Contributions of the Renin Angiotensin System to Fear Memory and Fear Conditioned Cardiovascular Responses

Total Page:16

File Type:pdf, Size:1020Kb

Contributions of the Renin Angiotensin System to Fear Memory and Fear Conditioned Cardiovascular Responses Contributions of the Renin Angiotensin System to Fear Memory and Fear Conditioned Cardiovascular Responses by Adam Swiercz B.S. in Biology, May 2006, The George Washington University M.P.S. in Molecular Biotechnology, May 2009, The George Washington University M.S. in Physiology, May 2011, Georgetown University A Dissertation submitted to The Faculty of The Columbian College of Arts & Sciences of The George Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy January 10, 2020 Dissertation co-directed by Paul J. Marvar Associate Professor of Pharmacology and Physiology and David Mendelowitz Professor of Pharmacology & Physiology The Columbian College of Arts and Sciences of The George Washington University certifies that Adam Swiercz has passed the Final Examination for the degree of Doctor of Philosophy as of October 2nd, 2019. This is the final and approved form of the dissertation. Contributions of the Renin Angiotensin System to Fear Memory and Fear Conditioned Cardiovascular Responses Adam Swiercz Dissertation Research Committee: Paul J. Marvar, Associate Professor of Pharmacology & Physiology, Dissertation Co-Director David Mendelowitz, Professor of Pharmacology & Physiology, Dissertation Co-Director Abigail Polter, Assistant Professor of Pharmacology & Physiology, Committee Member Colin Young, Assistant Professor of Pharmacology & Physiology, Committee Member ii © Copyright 2020 by Adam Swiercz All rights reserved iii Acknowledgements I would like to thank and acknowledge Dr. Paul Marvar, whose mentorship has made this dissertation possible. It has been a pleasure working in your lab, and I am truly grateful for your support and encouragement throughout the years. Thanks to the current and former members of the Marvar lab who have made my time at GW a rewarding and enjoyable experience. I would also like to thank my co-mentor, Dr. David Mendelowitz, as well as my committee members: Dr. Narine Sarvazyan, Dr. Colin Young, and Dr. Abigail Polter. You have all been very generous with your time, and your guidance has been incredibly helpful. To Dr. Leo Chalupa and Dr. Peter Nemes, thank you for your help during the defense process. Dr. Vincent Chiappinelli, thank you for your support during my time in the department of pharmacology and physiology. I would also like to thank Dr. Linda Werling and Marc Wittlif, who I had the pleasure of working with during my first few years in the IBS program. I am especially grateful for my parents, who instilled in me the determination required to accomplish my personal and academic goals. To my wife, Kelly, thank you for your endless patience, optimism, and support. iv Abstract of Dissertation Contributions of the Renin Angiotensin System to Fear Memory and Fear Conditioned Cardiovascular Responses Anxiety disorders, such as Posttraumatic stress disorder (PTSD), are associated with an increased risk of developing cardiovascular disease. While the exact mechanisms underlying this relationship are not entirely clear, recent evidence suggests that a hormonal system involved in the maintenance of blood pressure and fluid balance may play an integral role. The renin angiotensin system (RAS), which modulates autonomic nervous system activity and cardiovascular function, also influences learning processes such as fear memory formation and maintenance. Pharmacologically targeting the RAS may be effective in reducing symptoms of fear and anxiety disorders. This dissertation seeks to improve our understanding of the relationship between fear memory and cardiovascular reactivity, as well as the involvement of the RAS in fear learning processes. The first study examines the effects of extinction learning on cardiovascular responses to conditioned auditory stimuli. Through simultaneous recording of freezing behavior, blood pressure, and heart rate, it is shown that blood pressure responses are attenuated by repeated conditioned stimulus exposure. In the second study, the role of the angiotensin II type 1 receptor (AT1R) in the reconsolidation of auditory fear memory is investigated. Our findings suggest that blockade of AT1R during reconsolidation leads to long-term reductions in freezing behavior. Results from this study also indicate that treatment with the AT1R antagonist losartan following memory retrieval leads to differential gene expression patterns in the v amygdala. The final study identifies the functional properties of central angiotensin II type 2 receptors (AT2R) in fear expression and extinction. The regional distribution and characteristics of AT2R+ cells within the amygdala are examined in detail. Furthermore, pharmacological activation of AT2R in the central amygdala was used to determine how these receptors might contribute to fear learning and expression. Finally, AT2R-expressing neurons in the central amygdala are shown to project to the periaqueductal grey, a brain region responsible for mediating freezing behavior. The studies in this dissertation are the first to incorporate acute cardiovascular responses such as blood pressure into the assessment of extinction and reconsolidation, which are important clinical targets for the treatment of anxiety and fear. Furthermore, evidence is provided that AT1R contributes to the reconsolidation of auditory fear memories, and that AT2R-expressing neurons in the central amygdala modulate fear expression and extinction. These findings advance our understanding of the physiological and neurobiological systems that regulate fear learning, and suggest that compounds targeting the RAS may be useful in the treatment of fear-related psychiatric conditions. vi Table of Contents Acknowledgements ......................................................................................................... .iv Abstract of Dissertation .....................................................................................................v Table of Contents ............................................................................................................ vii List of Figures .................................................................................................................. .ix List of Tables ................................................................................................................... .xi List of Abbreviations ...................................................................................................... xii Chapter 1: General Introduction ........................................................................................................1 Posttraumatic Stress Disorder .................................................................................2 Posttraumatic Stress Disorder and Cardiovascular Disease Risk ...........................3 The Renin Angiotensin System ..............................................................................5 AT1R ...........................................................................................................7 AT2R ...........................................................................................................8 The Renin Angiotensin System and the Sympathetic Nervous System .....9 The Brain Renin Angiotensin System....................................................... 11 Anxiety and the Brain Renin Angiotensin System ................................... 14 Angiotensin II in Learning and Memory .................................................. 15 Emotion and Memory ........................................................................................... 16 Fear Memory ......................................................................................................... 18 Pavlovian Fear Conditioning .................................................................... 19 Circuitry of Fear Conditioning.................................................................. 21 Fear-Conditioned Physiological Responses .............................................. 24 Extinction of Fear Memory ....................................................................... 26 A Role for the Renin Angiotensin System in PTSD ................................. 29 Memory Reconsolidation .......................................................................... 30 Genetic Markers of Reconsolidation ........................................................ 32 Summary and Specific Aims ................................................................................ 34 References ............................................................................................................. 40 Chapter 2: Extinction of Fear Memory Attenuates Conditioned Cardiovascular Fear Reactivity Abstract ................................................................................................................ 60 Introduction .......................................................................................................... 61 Materials and Methods ......................................................................................... 63 vii Results .................................................................................................................. 67 Discussion ............................................................................................................ 73 References ............................................................................................................ 88 Chapter 3: Evaluation of an Angiotensin Type 1 Receptor Blocker on the Reconsolidation of Fear Memory Abstract
Recommended publications
  • Viewed Under 23 (B) Or 203 (C) fi M M Male Cko Mice, and Largely Unaffected Magni Cation; Scale Bars, 500 M (B) and 50 M (C)
    BRIEF COMMUNICATION www.jasn.org Renal Fanconi Syndrome and Hypophosphatemic Rickets in the Absence of Xenotropic and Polytropic Retroviral Receptor in the Nephron Camille Ansermet,* Matthias B. Moor,* Gabriel Centeno,* Muriel Auberson,* † † ‡ Dorothy Zhang Hu, Roland Baron, Svetlana Nikolaeva,* Barbara Haenzi,* | Natalya Katanaeva,* Ivan Gautschi,* Vladimir Katanaev,*§ Samuel Rotman, Robert Koesters,¶ †† Laurent Schild,* Sylvain Pradervand,** Olivier Bonny,* and Dmitri Firsov* BRIEF COMMUNICATION *Department of Pharmacology and Toxicology and **Genomic Technologies Facility, University of Lausanne, Lausanne, Switzerland; †Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts; ‡Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia; §School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; |Services of Pathology and ††Nephrology, Department of Medicine, University Hospital of Lausanne, Lausanne, Switzerland; and ¶Université Pierre et Marie Curie, Paris, France ABSTRACT Tight control of extracellular and intracellular inorganic phosphate (Pi) levels is crit- leaves.4 Most recently, Legati et al. have ical to most biochemical and physiologic processes. Urinary Pi is freely filtered at the shown an association between genetic kidney glomerulus and is reabsorbed in the renal tubule by the action of the apical polymorphisms in Xpr1 and primary fa- sodium-dependent phosphate transporters, NaPi-IIa/NaPi-IIc/Pit2. However, the milial brain calcification disorder.5 How- molecular identity of the protein(s) participating in the basolateral Pi efflux remains ever, the role of XPR1 in the maintenance unknown. Evidence has suggested that xenotropic and polytropic retroviral recep- of Pi homeostasis remains unknown. Here, tor 1 (XPR1) might be involved in this process. Here, we show that conditional in- we addressed this issue in mice deficient for activation of Xpr1 in the renal tubule in mice resulted in impaired renal Pi Xpr1 in the nephron.
    [Show full text]
  • PLEKHM2 Mutation Leads to Abnormal Localization of Lysosomes, Impaired
    Human Molecular Genetics, 2015, Vol. 24, No. 25 7227–7240 doi: 10.1093/hmg/ddv423 Advance Access Publication Date: 12 October 2015 Original Article ORIGINAL ARTICLE PLEKHM2 mutation leads to abnormal localization Downloaded from of lysosomes, impaired autophagy flux and associates with recessive dilated cardiomyopathy and left ventricular noncompaction http://hmg.oxfordjournals.org/ Emad Muhammad1,†, Aviva Levitas2,†, Sonia R. Singh3,4, Alex Braiman1, Rivka Ofir5, Sharon Etzion5, Val C. Sheffield6, Yoram Etzion5,7, Lucie Carrier3,4 and Ruti Parvari1,8,* 1Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel, 2Department of Pediatric Cardiology, Soroka University Medical Center and at Bibliothekssystem Universitaet Hamburg on December 2, 2015 Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel, 3Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany, 4DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany, 5Regenerative Medicine and Stem Cell Research Center, Beer-Sheva 84105, Israel, 6Department of Pediatrics, Division of Medical Genetics and Hughes Medical Institute, University of Iowa, Iowa City, IA 52242, USA, 7Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel and 8National Institute for Biotechnology in the Negev, Ben- Gurion University of the Negev, Beer-Sheva, Israel *To whom correspondence should be addressed. Tel: +972 86479967; Fax: +972 86472983; Email: [email protected] Abstract Gene mutations, mostly segregating with a dominant mode of inheritance, are important causes of dilated cardiomyopathy (DCM), a disease characterized by enlarged ventricular dimensions, impaired cardiac function, heart failure and high risk of death.
    [Show full text]
  • Downloaded from [266]
    Patterns of DNA methylation on the human X chromosome and use in analyzing X-chromosome inactivation by Allison Marie Cotton B.Sc., The University of Guelph, 2005 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies (Medical Genetics) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) January 2012 © Allison Marie Cotton, 2012 Abstract The process of X-chromosome inactivation achieves dosage compensation between mammalian males and females. In females one X chromosome is transcriptionally silenced through a variety of epigenetic modifications including DNA methylation. Most X-linked genes are subject to X-chromosome inactivation and only expressed from the active X chromosome. On the inactive X chromosome, the CpG island promoters of genes subject to X-chromosome inactivation are methylated in their promoter regions, while genes which escape from X- chromosome inactivation have unmethylated CpG island promoters on both the active and inactive X chromosomes. The first objective of this thesis was to determine if the DNA methylation of CpG island promoters could be used to accurately predict X chromosome inactivation status. The second objective was to use DNA methylation to predict X-chromosome inactivation status in a variety of tissues. A comparison of blood, muscle, kidney and neural tissues revealed tissue-specific X-chromosome inactivation, in which 12% of genes escaped from X-chromosome inactivation in some, but not all, tissues. X-linked DNA methylation analysis of placental tissues predicted four times higher escape from X-chromosome inactivation than in any other tissue. Despite the hypomethylation of repetitive elements on both the X chromosome and the autosomes, no changes were detected in the frequency or intensity of placental Cot-1 holes.
    [Show full text]
  • Oncogenic Inhibition by a Deleted in Liver Cancer Gene Requires Cooperation Between Tensin Binding and Rho-Specific Gtpase-Activating Protein Activities
    Oncogenic inhibition by a deleted in liver cancer gene requires cooperation between tensin binding and Rho-specific GTPase-activating protein activities Xiaolan Qian*, Guorong Li*, Holly K. Asmussen*, Laura Asnaghi*, William C. Vass*, Richard Braverman*, Kenneth M. Yamada†, Nicholas C. Popescu‡, Alex G. Papageorge*, and Douglas R. Lowy*§ *Laboratory of Cellular Oncology and ‡Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and †Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892 Communicated by Ira Pastan, National Institutes of Health, Bethesda, MD, April 2, 2007 (received for review March 1, 2007) The three deleted in liver cancer genes (DLC1–3) encode Rho- The prototypic member, designated DLC1, is localized to GTPase-activating proteins (RhoGAPs) whose expression is fre- chromosome 8p21–22 in a region that is commonly deleted in quently down-regulated or silenced in a variety of human malig- hepatocellular carcinoma (5). Its expression is frequently down- nancies. The RhoGAP activity is required for full DLC-dependent regulated or silenced in various solid tumors and hematologic tumor suppressor activity. Here we report that DLC1 and DLC3 bind malignancies, predominantly by promoter methylation (6–13). to human tensin1 and its chicken homolog. The binding has been Ectopic reexpression in DLC1-deficient cancer cell lines can mapped to the tensin Src homology 2 (SH2) and phosphotyrosine suppress cell proliferation, induce apoptosis, and reduce tumor- binding (PTB) domains at the C terminus of tensin proteins. Distinct igenicity. The RhoGAP activity appears to be required for these DLC1 sequences are required for SH2 and PTB binding.
    [Show full text]
  • PLEKHM2 (NM 015164) Human Recombinant Protein – TP320299
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TP320299 PLEKHM2 (NM_015164) Human Recombinant Protein Product data: Product Type: Recombinant Proteins Description: Recombinant protein of human pleckstrin homology domain containing, family M (with RUN domain) member 2 (PLEKHM2) Species: Human Expression Host: HEK293T Tag: C-Myc/DDK Predicted MW: 112.6 kDa Concentration: >50 ug/mL as determined by microplate BCA method Purity: > 80% as determined by SDS-PAGE and Coomassie blue staining Buffer: 25 mM Tris.HCl, pH 7.3, 100 mM glycine, 10% glycerol Preparation: Recombinant protein was captured through anti-DDK affinity column followed by conventional chromatography steps. Storage: Store at -80°C. Stability: Stable for 12 months from the date of receipt of the product under proper storage and handling conditions. Avoid repeated freeze-thaw cycles. RefSeq: NP_055979 Locus ID: 23207 UniProt ID: Q8IWE5 RefSeq Size: 4231 Cytogenetics: 1p36.21 RefSeq ORF: 3057 Synonyms: SKIP This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 PLEKHM2 (NM_015164) Human Recombinant Protein – TP320299 Summary: This gene encodes a protein that binds the plus-end directed microtubule motor protein kinesin, together with the lysosomal GTPase Arl8, and is required for lysosomes to distribute away from the microtubule-organizing center. The encoded protein belongs to the multisubunit BLOC-one-related complex that regulates lysosome positioning.
    [Show full text]
  • PLEKHM2 (C-13): Sc-136806
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . PLEKHM2 (C-13): sc-136806 BACKGROUND PRODUCT PLEKHM2 (pleckstrin homology domain containing, family M (with RUN do- Each vial contains 100 µg IgG in 1.0 ml of PBS with < 0.1% sodium azide main) member 2), also known as PH domain-containing family M member 2 and 0.1% gelatin. or salmonella-induced filaments A and kinesin-interacting protein (SKIP), Blocking peptide available for competition studies, sc-136806 P, (100 µg is a 1,019 amino acid cytoplasmic protein responsible for maintaining Golgi pep tide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA). apparatus organization. Containing one PH domain and a single RUN domain, PLEKHM2 may control vacuolar membrane dynamics by regulating kinesin APPLICATIONS activity in the bacterial vacuole. The gene encoding PLEKHM2 maps to human chromosome 1, which spans 260 million base pairs, contains over 3,000 genes PLEKHM2 (C-13) is recommended for detection of PLEKHM2 of mouse, and comprises nearly 8% of the human genome. Chromosome 1 houses a rat and human origin by Western Blotting (starting dilution 1:100, dilution large number of disease-associated genes, including those that are involved range 1:50-1:500), immunofluorescence (starting dilution 1:25, dilution in familial adenomatous polyposis, Stickler syndrome, Parkinson’s disease, range 1:25-1:250) and solid phase ELISA (starting dilution 1:30, dilution Gaucher disease, schizophrenia and Usher syndrome. range 1:30-1:3000); non cross-reactive with PLEKHM1. PLEKHM2 (C-13) is also recommended for detection of PLEKHM2 in addi - REFERENCES tional species, including equine, canine, bovine, porcine and avian.
    [Show full text]
  • WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T (51) International Patent Classification: David [US/US]; 13539 N . 95th Way, Scottsdale, AZ C12Q 1/68 (2006.01) 85260 (US). (21) International Application Number: (74) Agent: AKHAVAN, Ramin; Caris Science, Inc., 6655 N . PCT/US20 12/0425 19 Macarthur Blvd., Irving, TX 75039 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 14 June 2012 (14.06.2012) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, English (25) Filing Language: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/497,895 16 June 201 1 (16.06.201 1) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/499,138 20 June 201 1 (20.06.201 1) US OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, 61/501,680 27 June 201 1 (27.06.201 1) u s SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 61/506,019 8 July 201 1(08.07.201 1) u s TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Males Mosaic for Mutations in the X-Linked EFNB1 Gene Are More Severely Affected Than True Hemizygotes
    Cellular Interference in Craniofrontonasal Syndrome: Males Mosaic for Mutations in the X-Linked EFNB1 Gene Are More Severely Affected than True Hemizygotes The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Twigg, Stephen R. F., Christian Babbs, Marijke E. P. van den Elzen, Anne Goriely, Stephen Taylor, Simon J. McGowan, Eleni Giannoulatou, et al. 2013. Cellular interference in craniofrontonasal syndrome: Males mosaic for mutations in the X-linked EFNB1 gene are more severely affected than true hemizygotes. Human Molecular Genetics 22(8): 1654-1662. Published Version doi:10.1093/hmg/ddt015 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:10622989 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Human Molecular Genetics, 2013, Vol. 22, No. 8 1654–1662 doi:10.1093/hmg/ddt015 Advance Access published on January 17, 2013 Cellular interference in craniofrontonasal syndrome: males mosaic for mutations in the X-linked EFNB1 gene are more severely affected than true hemizygotes Stephen R.F. Twigg1, Christian Babbs1, Marijke E.P. van den Elzen3, Anne Goriely1, Stephen Taylor2, Simon J. McGowan2, Eleni Giannoulatou1,2, Lorne Lonie5, Jiannis Ragoussis5, Elham Sadighi Akha6, Samantha J.L. Knight6, Roseli M. Zechi-Ceide7, Jeannette A.M. Hoogeboom4, Barbara R. Pober8, Helga V. Toriello9, Steven A. Wall10, M. Rita Passos-Bueno11, Han G. Brunner12, Irene M.J.
    [Show full text]
  • A Trafficome-Wide Rnai Screen Reveals Deployment of Early and Late Secretory Host Proteins and the Entire Late Endo-/Lysosomal V
    bioRxiv preprint doi: https://doi.org/10.1101/848549; this version posted November 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 A trafficome-wide RNAi screen reveals deployment of early and late 2 secretory host proteins and the entire late endo-/lysosomal vesicle fusion 3 machinery by intracellular Salmonella 4 5 Alexander Kehl1,4, Vera Göser1, Tatjana Reuter1, Viktoria Liss1, Maximilian Franke1, 6 Christopher John1, Christian P. Richter2, Jörg Deiwick1 and Michael Hensel1, 7 8 1Division of Microbiology, University of Osnabrück, Osnabrück, Germany; 2Division of Biophysics, University 9 of Osnabrück, Osnabrück, Germany, 3CellNanOs – Center for Cellular Nanoanalytics, Fachbereich 10 Biologie/Chemie, Universität Osnabrück, Osnabrück, Germany; 4current address: Institute for Hygiene, 11 University of Münster, Münster, Germany 12 13 Running title: Host factors for SIF formation 14 Keywords: siRNA knockdown, live cell imaging, Salmonella-containing vacuole, Salmonella- 15 induced filaments 16 17 Address for correspondence: 18 Alexander Kehl 19 Institute for Hygiene 20 University of Münster 21 Robert-Koch-Str. 4148149 Münster, Germany 22 Tel.: +49(0)251/83-55233 23 E-mail: [email protected] 24 25 or bioRxiv preprint doi: https://doi.org/10.1101/848549; this version posted November 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.
    [Show full text]
  • Donor‐Derived, Metastatic Urothelial Cancer After Kidney Transplantation Associated with a Potentially Oncogenic BK Polyomavir
    Journal of Pathology J Pathol 2018; 244: 265–270 BRIEF DEFINITIVE REPORT Published online 1 February 2018 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/path.5012 Donor-derived, metastatic urothelial cancer after kidney transplantation associated with a potentially oncogenic BK polyomavirus David C Müller1,2† , Maarit Rämö1,2†, Klaudia Naegele3, Sebastian Ribi2, Christian Wetterauer1, Valeria Perrina2, Luca Quagliata2, Tatjana Vlajnic2, Christian Ruiz2, Beate Balitzki4, Rainer Grobholz5, Rainer Gosert3, Elvis T Ajuh6, Hans H Hirsch3,6‡, Lukas Bubendorf2‡ and Cyrill A Rentsch1*‡ 1 Department of Urology, University Hospital Basel, University of Basel, Basel, Switzerland 2 Institute for Pathology, University Hospital Basel, University of Basel, Basel, Switzerland 3 Division of Infection Diagnostics, Department of Biomedicine, University of Basel, Basel, Switzerland 4 Institute of Forensic Medicine, University of Basel, Basel, Switzerland 5 Institute for Pathology, Kantonsspital Aarau, Switzerland 6 Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland *Correspondence to: CA Rentsch, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland. E-mail: [email protected] †Equal contributions. ‡Equal contributions. Abstract BK polyomavirus has been linked to urothelial carcinoma in immunosuppressed patients. Here, we performed comprehensive genomic analysis of a BK polyomavirus-associated, metachronous, multifocal and metastatic micropapillary urothelial cancer in a kidney
    [Show full text]
  • Egfr Activates a Taz-Driven Oncogenic Program in Glioblastoma
    EGFR ACTIVATES A TAZ-DRIVEN ONCOGENIC PROGRAM IN GLIOBLASTOMA by Minling Gao A thesis submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland March 2020 ©2020 Minling Gao All rights reserved Abstract Hyperactivated EGFR signaling is associated with about 45% of Glioblastoma (GBM), the most aggressive and lethal primary brain tumor in humans. However, the oncogenic transcriptional events driven by EGFR are still incompletely understood. We studied the role of the transcription factor TAZ to better understand master transcriptional regulators in mediating the EGFR signaling pathway in GBM. The transcriptional coactivator with PDZ- binding motif (TAZ) and its paralog gene, the Yes-associated protein (YAP) are two transcriptional co-activators that play important roles in multiple cancer types and are regulated in a context-dependent manner by various upstream signaling pathways, e.g. the Hippo, WNT and GPCR signaling. In GBM cells, TAZ functions as an oncogene that drives mesenchymal transition and radioresistance. This thesis intends to broaden our understanding of EGFR signaling and TAZ regulation in GBM. In patient-derived GBM cell models, EGF induced TAZ and its known gene targets through EGFR and downstream tyrosine kinases (ERK1/2 and STAT3). In GBM cells with EGFRvIII, an EGF-independent and constitutively active mutation, TAZ showed EGF- independent hyperactivation when compared to EGFRvIII-negative cells. These results revealed a novel EGFR-TAZ signaling axis in GBM cells. The second contribution of this thesis is that we performed next-generation sequencing to establish the first genome-wide map of EGF-induced TAZ target genes.
    [Show full text]
  • Supplementary Information – Postema Et Al., the Genetics of Situs Inversus Totalis Without Primary Ciliary Dyskinesia
    1 Supplementary information – Postema et al., The genetics of situs inversus totalis without primary ciliary dyskinesia Table of Contents: Supplementary Methods 2 Supplementary Results 5 Supplementary References 6 Supplementary Tables and Figures Table S1. Subject characteristics 9 Table S2. Inbreeding coefficients per subject 10 Figure S1. Multidimensional scaling to capture overall genomic diversity 11 among the 30 study samples Table S3. Significantly enriched gene-sets under a recessive mutation model 12 Table S4. Broader list of candidate genes, and the sources that led to their 13 inclusion Table S5. Potential recessive and X-linked mutations in the unsolved cases 15 Table S6. Potential mutations in the unsolved cases, dominant model 22 2 1.0 Supplementary Methods 1.1 Participants Fifteen people with radiologically documented SIT, including nine without PCD and six with Kartagener syndrome, and 15 healthy controls matched for age, sex, education and handedness, were recruited from Ghent University Hospital and Middelheim Hospital Antwerp. Details about the recruitment and selection procedure have been described elsewhere (1). Briefly, among the 15 people with radiologically documented SIT, those who had symptoms reminiscent of PCD, or who were formally diagnosed with PCD according to their medical record, were categorized as having Kartagener syndrome. Those who had no reported symptoms or formal diagnosis of PCD were assigned to the non-PCD SIT group. Handedness was assessed using the Edinburgh Handedness Inventory (EHI) (2). Tables 1 and S1 give overviews of the participants and their characteristics. Note that one non-PCD SIT subject reported being forced to switch from left- to right-handedness in childhood, in which case five out of nine of the non-PCD SIT cases are naturally left-handed (Table 1, Table S1).
    [Show full text]