Poster Abstracts

Total Page:16

File Type:pdf, Size:1020Kb

Poster Abstracts POSTER ABSTRACTS November 3 - 5, 2016 Hyatt Regency-San Francisco Airport, Regency Ballroom Hosted by Sigma Pi Sigma, the physics honor society Poster Abstracts Friday, November 4 - Session I calculate multiple four-point gluon scattering amplitudes in AdS(4)/ CFT(3) as sums of products of three-point amplitudes. We finally SI - 1 Ilona Tsuper, Cleveland State University, Light Scattering calculate a five-point gluon scattering amplitude in AdS(4)/CFT(3) by Characterization of Elastin-Like Polypeptide Trimer Micelles. decomposing it into a sum of products of these four-point and three- Elastin-Like Polypeptides (ELP) can be used to form thermoreversible point amplitudes. vehicles for drug delivery systems. The ELP nanoparticles are composed of three-armed star polypeptides. Each of the three arms SI - 4 Ryan Hegedus, High Point University, The EREBOS Project: extending from the negatively charged foldon domain includes Studying the Effects of Substellar Companions on Stellar Evolution 20 repeats of the (GVGVP) amino acid sequence. The ELP polymer HW Vir systems are binary systems containing a hot subdwarf star chains are soluble at room temperature and become insoluble at and a smaller companion red dwarf star. Previously, there were only the transition temperature (close to 50 C), forming micelles. The 15 known HW-Vir binaries until light curves from the OGLE Survey size and shape of the micelle is dependent on the temperature and revealed 36 new such systems. The smaller, cooler companion in each the pH of solution, along with the concentration of the Phosphate of these systems has survived engulfment by a nearby red giant star. Buffered Saline (PBS) solvent. The technique of Depolarized Dynamic Thus, analyzing the companion mass distribution of HW Vir systems Light Scattering (DDLS) was employed to study the structure and could reveal whether brown dwarfs or even planets can survive dynamics of micelles at 62 C; the solution was maintained at an engulfment by a red giant. The EREBOS Project was started to obtain approximate pH level of 7.3 - 7.5, while varying the concentration of follow-up observations of the new binaries discovered by OGLE. the solvent (PBS). At low salt concentrations (< 15 mM), the micellar The ultimate goal of EREBOS is to find a lower mass limit for these size is not reproducible due to unstable pH levels, arising from low systems. Using the Goodman Spectrograph (SOAR 4m telescope) buffer concentration. At intermediate salt concentrations (15 - 60 and the SMARTS 0.9m telescope, we were able to collect time-series mM), the system formed spherically-shaped micelles, exhibiting a photometry and spectra for four of the EREBOS targets. We wrote steady growth in the hydrodynamic radius (Rh) from 10 to 21 nm, with photometry and spectral analysis code in Python to extract light increasing PBS concentration. Interestingly, higher salt concentrations curves and orbital velocities. The data were then modeled with the (> 60 mM) displayed an apparent elongation of the micelles evident software Binary Maker in order to obtain all stellar parameters, most by a significant VH signal, along with a surge in the apparent Rh. A importantly the companion mass. Our initial results imply that brown model of micelle growth (and potentially elongation) with increase in dwarfs may be able to survive red giant engulfment. salt concentration is considered. SI - 5 Patricia Kobak, Brigham Young University-Idaho, Search for SI - 2 William Vernon, Randolph College, The Construction and X-ray Channeling Radiation at FAST Optimization of an Erosion Microcosm Channeling Radiation (CR) is generated by charged beams passing The Gust Microcosm is a scientific instrument used for environmental through a crystal parallel with a crystallographic plane. Electrons in testing and functions by creating a uniform shear stress over the crystal may oscillate perpendicular to the plane and generate a submerged sample to determine its properties. The cost of CR which propagates in the same direction as the incident beam. a commercial machine is close to $20,000 from a specialized Electron beams with moderate energy ranging from 4 to 50 MeV can manufacturer while the components and materials can be bought for be used to produce Channeling Radiation. The beam experiment less than $2,000. The goal of the project was to build a microcosm for at Fermilab Accelerator Science and Technology (FAST) facility will Randolph College. During the Summer Research Program, we focused have a beam energy of 50 MeV, and offers the possibility of a precise, on the control systems for the electric motor and pump that are used tunable X-ray source. This X-ray source can be used in a variety of to produce the uniform shear stress. Over the course of the program, applications, from medical imaging to material science studies. a PID control system was determined to be the best option for precise control, the entire system was designed, and partially built. The SI - 6 Arvind Srinivasan, St. Mary's College of Maryland, system still needs to be completed and tested before optimization of Magneto-Optical Trapping of 85Rb and its Applications for the microcosm can begin. Gradient Magnetometry We continue an existing experiment at the Patuxent River Naval Air SI - 3 Nikolaos Dokmetzoglou, Davidson College, Implementation Station to investigate the magnetometry applications of magneto- of Recursion Relations in Gluon Scattering Amplitude Calculations optical cooling and trapping. We start by forming a magneto-optical in AdS(4)/CFT(3) trap (MOT), which consists of a high-density, low-kinetic energy Scattering amplitudes are observables that help us probe our theories sample of atoms, in this case 85Rb. We then perform an optical toss of fundamental particle interactions in high energy physics. Gluons, on the MOT while probing the sample with another laser beam, the being the exchange particles associated with the strong nuclear Raman laser beam. A sequence of Raman laser pulses creates an force, which holds quarks together to form protons, are abundant atom interferometer. The interference represents a high-precision byproducts of proton-proton collisions. Thus, knowing how to measurement of the magnetic splitting of the atomic energy levels, calculate gluon scattering amplitudes for large gluon assemblies is which can be used to measure the magnetic field gradient. We especially useful for identifying the byproducts of collisions at proton- also magnetically shield the experiment to reduce magnetic noise, proton colliders, like the Large Hadron Collider. Traditionally, Feynman implement a phase lock for the Raman laser frequency, improve diagrams have been used to calculate such scattering amplitudes the loading time of the MOT, and show two Raman spectra taken by summing over all the possible ways a certain particle assembly simultaneously via a dark spot MOT experiment. The current can interact. However, the number of Feynman diagrams one has overarching goal for the experiment is to be able to take data with to consider increases faster than factorially with the total number T^3 sensitivity instead of the T^2 sensitivity found in current atom of particles in the assembly. Fortunately, recursion relations have interferometers. recently simplified these calculations significantly. The Anti-de Sitter/ Conformal Field Theory correspondence is a promising relationship SI - 7 Justin Landay, George Washington University, Model between a theory of gravity in curved-space (AdS) and a quantum Selection in the Analysis of Photoproduction Data field theory in flat-space (CFT), which has lately given physicists hope Scattering experiments provide one of the most powerful and for a quantum-gravity unification in flat-space. We use recursion to useful tools for probing matter to better understand its fundamental properties governed by the strong interaction. As the spectroscopy of 2 2016 Quadrennial Physics Congress (PhysCon) Poster Abstracts the excited states of nucleons enters a new era of precision ushered For example, if strong enough coupling is attained with the spin in by improved experiments at Jefferson Lab and other facilities ensemble in a ruby crystal that has a small enough linewidth, this around the world, traditional partial-wave analysis methods must system could serve in a quantum computer as a quantum memory. be adjusted accordingly. In this poster, we present a rigorous set of Previous research has shown strong coupling to spin ensembles, statistical tools and techniques that we implemented; most notably, but achieving a smaller spin linewidth is required to create quantum the LASSO method, which serves for the selection of the simplest memory devices. This study examines the coupling between a spin model, allowing us to avoid over fitting. In the case of establishing the ensemble and a double post reentrant three dimensional copper spectrum of exited baryons, it avoids overpopulation of the spectrum cavity, which could take advantage of its higher mode volume and thus the occurrence of false-positives. This is a prerequisite and a more constant magnetic field through the ruby volume to to reliably compare theories like lattice QCD or quark models to achieve higher coupling and a smaller spin linewidth. Measuring the experiments.Here, we demonstrate the principle by simultaneously transmittance through the cavity, the change in quality factor, Q, and fitting three observables in neutral pion photo-production, such as resonant frequency of the cavity indicate coupling
Recommended publications
  • Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography on the Occasion of the 50Th Anniversary of Apollo 11 Moon Landing
    Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography On the occasion of the 50th anniversary of Apollo 11 moon landing Please note: A specific item in this catalogue may be sold or is on hold if the provided link to our online inventory (by clicking on the blue-highlighted author name) doesn't work! Milestones of Science Books phone +49 (0) 177 – 2 41 0006 www.milestone-books.de [email protected] Member of ILAB and VDA Catalogue 07-2019 Copyright © 2019 Milestones of Science Books. All rights reserved Page 2 of 71 Authors in Chronological Order Author Year No. Author Year No. BIRT, William 1869 7 SCHEINER, Christoph 1614 72 PROCTOR, Richard 1873 66 WILKINS, John 1640 87 NASMYTH, James 1874 58, 59, 60, 61 SCHYRLEUS DE RHEITA, Anton 1645 77 NEISON, Edmund 1876 62, 63 HEVELIUS, Johannes 1647 29 LOHRMANN, Wilhelm 1878 42, 43, 44 RICCIOLI, Giambattista 1651 67 SCHMIDT, Johann 1878 75 GALILEI, Galileo 1653 22 WEINEK, Ladislaus 1885 84 KIRCHER, Athanasius 1660 31 PRINZ, Wilhelm 1894 65 CHERUBIN D'ORLEANS, Capuchin 1671 8 ELGER, Thomas Gwyn 1895 15 EIMMART, Georg Christoph 1696 14 FAUTH, Philipp 1895 17 KEILL, John 1718 30 KRIEGER, Johann 1898 33 BIANCHINI, Francesco 1728 6 LOEWY, Maurice 1899 39, 40 DOPPELMAYR, Johann Gabriel 1730 11 FRANZ, Julius Heinrich 1901 21 MAUPERTUIS, Pierre Louis 1741 50 PICKERING, William 1904 64 WOLFF, Christian von 1747 88 FAUTH, Philipp 1907 18 CLAIRAUT, Alexis-Claude 1765 9 GOODACRE, Walter 1910 23 MAYER, Johann Tobias 1770 51 KRIEGER, Johann 1912 34 SAVOY, Gaspare 1770 71 LE MORVAN, Charles 1914 37 EULER, Leonhard 1772 16 WEGENER, Alfred 1921 83 MAYER, Johann Tobias 1775 52 GOODACRE, Walter 1931 24 SCHRÖTER, Johann Hieronymus 1791 76 FAUTH, Philipp 1932 19 GRUITHUISEN, Franz von Paula 1825 25 WILKINS, Hugh Percy 1937 86 LOHRMANN, Wilhelm Gotthelf 1824 41 USSR ACADEMY 1959 1 BEER, Wilhelm 1834 4 ARTHUR, David 1960 3 BEER, Wilhelm 1837 5 HACKMAN, Robert 1960 27 MÄDLER, Johann Heinrich 1837 49 KUIPER Gerard P.
    [Show full text]
  • Superkekb VACUUM SYSTEM K
    SuperKEKB VACUUM SYSTEM K. Shibata#, KEK, Tsukuba, Japan Abstract size in the horizontal and vertical directions at the IP, I is SuperKEKB, which is an upgrade of the KEKB B- the beam current, y is the vertical beam-beam * factory (KEKB), is a next-generation high-luminosity parameter, y is the vertical beta function at the IP, RL electron-positron collider. Its design luminosity is 8.0× and Ry are the reduction factors for the luminosity and 1035 cm-2s-1, which is about 40 times than the KEKB’s vertical beam-beam tune-shift parameter, respectively, record. To achieve this challenging goal, bunches of both owing to the crossing angle and the hourglass effect. The beams are squeezed extremely to the nanometer scale and subscripts + and – indicate a positron or electron, the beam currents are doubled. To realize this, many respectively. At the SuperKEKB, crossing the beams by upgrades must be performed including the replacement of using the “nanobeam scheme” [3] makes it possible to * th beam pipes mainly in the positron ring (LER). The beam squeeze y to about 1/20 of KEKB’s size. In the pipes in the LER arc section are being replaced with new nanobeam scheme, bunches of both beams are squeezed aluminium-alloy pipes with antechambers to cope with extremely to the nanometer scale (0.3 mm across and 100 the electron cloud issue and heating problem. nm high) and intersect only in the highly focused region Additionally, several types of countermeasures will be of each bunch at a large crossing angle (4.8 degrees).
    [Show full text]
  • A Ballistics Analysis of the Deep Impact Ejecta Plume: Determining Comet Tempel 1’S Gravity, Mass, and Density
    Icarus 190 (2007) 357–390 www.elsevier.com/locate/icarus A ballistics analysis of the Deep Impact ejecta plume: Determining Comet Tempel 1’s gravity, mass, and density James E. Richardson a,∗,H.JayMeloshb, Carey M. Lisse c, Brian Carcich d a Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853, USA b Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721-0092, USA c Planetary Exploration Group, Space Department, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA d Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853, USA Received 31 March 2006; revised 8 August 2007 Available online 15 August 2007 Abstract − In July of 2005, the Deep Impact mission collided a 366 kg impactor with the nucleus of Comet 9P/Tempel 1, at a closing speed of 10.2 km s 1. In this work, we develop a first-order, three-dimensional, forward model of the ejecta plume behavior resulting from this cratering event, and then adjust the model parameters to match the flyby-spacecraft observations of the actual ejecta plume, image by image. This modeling exercise indicates Deep Impact to have been a reasonably “well-behaved” oblique impact, in which the impactor–spacecraft apparently struck a small, westward-facing slope of roughly 1/3–1/2 the size of the final crater produced (determined from initial ejecta plume geometry), and possessing an effective strength of not more than Y¯ = 1–10 kPa. The resulting ejecta plume followed well-established scaling relationships for cratering in a medium-to-high porosity target, consistent with a transient crater of not more than 85–140 m diameter, formed in not more than 250–550 s, for the case of Y¯ = 0 Pa (gravity-dominated cratering); and not less than 22–26 m diameter, formed in not less than 1–3 s, for the case of Y¯ = 10 kPa (strength-dominated cratering).
    [Show full text]
  • Commissioning of the KEKB B-Factoryinvited
    Proceedings of the 1999 Particle Accelerator Conference, New York, 1999 COMMISSIONING OF THE KEKB B–FACTORY K. Akai, N. Akasaka, A. Enomoto, J. Flanagan, H. Fukuma, Y. Funakoshi, K. Furukawa, J. Haba, S. Hiramatsu, K. Hosoyama, N. Huang∗, T. Ieiri, N. Iida, T. Kamitani, S. Kato, M. Kikuchi, E. Kikutani, H. Koiso, S.–I. Kurokawa, M. Masuzawa, S. Michizono, T. Mimashi, T. Nakamura, Y. Ogawa, K. Ohmi, Y. Ohnishi, S. Ohsawa, N. Ohuchi, K. Oide,D.Pestrikov†,K.Satoh, M. Suetake, Y. Suetsugu, T. Suwada, M. Tawada, M. Tejima, M. Tobiyama, N. Yamamoto, M. Yoshida, S. Yoshimoto, M. Yoshioka, KEK, Oho, Tsukuba, Ibaraki 305-0801, Japan, T. Browder, Univ. of Hawaii, 2505 Correa Road, Honolulu, HI 96822, U.S.A. Abstract The commissioning of the KEKB B–Factory storage rings started on Dec. 1, 1998. The two rings both achieved a stored current of over 0.5 A after operating for four months. The two beams were successfully collided several times. The commissioning stopped on Apr. 19, taking a 5-week break to install the Belle detector. 1 BRIEF HISTORY OF THE COMMISSIONING The KEKB B–Factory[1] consists of two storage rings, the LER (3.5 GeV, e+) and the HER (8 GeV, e−), and the in- jector Linac/beam-transport (BT) system. The Linac was upgraded from the injector for TRISTAN, and was com- missioned starting in June 1997, including part of the BT line. The injector complex was ready before the start of commissioning of the rings.[2] Figure 1 shows the growth of the stored currents in the two rings through the period of commissioning.
    [Show full text]
  • October 2006
    OCTOBER 2 0 0 6 �������������� http://www.universetoday.com �������������� TAMMY PLOTNER WITH JEFF BARBOUR 283 SUNDAY, OCTOBER 1 In 1897, the world’s largest refractor (40”) debuted at the University of Chica- go’s Yerkes Observatory. Also today in 1958, NASA was established by an act of Congress. More? In 1962, the 300-foot radio telescope of the National Ra- dio Astronomy Observatory (NRAO) went live at Green Bank, West Virginia. It held place as the world’s second largest radio scope until it collapsed in 1988. Tonight let’s visit with an old lunar favorite. Easily seen in binoculars, the hexagonal walled plain of Albategnius ap- pears near the terminator about one-third the way north of the south limb. Look north of Albategnius for even larger and more ancient Hipparchus giving an almost “figure 8” view in binoculars. Between Hipparchus and Albategnius to the east are mid-sized craters Halley and Hind. Note the curious ALBATEGNIUS AND HIPPARCHUS ON THE relationship between impact crater Klein on Albategnius’ southwestern wall and TERMINATOR CREDIT: ROGER WARNER that of crater Horrocks on the northeastern wall of Hipparchus. Now let’s power up and “crater hop”... Just northwest of Hipparchus’ wall are the beginnings of the Sinus Medii area. Look for the deep imprint of Seeliger - named for a Dutch astronomer. Due north of Hipparchus is Rhaeticus, and here’s where things really get interesting. If the terminator has progressed far enough, you might spot tiny Blagg and Bruce to its west, the rough location of the Surveyor 4 and Surveyor 6 landing area.
    [Show full text]
  • Insights from Forested Catchments in South-Central Chile
    Institute for Earth and Environmental Science Hydrological and erosion responses to man-made and natural disturbances – Insights from forested catchments in South-central Chile Dissertation submitted to the Faculty of Mathematics and Natural Sciences at the University of Potsdam, Germany for the degree of Doctor of Natural Sciences (Dr. rer. nat.) in Geoecology Christian Heinrich Mohr Potsdam, September 2013 This work is licensed under a Creative Commons License: Attribution - Noncommercial - Share Alike 3.0 Germany To view a copy of this license visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/ Published online at the Institutional Repository of the University of Potsdam: URL http://opus.kobv.de/ubp/volltexte/2014/7014/ URN urn:nbn:de:kobv:517-opus-70146 http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70146 View from Nahuelbuta National park across the central inner valley towards the Sierra Velluda, close to the study area, Biobío region, Chile. Quien no conoce el bosque chileno, no conoce este planeta... Pablo Neruda The climate is moderate and delightful and if the country were to be cleared of forest, the warmth of ground would dissipate the moisture… The Scot Lord Thomas Cochrane commanding the Chilean navy in a letter to the Chilean independence leader Bernardo O’Higgins about the south of Chile, 1890, cited in [Bathurst, 2013] Preface When I started my PhD studies, my main intention was to contribute new knowledge about the impact of forest management practices on runoff and erosion processes. To this end, together with our Chilean colleagues, we established a network of forested catchments on the eastern slopes of the Chilean Coastal Range with water and sediment monitoring devices to quantify water and sediment fluxes associated with different forest management practices.
    [Show full text]
  • View Responses of Scouts, Scout Leaders, and Scientists Who Were Scouts
    ABSTRACT This study of science education in the Boy Scouts of America focused on males with Boy Scout experience. The mixed-methods study topics included: merit badge standards compared with National Science Education Standards, Scout responses to open-ended survey questions, the learning styles of Scouts, a quantitative assessment of science content knowledge acquisition using the Geology merit badge, and a qualitative analysis of interview responses of Scouts, Scout leaders, and scientists who were Scouts. The merit badge requirements of the 121 current merit badges were mapped onto the National Science Education Standards: 103 badges (85.12%) had at least one requirement meeting the National Science Education Standards. In 2007, Scouts earned 1,628,500 merit badges with at least one science requirement, including 72,279 Environmental Science merit badges. ―Camping‖ was the ―favorite thing about Scouts‖ for 54.4% of the boys who completed the survey. When combined with other outdoor activities, what 72.5% of the boys liked best about Boy Scouts involved outdoor activity. The learning styles of Scouts tend to include tactile and/or visual elements. Scouts were more global and integrated than analytical in their thinking patterns; they also had a significant intake element in their learning style. ii Earning a Geology merit badge at any location resulted in a significant gain of content knowledge; the combined treatment groups for all location types had a 9.13% gain in content knowledge. The amount of content knowledge acquired through the merit badge program varied with location; boys earning the Geology merit badge at summer camp or working as a troop with a merit badge counselor tended to acquire more geology content knowledge than boys earning the merit badge at a one-day event.
    [Show full text]
  • Present Status of Kekb Project
    PRESENT STATUS OF KEKB PROJECT Shin-ichi Kurokawa KEK, High Energy Accelerator Research Organization 1-1 Oho, Tsukuba-shi, Ibaraki-ken, 305-0801, Japan Abstract GeV electron and a 5.3-GeV positron collide and produce a pair of B meson and anti-B meson at rest at the Υ(4S) The KEK B-Factory, KEKB, is an asymmetric-energy, resonance. In the laboratory frame where an 8-GeV two-ring, electron-positron collider for B physics. Eight- electron and a 3.5-GeV positron collide, the B and anti-B GeV electrons stored in a high-energy ring (HER) and mesons move along the direction of the incoming 3.5- GeV positrons in a low-energy ring (LER) collide at electron, travel over a few hundred µm, and decay at an interaction point (IP), which BELLE detector different positions. By detecting the decay products, we surrounds. In order to facilitate detection of CP-violation can identify the B and anti-B mesons. This identification effect at the bottom-quark sector, the machine is designed is essential for studying CP-violation, which is a subtle to reach a luminosity of 1034cm-2s-1. Even with a high difference in behavior between particles and anti- beam-beam tuneshift of 0.052 and a small βy* of 1 cm at particles. IP, necessary currents in the rings amount to 1.1 A at HER and 2.6 A at LER. KEKB adopts new schemes to reach TSUKUBA IP the goal, such as ±11 mrad finite-angle collision at IP, non-interleaved-sextupole chromaticity correction to have HER LER HER large dynamic apertures, higher-order-mode-free normal LER conducting cavity called ARES and single-cell, single- mode, superconducting cavities to prevent coupled-bunch instabilities and combat heavy beam-loading, among others.
    [Show full text]
  • Status of Super-Kekb and Belle Ii∗
    Vol. 41 (2010) ACTA PHYSICA POLONICA B No 12 STATUS OF SUPER-KEKB AND BELLE II∗ Henryk Pałka The H. Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences Radzikowskiego 152, 31-342 Kraków, Poland (Received November 29, 2010) The status of preparations to Belle II experiment at the SuperKEKB collider is reviewed in this article. PACS numbers: 11.30.Er, 12.15.Hh, 13.20.He, 29.20.db 1. Introduction The Belle detector [1] has stopped data taking in June 2010. A decade- long operation of the experiment at the asymmetric beam energy electron- positron collider KEKB [2] resulted in a data sample of an integrated lumi- nosity exceeding 1 ab−1. This would not be possible without the excellent performance of the KEKB. The collider has reached the world record in- stantaneous luminosity of 2:2 × 1034 cm−2s−1 (Fig. 1), more than twice the design luminosity. Several technological innovations contributed to this achievement, among them crab cavities developed at KEK and successful implementation of continuous injection. Fig. 1. Time-line of KEKB peak luminosity. ∗ Lecture presented at the L Cracow School of Theoretical Physics “Particle Physics at the Dawn of the LHC”, Zakopane, Poland, June 9–19, 2010. (2595) 2596 H. Pałka By the precise measurement of the CKM angle φ1 by Belle and BaBar, its companion B-meson factory experiment at SLAC [3], the Kobayashi– Maskawa mechanism of CP violation [4] has been confirmed. Following the experimental confirmation M. Kobayashi and T. Maskawa were awarded the 2008 Nobel Prize in Physics. Numerous other physics results of B-meson factory experiments further support the hypothesis that the matrix of three- generation quark mixing is the dominant source of CP violation in B- and K-meson decays.
    [Show full text]
  • Overview of the KEKB Accelerators
    Nuclear Instruments and Methods in Physics Research A 499 (2003) 1–7 Overview of the KEKB accelerators S. Kurokawa, E. Kikutani* KEK, National High Energy Accelerator Organization, Oho 1-1, Tsukuba-shi, Ibaraki 305-0801, Japan Abstract An overview of the KEKB accelerators is given as an introduction of the following articles in this issue, first by summarizing the basic features of the machines, and then describing the improvements of the performance since the start of the physics experiment. r 2002 Elsevier Science B.V. All rights reserved. PACS: 29.20. Keywords: Colliding machine; Storage ring 1. Introduction osity by Belle from the start of the physics experiment in June 1999 up to November 2001. We have witnessed a steady improvement in the This steady improvement in the performance of performance of KEKB from the start of the KEKB and the achievement of unprecedented physics experiment in June 1999 to the present luminosity of 5:47 Â 1033 cmÀ2 sÀ1 are the culmi- time. To review this improvement, we list here nation of almost a 10-year effort by KEKB staff milestone dates of the peak luminosity: the peak members. There still remain many things to be luminosity of KEKB exceeded 1:0 Â 1033 cmÀ2 sÀ1 improved in KEKB, to first reach the design in April 2000, reached 2:0 Â 1033 cmÀ2 sÀ1 in July luminosity of 1 Â 1034 cmÀ2 sÀ1; and then to 2000, surpassed 3:0 Â 1033 and 4:0 Â 1033 cmÀ2 sÀ1 eventually exceed it. The papers compiled here in March and June 2001, and finally reached 5:47 Â summarize our efforts made for KEKB and were 1033 cmÀ2 sÀ1 in November 2001.
    [Show full text]
  • KEKB Accelerator Control System
    Nuclear Instruments and Methods in Physics Research A 499 (2003) 138–166 KEKB accelerator control system Nobumasa Akasaka, Atsuyoshi Akiyama, Sakae Araki, Kazuro Furukawa, Tadahiko Katoh*, Takashi Kawamoto, Ichitaka Komada, Kikuo Kudo, Takashi Naito, Tatsuro Nakamura, Jun-ichi Odagiri, Yukiyoshi Ohnishi, Masayuki Sato, Masaaki Suetake, Shigeru Takeda, Yasunori Takeuchi, Noboru Yamamoto, Masakazu Yoshioka, Eji Kikutani KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba Ibaraki 305-0801, Japan Abstract The KEKB accelerator control system including a control computer system, a timing distribution system, and a safety control system are described. KEKB accelerators were installed in the same tunnel where the TRISTAN accelerator was. There were some constraints due to the reused equipment. The control system is based on Experimental Physics and Industrial Control System (EPICS). In order to reduce the cost and labor for constructing the KEKB control system, as many CAMAC modules as possible are used again. The guiding principles of the KEKB control computer system are as follows: use EPICS as the controls environment, provide a two-language system for developing application programs, use VMEbus as frontend computers as a consequence of EPICS, use standard buses, such as CAMAC, GPIB, VXIbus, ARCNET, RS-232 as field buses and use ergonomic equipment for operators and scientists. On the software side, interpretive Python and SAD languages are used for coding application programs. The purpose of the radiation safety system is to protect personnel from radiation hazards. It consists of an access control system and a beam interlock system. The access control system protects people from strong radiation inside the accelerator tunnel due to an intense beam, by controlling access to the beamline area.
    [Show full text]
  • Agenda of the Twelfth KEKB Accelerator Review Committee March 19-21, 2007 in the Meeting Room on the First Floor of Building No.3, KEK
    The Twelfth KEKB Accelerator Review Committee Report Introduction The Twelfth KEKB Accelerator Review Committee meeting was held on March 19-21, 2007. Heino Henke and Shin-ichi Kurokawa were unable to attend this meeting. Appendix A shows the present membership of the Committee. The Twelfth Committee meeting followed the usual format of oral presentations by the KEKB staff members and discussion by the Committee members. The Agenda for the meeting is shown in Appendix B. The first day started with KEKB performance and, in particular, the progress on commissioning the crab cavities. The Upgrade Studies were then presented and continued on the second day. The Committee was again impressed by the high standard of the talks, both the technical content and the presentations themselves. The recommendations of the Committee were presented to the KEKB staff members before the close of the meeting. The Committee wrote a draft report during the meeting that was then improved and finalized by e-mail among the Committee members. Contents Executive Summary A. Foreword B. Summary C. Recommendations Findings and Recommendations 1) Overview 2) Beam Commissioning before Crab Cavity 3) Belle Status 4) BPM Displacement Monitor 5) Crab Cavity Overview 6) RF Design of Crab Cavity 7) Cryogenics, etc. 8) Horizontal Tests for Crab Cavities 9) Installation of Crab Cavity 10) Commissioning of Crab RF System 11) Beam Commissioning with Crab Cavity 12) Beam-Beam Effect with Crab Cavity 13) Observation of Crab Crossing with Streak Camera 14) Recent Upgrade Studies
    [Show full text]