Perceptual Model for Assessment of Coded Audio

Total Page:16

File Type:pdf, Size:1020Kb

Perceptual Model for Assessment of Coded Audio Perceptual model for assessment of coded audio David J M Robinson A thesis submitted for the degree of Doctor of Philosophy Department of Electronic Systems Engineering University of Essex March 2002 Summary In this thesis, a time-domain binaural auditory model is developed for the assessment of high quality coded audio signals. Traditional objective measurements of sound quality yield misleading results when applied to psychoacoustic based codecs. Whilst human subjective opinion must be the ultimate arbiter of perceived sound quality, an objective measurement is sought that accurately predicts human perception. The auditory model described in this thesis is designed to match the processing within the human auditory system as closely as possible. The outer and middle ear transforms are simu- lated by linear filters; the basilar membrane response is simulated by a bank of amplitude dependent gammachirp filters, and the compressive action of the inner hair cells is simulated by an adaptation circuit. The whole model is calibrated using known human performance data. This monophonic model is used as the basis for a model of binaural hearing. Signals from the inner hair cell simulation are compared with those from the opposing ear, and an internal binaural image is formed. Changes in this image are shown to reflect audible changes in the binaural properties of the sound field. The binaural model predicts binaural masking and lo- calisation data using a single detection criterion, which suggests that both phenomena may be due to the same internal process. Finally, the model is used for audio quality assessment. The monophonic model correctly predicts human perception for some coded audio extracts, but not all. A specific problem in the hair cell simulation is identified, and solutions to this problem are suggested. The binaural model accurately predicts human perception of spatial qualities. In particular, the model can detect changes to the stereo soundstage within real music stimuli. Table of Contents 1 INTRODUCTION................................................................................................................ 1 2 BACKGROUND.................................................................................................................. 5 2.1 Overview .....................................................................................................................5 2.2 Audio coding............................................................................................................... 5 2.2.1 Why reduce the data rate? .................................................................................. 5 2.2.2 Data reduction by quality reduction ................................................................... 7 2.2.3 Lossless and lossy audio codecs......................................................................... 8 2.2.4 General psychoacoustic coding principles ....................................................... 11 2.2.5 MPEG audio codecs ......................................................................................... 13 2.3 Audio quality measurements..................................................................................... 19 2.3.1 Frequency response .......................................................................................... 20 2.3.2 Signal to Noise Ratio........................................................................................ 22 2.3.3 Total Harmonic Distortion (plus noise)............................................................ 22 2.3.4 Input Output difference analysis ...................................................................... 23 2.4 Subjective assessment ............................................................................................... 25 2.4.1 Beyond subjective assessment.......................................................................... 27 2.5 Conclusion ................................................................................................................ 28 3 THE HUMAN AUDITORY SYSTEM ............................................................................. 29 3.1 Overview.................................................................................................................... 29 3.2 A walk through the human auditory system............................................................... 29 3.2.1 The Pinna........................................................................................................... 33 3.2.2 The ear canal...................................................................................................... 37 ii TABLE OF CONTENTS 3.2.3 Middle Ear......................................................................................................... 39 3.2.4 The Cochlea....................................................................................................... 40 3.2.5 Neural signal processing.................................................................................... 52 3.3 Conclusion................................................................................................................. 54 3.4 Acknowledgements .................................................................................................... 54 4 AUDITORY PERCEPTUAL MODELS ........................................................................... 55 4.1 Overview ................................................................................................................... 55 4.2 Auditory modelling ................................................................................................... 55 4.3 The Johnston model .................................................................................................. 58 4.3.1 Algorithm ......................................................................................................... 60 4.3.2 Verification: Psychoacoustic test. .................................................................... 69 4.3.3 Assessing Audio Quality using the Johnston model ........................................ 74 4.3.4 Criticism of the Johnston model....................................................................... 81 4.4 Other models............................................................................................................. 88 4.4.1 Comparison of models...................................................................................... 92 4.5 Conclusion ................................................................................................................ 93 5 MONOPHONIC AUDITORY MODEL............................................................................ 94 5.1 Overview ................................................................................................................... 94 5.2 Introduction .............................................................................................................. 94 5.3 Structure of the model............................................................................................... 95 5.3.1 Signal Preparation and Implementation ........................................................... 95 5.3.2 Pre-filtering....................................................................................................... 97 5.3.3 Middle Ear filtering .......................................................................................... 98 5.3.4 Basilar membrane filtering ............................................................................... 99 5.3.5 Hair cell transduction ..................................................................................... 108 5.4 Perceiving a difference ........................................................................................... 113 5.4.1 Possible strategies........................................................................................... 114 5.4.2 Chosen Strategy.............................................................................................. 117 5.5 Implementation Speed............................................................................................. 120 5.6 Demonstration ........................................................................................................ 122 5.6.1 Threshold of audibility ................................................................................... 122 5.6.2 Spectral Masking............................................................................................ 123 iii TABLE OF CONTENTS 5.6.3 Amplitude dependent filter response.............................................................. 125 5.7 Conclusion .............................................................................................................. 125 6 SPATIAL MASKING...................................................................................................... 126 6.1 Overview.................................................................................................................. 126 6.2 Introduction ............................................................................................................. 126 6.3 Spatial Masking Experiment.................................................................................... 130 6.3.1 Aims and parameters of experiment................................................................ 130 6.3.2 Details of experiment....................................................................................... 133 6.3.3 Results ............................................................................................................
Recommended publications
  • CD/DVD Player
    4-277-895-11(1) CD/DVD Player Operating Instructions DVP-NS638P DVP-NS648P © 2011 Sony Corporation Precautions Notes about the discs Safety • To keep the disc clean, handle WARNING To prevent fire or shock hazard, do the disc by its edge. Do not touch not place objects filled with the surface. Dust, fingerprints, or To reduce the risk of fire or liquids, such as vases, on the scratches on the disc may cause electric shock, do not expose apparatus. it to malfunction. this apparatus to rain or moisture. Installing To avoid electrical shock, do • Do not install the unit in an not open the cabinet. Refer inclined position. It is designed servicing to qualified to be operated in a horizontal personnel only. position only. The mains lead must only be • Keep the unit and discs away changed at a qualified from equipment with strong service shop. magnets, such as microwave Batteries or batteries ovens, or large loudspeakers. installed apparatus shall not • Do not place heavy objects on be exposed to excessive heat the unit. such as sunshine, fire or the like. Lightning For added protection for this set • Do not expose the disc to direct CAUTION during a lightning storm, or when it sunlight or heat sources such as is left unattended and unused for hot air ducts, or leave it in a car The use of optical instruments with long periods of time, unplug it parked in direct sunlight as the this product will increase eye from the wall outlet. This will temperature may rise hazard. As the laser beam used in prevent damage to the set due to considerably inside the car.
    [Show full text]
  • C-Based Hardware Design of Imdct Accelerator for Ogg Vorbis Decoder
    C-BASED HARDWARE DESIGN OF IMDCT ACCELERATOR FOR OGG VORBIS DECODER Shinichi Maeta1, Atsushi Kosaka1, Akihisa Yamada1, 2, Takao Onoye1, Tohru Chiba1, 2, and Isao Shirakawa1 1Department of Information Systems Engineering, 2Sharp Corporation Graduate School of Information Science and Technology, 2613-1 Ichinomoto, Tenri, Nara, 632-8567 Japan Osaka University phone: +81 743 65 2531, fax: +81 743 65 3963, 2-1 Yamada-oka, Suita, Osaka, 565-0871 Japan email: [email protected], phone: +81 6 6879 7808, fax: +81 6 6875 5902, [email protected] email: {maeta, kosaka, onoye, sirakawa}@ist.osaka-u.ac.jp ABSTRACT ARM7TDMI is used as the embedded processor since it has This paper presents hardware design of an IMDCT accelera- come into wide use recently. tor for an Ogg Vorbis decoder using a C-based design sys- tem. Low power implementation of audio codec is important 2. OGG VORBIS CODEC in order to achieve long battery life of portable audio de- 2.1 Ogg Vorbis Overview vices. Through the computational cost analysis of the whole decoding process, it is found that Ogg Vorbis requires higher Figure 1 shows a block diagram of the Ogg Vorbis codec operation frequency of an embedded processor than MPEG processes outlined below. Audio. In order to reduce the CPU load, an accelerator is designed as specific hardware for IMDCT, which is detected MDCT Psycho Audio Remove Channel Acoustic VQ as the most computation-intensive functional block. Real- Signal Floor Coupling time decoding of Ogg Vorbis is achieved with the accelera- FFT Model Ogg Vorbis tor and an embedded processor both run at 36MHz.
    [Show full text]
  • A Forensic Database for Digital Audio, Video, and Image Media
    THE “DENVER MULTIMEDIA DATABASE”: A FORENSIC DATABASE FOR DIGITAL AUDIO, VIDEO, AND IMAGE MEDIA by CRAIG ANDREW JANSON B.A., University of Richmond, 1997 A thesis submitted to the Faculty of the Graduate School of the University of Colorado Denver in partial fulfillment of the requirements for the degree of Master of Science Recording Arts Program 2019 This thesis for the Master of Science degree by Craig Andrew Janson has been approved for the Recording Arts Program by Catalin Grigoras, Chair Jeff M. Smith Cole Whitecotton Date: May 18, 2019 ii Janson, Craig Andrew (M.S., Recording Arts Program) The “Denver Multimedia Database”: A Forensic Database for Digital Audio, Video, and Image Media Thesis directed by Associate Professor Catalin Grigoras ABSTRACT To date, there have been multiple databases developed for use in many forensic disciplines. There are very large and well-known databases like CODIS (DNA), IAFIS (fingerprints), and IBIS (ballistics). There are databases for paint, shoeprint, glass, and even ink; all of which catalog and maintain information on all the variations of their specific subject matter. Somewhat recently there was introduced the “Dresden Image Database” which is designed to provide a digital image database for forensic study and contains images that are generic in nature, royalty free, and created specifically for this database. However, a central repository is needed for the collection and study of digital audios, videos, and images. This kind of database would permit researchers, students, and investigators to explore the data from various media and various sources, compare an unknown with knowns with the possibility of discovering the likely source of the unknown.
    [Show full text]
  • Ardour Export Redesign
    Ardour Export Redesign Thorsten Wilms [email protected] Revision 2 2007-07-17 Table of Contents 1 Introduction 4 4.5 Endianness 8 2 Insights From a Survey 4 4.6 Channel Count 8 2.1 Export When? 4 4.7 Mapping Channels 8 2.2 Channel Count 4 4.8 CD Marker Files 9 2.3 Requested File Types 5 4.9 Trimming 9 2.4 Sample Formats and Rates in Use 5 4.10 Filename Conflicts 9 2.5 Wish List 5 4.11 Peaks 10 2.5.1 More than one format at once 5 4.12 Blocking JACK 10 2.5.2 Files per Track / Bus 5 4.13 Does it have to be a dialog? 10 2.5.3 Optionally store timestamps 5 5 Track Export 11 2.6 General Problems 6 6 MIDI 12 3 Feature Requests 6 7 Steps After Exporting 12 3.1 Multichannel 6 7.1 Normalize 12 3.2 Individual Files 6 7.2 Trim silence 13 3.3 Realtime Export 6 7.3 Encode 13 3.4 Range ad File Export History 7 7.4 Tag 13 3.5 Running a Script 7 7.5 Upload 13 3.6 Export Markers as Text 7 7.6 Burn CD / DVD 13 4 The Current Dialog 7 7.7 Backup / Archiving 14 4.1 Time Span Selection 7 7.8 Authoring 14 4.2 Ranges 7 8 Container Formats 14 4.3 File vs Directory Selection 8 8.1 libsndfile, currently offered for Export 14 4.4 Container Types 8 8.2 libsndfile, also interesting 14 8.3 libsndfile, rather exotic 15 12 Specification 18 8.4 Interesting 15 12.1 Core 18 8.4.1 BWF – Broadcast Wave Format 15 12.2 Layout 18 8.4.2 Matroska 15 12.3 Presets 18 8.5 Problematic 15 12.4 Speed 18 8.6 Not of further interest 15 12.5 Time span 19 8.7 Check (Todo) 15 12.6 CD Marker Files 19 9 Encodings 16 12.7 Mapping 19 9.1 Libsndfile supported 16 12.8 Processing 19 9.2 Interesting 16 12.9 Container and Encodings 19 9.3 Problematic 16 12.10 Target Folder 20 9.4 Not of further interest 16 12.11 Filenames 20 10 Container / Encoding Combinations 17 12.12 Multiplication 20 11 Elements 17 12.13 Left out 21 11.1 Input 17 13 Credits 21 11.2 Output 17 14 Todo 22 1 Introduction 4 1 Introduction 2 Insights From a Survey The basic purpose of Ardour's export functionality is I conducted a quick survey on the Linux Audio Users to create mixdowns of multitrack arrangements.
    [Show full text]
  • (A/V Codecs) REDCODE RAW (.R3D) ARRIRAW
    What is a Codec? Codec is a portmanteau of either "Compressor-Decompressor" or "Coder-Decoder," which describes a device or program capable of performing transformations on a data stream or signal. Codecs encode a stream or signal for transmission, storage or encryption and decode it for viewing or editing. Codecs are often used in videoconferencing and streaming media solutions. A video codec converts analog video signals from a video camera into digital signals for transmission. It then converts the digital signals back to analog for display. An audio codec converts analog audio signals from a microphone into digital signals for transmission. It then converts the digital signals back to analog for playing. The raw encoded form of audio and video data is often called essence, to distinguish it from the metadata information that together make up the information content of the stream and any "wrapper" data that is then added to aid access to or improve the robustness of the stream. Most codecs are lossy, in order to get a reasonably small file size. There are lossless codecs as well, but for most purposes the almost imperceptible increase in quality is not worth the considerable increase in data size. The main exception is if the data will undergo more processing in the future, in which case the repeated lossy encoding would damage the eventual quality too much. Many multimedia data streams need to contain both audio and video data, and often some form of metadata that permits synchronization of the audio and video. Each of these three streams may be handled by different programs, processes, or hardware; but for the multimedia data stream to be useful in stored or transmitted form, they must be encapsulated together in a container format.
    [Show full text]
  • Ogg Audio Codec Download
    Ogg audio codec download click here to download To obtain the source code, please see the xiph download page. To get set up to listen to Ogg Vorbis music, begin by selecting your operating system above. Check out the latest royalty-free audio codec from Xiph. To obtain the source code, please see the xiph download page. Ogg Vorbis is Vorbis is everywhere! Download music Music sites Donate today. Get Set Up To Listen: Windows. Playback: These DirectShow filters will let you play your Ogg Vorbis files in Windows Media Player, and other OggDropXPd: A graphical encoder for Vorbis. Download Ogg Vorbis Ogg Vorbis is a lossy audio codec which allows you to create and play Ogg Vorbis files using the command-line. The following end-user download links are provided for convenience: The www.doorway.ru DirectShow filters support playing of files encoded with Vorbis, Speex, Ogg Codecs for Windows, version , ; project page - for other. Vorbis Banner Xiph Banner. In our effort to bring Ogg: Media container. This is our native format and the recommended container for all Xiph codecs. Easy, fast, no torrents, no waiting, no surveys, % free, working www.doorway.ru Free Download Ogg Vorbis ACM Codec - A new audio compression codec. Ogg Codecs is a set of encoders and deocoders for Ogg Vorbis, Speex, Theora and FLAC. Once installed you will be able to play Vorbis. Ogg Vorbis MSACM Codec was added to www.doorway.ru by Bjarne (). Type: Freeware. Updated: Audiotags: , 0x Used to play digital music, such as MP3, VQF, AAC, and other digital audio formats.
    [Show full text]
  • Codec Is a Portmanteau of Either
    What is a Codec? Codec is a portmanteau of either "Compressor-Decompressor" or "Coder-Decoder," which describes a device or program capable of performing transformations on a data stream or signal. Codecs encode a stream or signal for transmission, storage or encryption and decode it for viewing or editing. Codecs are often used in videoconferencing and streaming media solutions. A video codec converts analog video signals from a video camera into digital signals for transmission. It then converts the digital signals back to analog for display. An audio codec converts analog audio signals from a microphone into digital signals for transmission. It then converts the digital signals back to analog for playing. The raw encoded form of audio and video data is often called essence, to distinguish it from the metadata information that together make up the information content of the stream and any "wrapper" data that is then added to aid access to or improve the robustness of the stream. Most codecs are lossy, in order to get a reasonably small file size. There are lossless codecs as well, but for most purposes the almost imperceptible increase in quality is not worth the considerable increase in data size. The main exception is if the data will undergo more processing in the future, in which case the repeated lossy encoding would damage the eventual quality too much. Many multimedia data streams need to contain both audio and video data, and often some form of metadata that permits synchronization of the audio and video. Each of these three streams may be handled by different programs, processes, or hardware; but for the multimedia data stream to be useful in stored or transmitted form, they must be encapsulated together in a container format.
    [Show full text]
  • File Name Benchmark Width 1024 Height 768 Anti-Aliasing None
    File Name Benchmark Width 1024 Height 768 Anti-Aliasing None Anti-Aliasing Quality 0 Texture Filtering Optimal Max Anisotropy 4 VS Profile 3_0 PS Profile 3_0 Force Full Precision No Disable DST No Disable Post-Processing No Force Software Vertex Shader No Color Mipmaps No Repeat Tests Off Fixed Framerate Off Comment 3DMark Score 4580 3DMarks Game Tests GT1 - Return To Proxycon 18.5 FPS Game Tests GT2 - Firefly Forest 11.7 FPS Game Tests GT3 - Canyon Flight 28.4 FPS Game Tests CPU Score 2184 CPUMarks CPU Tests CPU Test 1 1.1 FPS CPU Tests CPU Test 2 1.9 FPS CPU Tests Fill Rate - Single-Texturing 0.0 FPS N/A Feature Tests Fill Rate - Multi-Texturing 0.0 FPS N/A Feature Tests Pixel Shader 0.0 FPS N/A Feature Tests Vertex Shader - Simple 0.0 FPS N/A Feature Tests Vertex Shader - Complex 0.0 FPS N/A Feature Tests 8 Triangles 0.0 FPS N/A Batch Size Tests 32 Triangles 0.0 FPS N/A Batch Size Tests 128 Triangles 0.0 FPS N/A Batch Size Tests 512 Triangles 0.0 FPS N/A Batch Size Tests 2048 Triangles 0.0 FPS N/A Batch Size Tests 32768 Triangles 0.0 FPS N/A Batch Size Tests System Info Version 3.5 CPU Info Central Processing Unit Manufacturer Intel Family Intel(R) Pentium(R) 4 CPU 3.40GHz Architecture 32-bit Internal Clock 3400 MHz Internal Clock Maximum 3400 MHz External Clock 800 MHz Socket Designation CPU 1 Type Central Upgrade HyperThreadingTechnology Available - 2 Logical Processors Capabilities MMX, CMov, RDTSC, SSE, SSE2, PAE Version Intel(R) Pentium(R) 4 CPU 3.40GHz Caches Level Capacity Type Type Details Error Correction TyAssociativity 1
    [Show full text]
  • 6/8/2018, 16:56:57 Machine Name: LAPTOP
    ------------------ System Information ------------------ Time of this report: 6/8/2018, 16:56:57 Machine name: LAPTOP-DL519BUJ Machine Id: {6A4BAB40-8615-4F88-B9C6-14E85D02B1B3} Operating System: Windows 10 Famille 64-bit (10.0, Build 17134) (17134.rs4_release.180410-1804) Language: French (Regional Setting: French) System Manufacturer: Acer System Model: Predator G9-791 BIOS: V1.11 (type: UEFI) Processor: Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz (8 CPUs), ~2.6GHz Memory: 16384MB RAM Available OS Memory: 16266MB RAM Page File: 5726MB used, 12970MB available Windows Dir: C:\WINDOWS DirectX Version: DirectX 12 DX Setup Parameters: Not found User DPI Setting: 96 DPI (100 percent) System DPI Setting: 96 DPI (100 percent) DWM DPI Scaling: Disabled Miracast: Available, with HDCP Microsoft Graphics Hybrid: Supported DxDiag Version: 10.00.17134.0001 64bit Unicode ------------ DxDiag Notes ------------ Display Tab 1: No problems found. Display Tab 2: No problems found. Sound Tab 1: No problems found. Input Tab: No problems found. -------------------- DirectX Debug Levels -------------------- Direct3D: 0/4 (retail) DirectDraw: 0/4 (retail) DirectInput: 0/5 (retail) DirectMusic: 0/5 (retail) DirectPlay: 0/9 (retail) DirectSound: 0/5 (retail) DirectShow: 0/6 (retail) --------------- Display Devices --------------- Card name: Intel(R) HD Graphics 530 Manufacturer: Intel Corporation Chip type: Intel(R) HD Graphics Family DAC type: Internal Device Type: Full Device (POST) Device Key: Enum\PCI\VEN_8086&DEV_191B&SUBSYS_105B1025&REV_06 Device Status: 0180200A
    [Show full text]
  • Directshow Codecs On
    DirectShow Codecs (Reported) Version RVG 0.5754 Windows Vista X86 Windows Vista X64 Codec Company Description Reported Windows XP Pro WindowsXP Starter Business N Business HomeBasic N HomeBasic HomePremium Ultimate Business N Business HomeBasic N HomeBasic HomePremium Ultimate AVI Decompressor Microsoft Corporation DirectShow Runtime AVI Draw Microsoft Corporation DirectShow Runtime Cinepak Codec by Radius Radius Inc. Cinepak® Codec DV Splitter Microsoft Corporation DirectShow Runtime DV Video Decoder Microsoft Corporation DirectShow Runtime DV Video Encoder Microsoft Corporation DirectShow Runtime Indeo® video 4.4 Decompression Filter Intel Corporation Intel Indeo® Video 4.5 Indeo® video 5.10 Intel Corporation Intel Indeo® video 5.10 Indeo® video 5.10 Compression Filter Intel Corporation Intel Indeo® video 5.10 Indeo® video 5.10 Decompression Filter Intel Corporation Intel Indeo® video 5.10 Intel 4:2:0 Video V2.50 Intel Corporation Microsoft H.263 ICM Driver Intel Indeo(R) Video R3.2 Intel Corporation N/A Intel Indeo® Video 4.5 Intel Corporation Intel Indeo® Video 4.5 Intel Indeo(R) Video YUV Intel IYUV codec Intel Corporation Codec Microsoft H.261 Video Codec Microsoft Corporation Microsoft H.261 ICM Driver Microsoft H.263 Video Codec Microsoft Corporation Microsoft H.263 ICM Driver Microsoft MPEG-4 Video Microsoft MPEG-4 Video Decompressor Microsoft Corporation Decompressor Microsoft RLE Microsoft Corporation Microsoft RLE Compressor Microsoft Screen Video Microsoft Screen Video Decompressor Microsoft Corporation Decompressor Video
    [Show full text]
  • How to Play Itunes Purchased and Rental Movies with XBMC
    How to Play iTunes Purchased and Rental Movies with XBMC What are XBMC Player Video Formats? XBMC is an open source media player software developed by XBMC team. With XBMC media player, you can view and watch any videos, music, podcasts on your local computer or from internet. XBMC is developed for Mac, Windows, iOS, Android platform now. So almost all of us can use this powerful media player app without obstacles. XBMC for Mac can be compatible with Mac OS X tiger or later. It supports playing 1080p video on Mac computer via software decoding on the CPU if it is powerful enough. And XBMC for Windows is compatible with Windows 7, Vista and XP. Even though it can run well on 64-bit machine, it is not yet optimized for that architecture so there is no performance gain when running on 64-bit Windows. Let's learn what formats does XBMC support at first. Video formats supported by XBMC: MPEG-1, MPEG-2, H.263, MPEG-4 SP and ASP, MPEG-4 AVC (H.264), HuffYUV, Indeo, MJPEG, RealVideo, RMVB, Sorenson, WMV, Cinepak. Audio formats supported by XBMC: MIDI, AIFF, WAV/WAVE, AIFF, MP2, MP3, AAC, AACplus (AAC+), Vorbis, AC3, DTS, ALAC, AMR, FLAC, Monkey's Audio (APE), RealAudio, SHN, WavPack, MPC/Musepack/Mpeg+, Shorten, Speex, WMA, IT, S3M, MOD (Amiga Module), XM, NSF (NES Sound Format), SPC (SNES), GYM (Genesis), SID (Commodore 64), Adlib, YM (Atari ST), ADPCM (Nintendo GameCube), and CD-DA. Can XBMC Play iTunes Downloaded Videos? The current software limitation on XBMC is that it can't play any DRM-protected music and videos, like audio files purchased from online music stores as iTunes Music Store, MSN Music, Audible.com, Windows Media Player Stores, and video files protected with Windows Media DRM, Fairplay DRM or DivX proprietary DRM.
    [Show full text]
  • System Information ---Time of This Report: 7/30/2013, 15:28:13 Machine Name
    Downloaded from: justpaste.it/39ad ------------------ System Information ------------------ Time of this report: 7/30/2013, 15:28:13 Machine name: ERIKDC-HP Operating System: Windows 7 Home Premium 64-bit (6.1, Build 7601) Service Pack 1 (7601.win7sp1_gdr.130318-1533) Language: English (Regional Setting: English) System Manufacturer: Hewlett-Packard System Model: HP Pavilion g6 Notebook PC BIOS: InsydeH2O Version CCB.03.61.17F.46 Processor: AMD A4-3300M APU with Radeon(tm) HD Graphics (2 CPUs), ~1.9GHz Memory: 4096MB RAM Available OS Memory: 3562MB RAM Page File: 3257MB used, 3866MB available Windows Dir: C:\Windows DirectX Version: DirectX 11 DX Setup Parameters: Not found User DPI Setting: Using System DPI System DPI Setting: 96 DPI (100 percent) DWM DPI Scaling: Disabled DxDiag Version: 6.01.7601.17514 32bit Unicode ------------ DxDiag Notes ------------ Display Tab 1: No problems found. Sound Tab 1: No problems found. Sound Tab 2: No problems found. Input Tab: No problems found. -------------------- DirectX Debug Levels -------------------- Direct3D: 0/4 (retail) DirectDraw: 0/4 (retail) DirectInput: 0/5 (retail) DirectMusic: 0/5 (retail) DirectPlay: 0/9 (retail) DirectSound: 0/5 (retail) DirectShow: 0/6 (retail) --------------- Display Devices --------------- Card name: AMD Radeon(TM) HD 6480G Manufacturer: ATI Technologies Inc. Chip type: ATI display adapter (0x9648) DAC type: Internal DAC(400MHz) Device Key: Enum\PCI\VEN_1002&DEV_9648&SUBSYS_169B103C&REV_00 Display Memory: 2022 MB Dedicated Memory: 497 MB Shared Memory: 1525 MB
    [Show full text]