I PROPOXYPHENE, NORPROPOXYPHENE, AND

Total Page:16

File Type:pdf, Size:1020Kb

I PROPOXYPHENE, NORPROPOXYPHENE, AND PROPOXYPHENE, NORPROPOXYPHENE, AND PROADIFEN (SKF-525A) ARE MECHANISM-BASED INHIBITORS OF CYP3A4, CYP3A5, AND CYP3A IN HUMAN LIVER MICROSOMES Anna Ruth Riley Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Master of Science in the Department of Pharmacology and Toxicology, Indiana University December 2008 i Accepted by the Faculty of Indiana University, in partial fulfillment of the requirements for the degree of Master of Science. ___________________________ Sherry F. Queener, Ph.D., Chair ___________________________ David R. Jones, Ph.D. Master’s Thesis Committee ___________________________ David A. Flockhart, M.D., Ph.D. ___________________________ Lynn R. Willis, Ph.D. ii DEDICATION Special thanks to my family, and friends (especially MK), and MJK who helped me during this journey iii ACKNOWLEDGEMENTS To my committee: Sherry F. Queener David R. Jones David A. Flockhart Lynn R. Willis Eli Lilly and Company, for sponsorship iv ABSTRACT Anna Ruth Riley PROPOXYPHENE, NORPROPOXYPHENE, AND PROADIFEN (SKF-525A) ARE MECHANISM-BASED INHIBITORS OF CYP3A4, CYP3A5, AND CYP3A IN HUMAN LIVER MICROSOMES The purpose of this study is to determine if propoxyphene and norpropoxyphene are mechanism-based (irreversible) inhibitors of CYP3A, and to determine if propoxyphene and norpropoxyphene are reversible inhibitors of CYP3A. Mechanism- based inhibition is a type of irreversible inhibition that results from an inhibitor or its metabolite binding to an enzyme during drug metabolism, which renders the enzyme nonfunctional. Propoxyphene is an analgesic that is frequently prescribed in the United States and Europe. It is metabolized by CYP3A enzymes, and is an irreversible inhibitor of CYP3A4. The major metabolite of propoxyphene is norpropoxyphene, which has not been extensively studied for enzyme inhibition. Proadifen (SKF-525a) is not a marketed drug, but it is a known CYP inhibitor that is structurally similar to propoxyphene and norpropoxyphene. Propoxyphene, norpropoxyphene, and proadifen were characterized in these studies with CYP3A4(+b5), CYP3A5(+b5) and pooled human liver microsomes. Time-dependent and concentration-dependent loss of activity of CYP3A was measured by formation of testosterone product. Propoxyphene and norpropoxyphene exhibited the greatest inhibition with CYP3A in human liver microsomes, followed by CYP3A4(+b5), and CYP3A5(+b5). Both compounds formed metabolic-inhibitor complexes with v CYP3A4(+b5) and CYP3A5(+b5), but not with human liver microsomes. Proadifen was a more potent inhibitor of CYP3A4(+b5) than of human liver microsomes and CYP3A5(+b5). The KI values of propoxyphene and CYP3A4(+b5) and human liver microsomes fall within the range of reported therapeutic blood levels of propoxyphene, with reversible inhibition constants (Ki values) above therapeutic blood concentrations for propoxyphene and norpropoxyphene. The KI values of norpropoxyphene and CYP3A4(+b5) and human liver microsomes are higher than most reported blood levels, except for blood levels after repeated dosing of propoxyphene at high concentrations. The predicted change in the area under the plasma concentration versus time curve of an orally administered CYP3A substrate with propoxyphene (AUC'po/AUCpo) was calculated for common CYP3A substrates. The AUC'po/AUCpo ratios are four to twenty-five times higher with co-administration of propoxyphene based on in vitro kinetic parameters. Propoxyphene and norpropoxyphene may cause adverse events when chronically administered at high doses and/or when co-administered with other CYP3A substrates. Sherry F. Queener, Ph.D., Chair vi TABLE OF CONTENTS LIST OF TABLES……………………………………………………………..................ix LIST OF SCHEMATICS………………………………..……………..……....................x LIST OF EQUATIONS………………………………………..……………....................xi LIST OF FIGURES………………………………..……………..……….......................xii ABBREVIATIONS……………………………………………….….……....................xiv CHAPTER 1-INTRODUCTION………………………….…….……….…………….….1 Purpose of the study……………………………….…….…….………...........…...2 Background information on the compounds used in this study..………..….…......3 Background information on enzyme inhibition……….....…...…...…...….............5 Background information on enzymes used in this study.....…...…...…..................7 CHAPTER 2-MATERIALS AND METHODS…….…….…...…...…...……….......…..11 Overview of methods used in the study……….........……......……...……..….....11 Chemicals………………………………………………............….......................11 Enzymes……………………………………………….........……........................11 Mechanism-Based (Irreversible) Inhibition Experiments…….........…......….......12 Reversible Inhibition Experiments………………….…...……............................13 Metabolic-Intermediate Complex Formation Experiments…………......….........14 Data Modeling for Inhibition….…………………………..............….....….........15 Experimental Predictions of In Vivo Drug Interactions with Propoxyphene and Norpropoxyphene……………………………......................................................16 CHAPTER 3-RESULTS………………………………….......…...…........…..................17 Chromatography Data…….……….…….…………………...…..........................17 vii Irreversible Enzyme Inhibition Data………………….………….........................17 Metabolic-Intermediate Complex Formation Data………………….…...............19 Reversible Enzyme Inhibition Data…………..…………….…………...….........20 A Comparison of Irreversible and Reversible Enzyme Inhibition Data................20 CHAPTER 4-DISCUSSION.……….………………..…………...…...….......................22 CHAPTER 5-CONCLUSION……......……………….....…............................................34 APPENDIX-SUMMARY OF STATISTICAL METHODS.............................................76 REFERENCES…………………………………………..................................................77 CURRICULUM VITAE viii LIST OF TABLES Table 1. Chemical Structures of Propoxyphene, Methadone, Codeine, Norpropoxyphene and Dinorpropoxyphene Table 2. Proadifen (SKF-525a) and SKF-8742 Chemical Structures Table 3. List of CYP3A4 and CYP3A5 Common Polymorphisms Table 4. Summary of Kinetic Parameters for Enzyme Inactivation (Irreversible Inhibition) with Propoxyphene, Norpropoxyphene, and Proadifen Table 5. Reversible Inhibition Ki Values Table 6. Reported Therapeutic (Total) Blood Levels of Propoxyphene and Norpropoxyphene Table 7. Predictions of Propoxyphene and Norproxyphene Interactions with Other CYP3A Substrates (AUC'po/AUCpo) ix LIST OF SCHEMATICS Schematic I. Irreversible Inhibition Schematic II. Irreversible Inhibition: Chemistry of Proposed Metabolic-Intermediate Complex Formation Schematic III. Reversible Inhibition x LIST OF EQUATIONS Equation 1. Irreversible Equation for Enzyme Activity (at time (t)), Enzyme Activity at Time (0), and Kobserved (Kobs) at Time (t) Equation 2a and 2b. Irreversible Inhibition Equation for kobserved, kinact, and KI and Enzyme Activity Equation 3. Competitive Inhibition Equation Equation 4. Noncompetitive Inhibition Equation Equation 5. Uncompetitive Inhibition Equation Equation 6. Calculating AUC'po/AUCpo Using Kinetic Parameters xi LIST OF FIGURES Figure 1. HPLC Chromatogram of Extracted Sample After Incubation with Recombinant CYP Figure 2. HPLC Chromatogram of Extracted Sample After Incubation with Human Liver Microsomes Figure 3. Propoxyphene and CYP3A4(+b5)-Percent Activity v. Pre-incubation Time. Figure 4. Propoxyphene and CYP3A5(+b5)-Percent Activity v. Pre-incubation Time Figure 5. Propoxyphene and Human Liver Microsomes-Percent Activity v. Pre- incubation Time Figure 6. Norpropoxyphene and CYP3A4(+b5)-Percent Activity v. Pre-incubation Time Figure 7. Norpropoxyphene and CYP3A5(+b5)-Percent Activity v. Pre-incubation Time Figure 8. Norpropoxyphene and Human Liver Microsomes-Percent Activity v. Pre- incubation Time Figure 9. Proadifen and CYP3A4(+b5)-Percent Activity v. Pre-incubation Time Figure 10. Proadifen and CYP3A5(+b5)-Percent Activity v. Pre-incubation Time Figure 11. Proadifen and Human Liver Microsomes-Percent Activity v. Pre-incubation Time Figure 12. kobs v. Inhibitor Concentration for CYP3A4(+b5) and Propoxyphene Figure 13. Kobs v. Inhibitor Concentration for CYP3A5(+b5) and Propoxyphene Figure 14. Kobs v. Inhibitor Concentration for Human Liver Microsomes and Propoxyphene Figure 15. Kobs v. Inhibitor Concentration for CYP3A4(+b5) and Norpropoxyphene Figure 16. Kobs v. Inhibitor Concentration for CYP3A5(+b5) and Norpropoxyphene xii Figure 17. Kobs v. Inhibitor Concentration for Human Liver Microsomes and Norpropoxyphene Figure 18. Kobs v. Inhibitor Concentration for CYP3A4(+b5) and Proadifen Figure 19. Kobs v. Inhibitor Concentration for CYP3A5(+b5) and Proadifen Figure 20. Kobs v. Inhibitor Concentration for Human Liver Microsomes and Proadifen Figure 21. Propoxyphene and CYP3A4(+b5)-Percent Activity Relative to Control Figure 22. Propoxyphene and CYP3A5(+b5)-Percent Activity Relative to Control Figure 23. Propoxyphene and Human Liver Microsomes-Percent Activity Relative to Control Figure 24. Norpropoxyphene and CYP3A4(+b5)-Percent Activity Relative to Control Figure 25. Norpropoxyphene and CYP3A5(+b5)-Percent Activity Relative to Control Figure 26. Norpropoxyphene and Human Liver Microsomes-Percent Activity Relative to Control Figure 27. Proadifen and CYP3A4(+b5)-Percent Activity Relative to Control Figure 28. Proadifen and CYP3A5(+b5)-Percent Activity Relative to Control Figure 29. Proadifen and Human Liver Microsomes-Percent Activity Relative to Control Figure 30. Metabolic-Intermediate Complex Formation
Recommended publications
  • Guidelines for the Forensic Analysis of Drugs Facilitating Sexual Assault and Other Criminal Acts
    Vienna International Centre, PO Box 500, 1400 Vienna, Austria Tel.: (+43-1) 26060-0, Fax: (+43-1) 26060-5866, www.unodc.org Guidelines for the Forensic analysis of drugs facilitating sexual assault and other criminal acts United Nations publication Printed in Austria ST/NAR/45 *1186331*V.11-86331—December 2011 —300 Photo credits: UNODC Photo Library, iStock.com/Abel Mitja Varela Laboratory and Scientific Section UNITED NATIONS OFFICE ON DRUGS AND CRIME Vienna Guidelines for the forensic analysis of drugs facilitating sexual assault and other criminal acts UNITED NATIONS New York, 2011 ST/NAR/45 © United Nations, December 2011. All rights reserved. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. This publication has not been formally edited. Publishing production: English, Publishing and Library Section, United Nations Office at Vienna. List of abbreviations . v Acknowledgements .......................................... vii 1. Introduction............................................. 1 1.1. Background ........................................ 1 1.2. Purpose and scope of the manual ...................... 2 2. Investigative and analytical challenges ....................... 5 3 Evidence collection ...................................... 9 3.1. Evidence collection kits .............................. 9 3.2. Sample transfer and storage........................... 10 3.3. Biological samples and sampling ...................... 11 3.4. Other samples ...................................... 12 4. Analytical considerations .................................. 13 4.1. Substances encountered in DFSA and other DFC cases .... 13 4.2. Procedures and analytical strategy...................... 14 4.3. Analytical methodology .............................. 15 4.4.
    [Show full text]
  • Development of Pain-Free Methods for Analyzing 231 Multiclass Drugs and Metabolites by LC-MS/MS
    Clinical, Forensic & Toxicology Article “The Big Pain”: Development of Pain-Free Methods for Analyzing 231 Multiclass Drugs and Metabolites by LC-MS/MS By Sharon Lupo As the use of prescription and nonprescription drugs grows, the need for fast, accurate, and comprehensive methods is also rapidly increasing. Historically, drug testing has focused on forensic applications such as cause of death determinations or the detection of drug use in specific populations (military, workplace, probation/parole, sports doping). However, modern drug testing has expanded well into the clinical arena with a growing list of target analytes and testing purposes. Clinicians often request the analysis of large panels of drugs and metabolites that can be used to ensure compliance with prescribed pain medication regimens and to detect abuse or diversion of medications. With prescription drug abuse reaching epidemic levels [1], demand is growing for analytical methods that can ensure accurate results for comprehensive drug lists with reasonable analysis times. LC-MS/MS is an excellent technique for this work because it offers greater sensitivity and specificity than immunoassay and—with a highly selective and retentive Raptor™ Biphenyl column—can provide definitive results for a wide range of compounds. Typically, forensic and pain management drug testing consists of an initial screening analysis, which is qualitative, quick, and requires only minimal sample preparation. Samples that test positive during screening are then subjected to a quantitative confirmatory analysis. Whereas screening assays may cover a broad list of compounds and are generally less sensitive and specific, confirmation testing provides fast, targeted analysis using chromatographic conditions that are optimized for specific panels.
    [Show full text]
  • Basic Quant GCMS
    Harris County Institute of Forensic Sciences Section: Toxicology Approved By: Toxicology Manager Document Type: GC & GC/MS Procedure No.: TOX07.3005 Title: Quantitation of basic drugs by gas chromatography / mass spectrometry Rev.:15 1.0 Purpose 1.1 This document describes the procedures used by the Toxicology Laboratory to quantitate basic drugs using gas chromatography/mass spectrometry. 1.2 Biological specimens are basified to the moderately alkaline pH 9 at which basic compounds are in an unionized form and are soluble in an organic solvent. After liquid/liquid extraction, the organic layer is separated and the compound X is back extracted into 2 N HCl. The acid layer is then made alkaline and compound X is re-extracted into an organic solvent. 2.0 Scope 2.1 The assay is appropriate for quantitation of any basic compound (X) in blood including serum and plasma, urine, bile, stomach contents or tissue homogenates. 3.0 Definitions and Abbreviations 3.1 No method-specific or non-standard terms are used in this procedure. 4.0 Materials 4.1 Instruments and Equipment 4.1.1 13 x 100 mm screw top tubes and caps 4.1.2 Mixer 4.1.3 Rocker 4.1.4 Centrifuge 4.1.5 Transfer pipettes 4.1.6 Autosampler vials and rubber septum caps 4.1.7 Autosampler vial inserts 4.1.8 Vial crimper 4.1.9 100uL syringe 4.1.10 GC/MS Uncontrolled4.2 Reagents Copy 4.2.1 Ammonium Hydroxide Reagent Grade 4.2.2 n-Butyl chloride (chlorobutane) HPLC Grade 4.2.3 Saturated Sodium Borate Buffer, pH 9.3 A.
    [Show full text]
  • Big Pain Assays Aren't a Big Pain with the Raptor Biphenyl LC Column
    Featured Application: 231 Pain Management and Drugs of Abuse Compounds in under 10 Minutes by LC-MS/MS Big Pain Assays Aren’t a Big Pain with the Raptor Biphenyl LC Column • 231 compounds, 40+ isobars, 10 drug classes, 22 ESI- compounds in 10 minutes with 1 column. • A Raptor SPP LC column with time-tested Restek Biphenyl selectivity is the most versatile, multiclass-capable LC column available. • Achieve excellent separation of critical isobars with no tailing peaks. • Run fast and reliable high-throughput LC-MS/MS analyses with increased sensitivity using simple mobile phases. The use of pain management drugs is steadily increasing. As a result, hospital and reference labs are seeing an increase in patient samples that must be screened for a wide variety of pain management drugs to prevent drug abuse and to ensure patient safety and adherence to their medication regimen. Thera- peutic drug monitoring can be challenging due to the low cutoff levels, potential matrix interferences, and isobaric drug compounds. To address these chal- lenges, many drug testing facilities are turning to liquid chromatography coupled with mass spectrometry (LC-MS/MS) for its increased speed, sensitivity, and specificity. As shown in the analysis below, Restek’s Raptor Biphenyl column is ideal for developing successful LC-MS/MS pain medication screening methodologies. With its exceptionally high retention and unique selectivity, 231 multiclass drug compounds and metabolites—including over 40 isobars—can be analyzed in just 10 minutes. In addition, separate panels have been optimized on the Raptor Biphenyl column specifically for opioids, antianxiety drugs, barbiturates, NSAIDs and analgesics, antidepressants, antiepileptics, antipsychotics, hallucinogens, and stimulants for use during confirmation and quantitative analyses.
    [Show full text]
  • LZI Buprenorphine Enzyme Immunoassay for in Vitro Diagnostic Use Only 8ºC 0270 (100/37.5 Ml R1/R2 Kit) 0271 (1000/375 Ml R1/R2 Kit) 2ºC
    LZI Buprenorphine Enzyme Immunoassay For In Vitro Diagnostic Use Only 8ºC 0270 (100/37.5 mL R1/R2 Kit) 0271 (1000/375 mL R1/R2 Kit) 2ºC Lin-Zhi International, Inc. Intended Use Calibrators and Controls* The Lin-Zhi International (LZI) Buprenorphine Enzyme Immunoassay is *Calibrators and controls are sold separately and contain negative human intended for the qualitative and semi-quantitative determination of urine with sodium azide as a preservative. norbuprenorphine (a buprenorphine metabolite) in human urine at a cutoff value NORBUPRENORPHINE Calibrators/Controls REF of 5 ng/mL and 10 ng/mL. The assay is designed for prescription use with a Negative Calibrator 0001 number of automated clinical chemistry analyzers. Control: Contains 3 ng/mL norbuprenorphine 0272 The assay provides only a preliminary analytical result. A more specific Cutoff/Calibrator: Contains 5 ng/mL norbuprenorphine 0273 alternative analytical chemistry method must be used in order to obtain a Control: Contains 7 ng/mL norbuprenorphine 0274 confirmed analytical result. Gas or Liquid Chromatography/Mass Cutoff/Calibrator: Contains 10 ng/mL norbuprenorphine 0275 Control: Contains 13 ng/mL norbuprenorphine 0276 Spectrometry (GC/MS or LC/MS) are the preferred confirmatory methods Calibrator: Contains 20 ng/mL norbuprenorphine 0277 (1, 2). Clinical consideration and professional judgment should be exercised Calibrator: Contains 40 ng/mL norbuprenorphine 0278 with any drug of abuse test result, particularly when the preliminary test Calibrator: Contains 75 ng/mL norbuprenorphine 0279 result is positive. Precautions and Warning Summary and Explanation of Test • This test is for in vitro diagnostic use only. Harmful if swallowed. Buprenorphine is a semi-synthetic opioid derived from thebaine, an alkaloid of • Reagents used in the assay contain sodium azide as a preservative, which the poppy plant, Papaver somniferum.
    [Show full text]
  • A Generic LC-MS Method for the Analysis of Multiple of Drug of Abuse Classes with the Thermo Scientific Exactive TM System
    A Generic LC-MS Method for the Analysis of Multiple of Drug of Abuse Classes with the Thermo Scientific Exactive TM System Kent Johnson Fortes lab, Wilsonville Oregon Forensic Toxicology Use Only List of drug of abuse candidates for LC-MS analysis Sample matrix: urine and blood Benzodiazepines Opiates Other drugs group 1 Other drugs group 2 7-Aminonitrazepam Morphine Ketamine Methylphenidate 7-Aminoclonazepam Hydromorphone Norketamine Ritalinic Acid 7-Aminoflunitrazepam Oxymorphone Butorphanol Dextromethorphan 2-Hydroxy-ethyl-flurazepam Codeine Fentanyl Dextrophan Desalkylflurazepam Dihydrocodeine Norfentanyl Propoxyphene Diazepam Hydrocodone Nalbuphine Norpropoxyphene Hydroxy-alprazolam Oxycodone Alfentanil 6-MAM Hydroxy-triazolam Meperidine Sulfentanil Nordiazepam Normeperidine Zolpidem Lorazepam Trazodone Oxazepam Venlafaxine Temazepam Zopiclone Forensic Toxicology Use Only 2 Methods Employed Prior to LC-MS • Benzodiazepines GC-MS • Opiates GC-MS • Other drugs of abuse group 1 ELISA • Other drugs of abuse group 2 not analyzed before Forensic Toxicology Use Only 3 Why switch to LC-MS method? Benefits of replacing GC-MS • Faster less need for chromatographic separation • Less sample prep no derivatization • No thermal instability benzodiazepines analysis • No volatility limitations Benefits of replacing immunoassay • Lower consumables cost • More specific More cost efficient and analytically more universal Forensic Toxicology Use Only 4 Goal • Develop fast, easy to use, generic LC-MS method to analyze multiple classes of drugs
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0024365A1 Vaya Et Al
    US 2006.0024.365A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0024365A1 Vaya et al. (43) Pub. Date: Feb. 2, 2006 (54) NOVEL DOSAGE FORM (30) Foreign Application Priority Data (76) Inventors: Navin Vaya, Gujarat (IN); Rajesh Aug. 5, 2002 (IN)................................. 699/MUM/2002 Singh Karan, Gujarat (IN); Sunil Aug. 5, 2002 (IN). ... 697/MUM/2002 Sadanand, Gujarat (IN); Vinod Kumar Jan. 22, 2003 (IN)................................... 80/MUM/2003 Gupta, Gujarat (IN) Jan. 22, 2003 (IN)................................... 82/MUM/2003 Correspondence Address: Publication Classification HEDMAN & COSTIGAN P.C. (51) Int. Cl. 1185 AVENUE OF THE AMERICAS A6IK 9/22 (2006.01) NEW YORK, NY 10036 (US) (52) U.S. Cl. .............................................................. 424/468 (22) Filed: May 19, 2005 A dosage form comprising of a high dose, high Solubility active ingredient as modified release and a low dose active ingredient as immediate release where the weight ratio of Related U.S. Application Data immediate release active ingredient and modified release active ingredient is from 1:10 to 1:15000 and the weight of (63) Continuation-in-part of application No. 10/630,446, modified release active ingredient per unit is from 500 mg to filed on Jul. 29, 2003. 1500 mg, a process for preparing the dosage form. Patent Application Publication Feb. 2, 2006 Sheet 1 of 10 US 2006/0024.365A1 FIGURE 1 FIGURE 2 FIGURE 3 Patent Application Publication Feb. 2, 2006 Sheet 2 of 10 US 2006/0024.365A1 FIGURE 4 (a) 7 FIGURE 4 (b) Patent Application Publication Feb. 2, 2006 Sheet 3 of 10 US 2006/0024.365 A1 FIGURE 5 100 ov -- 60 40 20 C 2 4.
    [Show full text]
  • Fatal Toxicity of Antidepressant Drugs in Overdose
    BRITISH MEDICAL JOURNAL VOLUME 295 24 OCTOBER 1987 1021 Br Med J (Clin Res Ed): first published as 10.1136/bmj.295.6605.1021 on 24 October 1987. Downloaded from PAPERS AND SHORT REPORTS Fatal toxicity of antidepressant drugs in overdose SIMON CASSIDY, JOHN HENRY Abstract dangerous in overdose, thus meriting investigation of their toxic properties and closer consideration of the circumstances in which A fatal toxicity index (deaths per million National Health Service they are prescribed. Recommendations may thus be made that prescriptions) was calculated for antidepressant drugs on sale might reduce the number offatalities. during the years 1975-84 in England, Wales, and Scotland. The We used national mortality statistics and prescription data tricyclic drugs introduced before 1970 had a higher index than the to compile fatal toxicity indices for the currently available anti- mean for all the drugs studied (p<0-001). In this group the depressant drugs to assess the comparative safety of the different toxicity ofamitriptyline, dibenzepin, desipramine, and dothiepin antidepressant drugs from an epidemiological standpoint. Owing to was significantly higher, while that ofclomipramine, imipramine, the nature of the disease these drugs are particularly likely to be iprindole, protriptyline, and trimipramine was lower. The mono- taken in overdose and often cause death. amine oxidase inhibitors had intermediate toxicity, and the antidepressants introduced since 1973, considered as a group, had significantly lower toxicity than the mean (p<0-001). Ofthese newer drugs, maprotiline had a fatal toxicity index similar to that Sources ofinformation and methods of the older tricyclic antidepressants, while the other newly The statistical sources used list drugs under their generic and proprietary http://www.bmj.com/ introduced drugs had lower toxicity indices, with those for names.
    [Show full text]
  • CEDIA® Buprenorphine II Assay
    CEDIA® Buprenorphine II Assay For In Vitro Diagnostic Use Only Rx Only 10020849 (3 x 17 mL Kit) 10020850 (65 mL Kit) Intended Use Warnings and Precautions The CEDIA® Buprenorphine II Assay is a homogeneous enzyme immunoassay for the DANGER: Powder reagents contain ≤55% w/w Bovine Serum Albumin (BSA) fragments and qualitative and/or semi-quantitative determination for the presence of buprenorphine and its ≤1% w/w Sodium Azide. Liquid reagents contain ≤0.5% Bovine Serum, ≤0.2% Sodium Azide, metabolites in human urine at a cut-off concentration of 10 ng/mL. The assay is intended to and ≤0.1% Drug-Specific Antibody (Mouse). be used in laboratories and provides a simple and rapid analytical screening procedure to detect buprenorphine and its metabolites in human urine. The assay is designed for use with a The reagents are harmful if swallowed. number of clinical chemistry analyzers. H317 - May cause allergic skin reaction. The semi-quantitative mode is for the purpose of enabling laboratories to determine an H334 - May cause allergy or asthma symptoms or breathing difficulties if inhaled. appropriate dilution of the specimen for confirmation by a confirmatory method such as EUH032 - Contact with acids liberates very toxic gas. Liquid chromatography/tandem mass spectrometry (LC-MS/MS) or permitting laboratories to establish quality control procedures. Avoid breathing mist or vapor. Contaminated work clothing should not be allowed out of the workplace. Wear protective gloves/eye protection/face protection. In case of inadequate The assay provides only a preliminary analytical test result. A more specific alternative ventilation wear respiratory protection.
    [Show full text]
  • Drug-Facilitated Sexual Assault Panel, Blood
    DRUG-FACILITATED SEXUAL ASSAULT PANEL, BLOOD Blood Specimens (Order Code 70500) Alcohols Analgesics, cont. Anticonvulsants, cont. Antihistamines, cont. Ethanol Phenylbutazone Phenytoin Cyclizine Amphetamines Piroxicam Pregabalin Diphenhydramine Amphetamine Salicylic Acid* Primidone Doxylamine BDB Sulindac* Topiramate Fexofenadine Benzphetamine Tapentadol Zonisamide Guaifenesin Ephedrine Tizanidine Antidepressants Hydroxyzine MDA Tolmetin Amitriptyline Loratadine MDMA Tramadol Amoxapine Oxymetazoline* Mescaline* Anesthetics Bupropion Pyrilamine Methcathinone Benzocaine Citalopram Tetrahydrozoline Methamphetamine Bupivacaine Clomipramine Triprolidine Phentermine Etomidate Desipramine Antipsychotics PMA Ketamine Desmethylclomipramine 9-hydroxyrisperidone Phenylpropanolamine Lidocaine Dosulepin Aripiprazole Pseudoephedrine Mepivacaine Doxepin Buspirone Analgesics Methoxetamine Duloxetine Chlorpromazine Acetaminophen Midazolam Fluoxetine Clozapine Baclofen Norketamine Fluvoxamine Fluphenazine Buprenorphine Pramoxine* Imipramine Haloperidol Carisoprodol Procaine 1,3-chlorophenylpiperazine (mCPP) Mesoridazine Cyclobenzaprine Rocuronium Mianserin* Norclozapine Diclofenac Ropivacaine Mirtazapine Olanzapine Etodolac Antibiotics Nefazodone Perphenazine Fenoprofen Azithromycin* Nordoxepin Pimozide Hydroxychloroquine Chloramphenicol* Norfluoxetine Prochlorperazine Ibuprofen Ciprofloxacin* Norsertraline Quetiapine Ketoprofen Clindamycin* Nortriptyline Risperidone Ketorolac Erythromycin* Norvenlafaxine Thioridazine Meclofenamic Acid* Levofloxacin* Paroxetine
    [Show full text]
  • Drug Plasma Half-Life and Urine Detection Window | January 2019
    500 Chipeta Way | Salt Lake City, UT 84108-1221 Phone: (800) 522-2787 | Fax: (801) 583-2712 www.aruplab.com | www.arupconsult.com DRUG PLASMA HALF-LIFE AND URINE DETECTION WINDOW | JANUARY 2019 URINE- PLASMA DRUG, DRUG METABOLITE(S)* COMMON TRADE AND STREET NAMES, NOTES DETECTION HALF-LIFEt WINDOWt STIMULANTS Benzedrine, dexedrine, Adderall, Vyvanse, speed; could be methamphetamine Amphetamine 7–34 hours 1–5 days metabolite; if so, typically < 30 percent of parent Cocaine Coke, crack; parent drug rarely observed due to short half-life 0.7–1.5 hours < 1 day Benzoylecgonine Cocaine metabolite 5.5–7.5 hours 1–2 days Desoxyn, methedrine, Vicks inhaler (D- and L-isomers not resolved; low concentrations Methamphetamine expected if the source is Vicks); selegeline (Atapryl, Carbex, Eldepryl, Zelapar) 6–17 hours 1–5 days metabolite Methylenedioxyamphetamine (MDA) MDA 11–17 hours 1–3 days Methylenedioxyethylamphetamine (MDEA) MDEA, MDE, Eve 6–11 hours 1–3 days Methylenedioxymethamphetamine (MDMA) MDMA, XTC, ecstasy, Molly 6–10 hours 1–3 days Methylphenidate Ritalin, Concerta, Focalin, Metadate, Methylin 1.4–4.2 hours < 1 day Ritalinic acid Methylphenidate metabolite 1.8–2.5 hours < 1 day Phentermine Adipex-P, Lomaira, Qsymia 19–24 hours 1–5 days OPIOIDS Buprenorphine Belbuca, Buprenex, Butrans, Suboxone, Subutex, Sublocade, Zubsolv 26–42 hours 1–7 days Norbuprenorphine, Glucuronides Buprenorphine metabolites 15–150 hours 1–14 days Included in many preparations; morphine metabolite; may be a contaminant if < 2 Codeine 1.9–3.9 hours 1–3 days percent of morphine Fentanyl Actiq, Duragesic, Fentora, Lazanda, Sublimaze, Subsys, Ionsys 3–12 hours 1–3 days Norfentanyl Fentanyl metabolite 9–10 hours 1–3 days Heroin Diacetylmorphine, dope, smack, dust; parent drug not detected.
    [Show full text]
  • ARK™ Ketamine Assay Package Insert
    The ARK Ketamine Assay provides only a preliminary analytical test result. A more specific alternative chemical method must be used in order to obtain a confirmed positive analytical result. Gas Chromatography/Mass Spectrometry (GC/MS) or Liquid Chromatography/tandem Mass Spectrometry (LC-MS/MS) is the preferred confirmatory method. Clinical consideration and professional judgment should be exercised with any drug test result, particularly when the For Criminal Justice and Forensic Use Only preliminary test result is positive. 3 SUMMARY AND EXPLANATION OF THE TEST Ketamine ((+/-)-2-(2-chlorophenyl)-2-(methylamino)cyclohexanone) is a synthetic, non- RK™ Ketamine Assay barbiturate and rapid-acting general anesthetic that is indicated for use in both human and A veterinary surgical procedures.1,2 This ARK Diagnostics, Inc. package insert for the ARK Ketamine Assay must be read prior to use. Package insert instructions must be followed accordingly. The assay provides a simple Ketamine is a Schedule III substance under the United States Controlled Substances Act for and rapid analytical screening procedure for detecting ketamine in urine. Reliability of the its potential for abuse and risk of dependence. Ketamine is structurally and pharmacologically assay results cannot be guaranteed if there are any deviations from the instructions in this similar to phencyclidine (PCP), but is less potent, has a faster onset and shorter duration of package insert. action relative to PCP. Ketamine produces a variety of symptoms including, but not limited to anxiety, dysphoria, disorientation, insomnia, flashbacks, hallucinations, and psychotic episodes.1,3 CUSTOMER SERVICE Following administration in humans, ketamine is N-demethylated by liver microsomal ARK Diagnostics, Inc.
    [Show full text]