
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . MAF1 siRNA (m): sc-75732 BACKGROUND STORAGE AND RESUSPENSION MAF1 is a 256 amino acid protein that localizes to the nucleus and is the hu- Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least man homolog of the yeast Maf1 protein. Interacting with BRF2, MAF1 func- one year from the date of shipment. Once resuspended, store at -20° C, tions to mediate signals that specifically repress the activity of RNA poly - avoid contact with RNAses and repeated freeze thaw cycles. merase III (Pol III), specifically by inhibiting the assembly of TFIIIB onto DNA. Resuspend lyophilized siRNA duplex in 330 µl of the RNAse-free water The gene encoding MAF1 maps to human chromosome 8, which consists of pro vided. Resuspension of the siRNA duplex in 330 µl of RNAse-free water nearly 146 million base pairs, houses more than 800 genes and is associated makes a 10 µM solution in a 10 µM Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM with a variety of diseases and malignancies. Schizophrenia, bipolar disorder, EDTA buffered solution. Trisomy 8, Pfeiffer syndrome, congenital hypothyroidism, Waardenburg syn - drome and some leukemias and lymphomas are thought to occur as a result APPLICATIONS of defects in specific genes that map to chromosome 8. MAF1 siRNA (m) is recommended for the inhibition of MAF1 expression in REFERENCES mouse cells. 1. Pluta, K., et al. 2001. MAF1 p, a negative effector of RNA polymerase III in SUPPORT REAGENTS Saccharomyces cerevisiae . Mol. Cell. Biol.
    [Show full text]