Bulinus Globosus

Total Page:16

File Type:pdf, Size:1020Kb

Bulinus Globosus Manyangadze et al. Parasites Vectors (2021) 14:222 https://doi.org/10.1186/s13071-021-04720-7 Parasites & Vectors RESEARCH Open Access Spatial and seasonal distribution of Bulinus globosus and Biomphalaria pfeiferi in Ingwavuma, uMkhanyakude district, KwaZulu-Natal, South Africa: Implications for schistosomiasis transmission at micro-geographical scale Tawanda Manyangadze1,2*, Moses John Chimbari1, Owen Rubaba1, White Soko1,3 and Samson Mukaratirwa4,5 Abstract Background: Schsistosomiasis is endemic in sub-Saharan Africa. It is transmitted by intermediate host snails such as Bulinus and Biomphalaria. An understanding of the abundance and distribution of snail vectors is important in design- ing control strategies. This study describes the spatial and seasonal variation of B. globosus and Bio. pfeiferi and their schistosome infection rates between May 2014 and May 2015 in Ingwavuma, uMkhanyakude district, KwaZulu-Natal province, South Africa. Methods: Snail sampling was done on 16 sites once every month by two people for 30 min at each site using the scooping and handpicking methods. Snails collected from each site were screened for schistosome mammalian cercariae by the shedding method. The negative binomial generalised linear mixed model (glmm) was used to deter- mine the relationship between abundances of the intermediate host snails and climatic factors [rainfall, land surface temperatures (LST), seasons, habitats, sampling sites and water physico-chemical parameters including pH and dis- solved oxygen (DO)]. Results: In total, 1846 schistosomiasis intermediate host snails were collected during the study period. Biompha- ria pfeiferi was more abundant (53.36%, n 985) compared to B. globosus (46.64%, n 861). Bulinus globosus was recorded at 12 sites (75%) and Bio. pfeiferi =was present at 7 sites (43.8%). Biompharia pfeiferi= cohabited with B. globo- sus at all the sites it was present. High numbers of Bio. pfeiferi (n 872, 88.5%) and B. globosus (n 705, 81.9%) were found between winter and mid-spring. Monthly rainfall showed =a statistically signifcant negative= relationship with the abundance of B. globosus (p < 0.05). Dissolved oxygen (DO) had a statistically signifcant positive relationship with the abundance of Bio. pfeiferi (p < 0.05) while (LST) had a statistically signifcant negative relationship (p < 0.05). More B. globosus (8.9%, n 861) were shedding schistosome mammalian cercariae compared to Bio. pfeiferi (0.1%, n 985) confrming the already= documented high prevalence of S. haematobium in Ingwavuma compared to S. mansoni=. *Correspondence: [email protected] 1 School of Nursing and Public Health, Department of Public Health Medicine, University of KwaZulu-Natal, Durban, South Africa Full list of author information is available at the end of the article © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Manyangadze et al. Parasites Vectors (2021) 14:222 Page 2 of 9 Conclusion: Results of this study provide updated information on the distribution of schistosomiasis intermediate host snails in the study area and contributes towards the understanding of the transmission dynamics of schistoso- miasis at the micro-geographical scale in this area. Keywords: Bulinus globosus, Biomphalaria pfeiferi, Schistosoma haematobium, Schistosoma mansoni, Malacology, Ecology Background Te aim of this study was to describe and analyse the Schistosoma haematobium and Schistosoma mansoni spatial and seasonal variation of B. globosus and Bio. are endemic in sub-Saharan Africa [1, 2] where they are pfeiferi in relation to a set of ecological factors at a mainly transmitted by Bulinus globosus and Biompha- micro-geographical scale in Ingwavuma of uMkhan- laria pfeiferi, respectively [3, 4]. Te transmission and yakude district, KwaZulu-Natal province, South Africa. focal distribution of schistosomiasis are spatially and Sound knowledge of the abundance and distribution of temporally restricted to water bodies inhabited by its intermediate host snails is key to understanding schisto- obligate intermediate host snails [1] and human water somiasis transmission in order to design efective inter- contact [5]. Schistosomiasis is a serious public health vention strategies in endemic areas [9]. problem in South Africa. An estimated 2–3 million children are infected, and 20 million (nearly 40% of the Methods population) are at risk [6]. Previous studies conducted in Study area Ingwavuma of uMkhanyakude district of South Africa Te study was conducted in Ingwavuma (Fig. 1) of uMkh- showed that the prevalence of S. haematobium was anyakude Health District in KwaZulu-Natal (KZN) prov- around 37.5% [7]. ince, South Africa, between May 2014 and May 2015. Te density and abundance of the intermediate host uMkhanyakude district is located in the northernmost snails for schistosomiasis are infuenced by environmen- eastern part of KwaZulu-Natal province of South Africa tal and climatic factors. Environmental factors include bordering Mozambique and Swaziland to the north and physical and chemical water properties such as tempera- northwest respectively. Te climate ranges from tropi- ture, turbidity, salinity, conductivity, pH and velocity and cal to subtropical [18] with a hot wet summer and a cold biological factors such as the availability of food, compe- dry winter. uMkhanyakude experiences low annual rain- tition, predator-prey interactions, presence and density fall averaging 690 mm per year. More than half of the of aquatic plants [1, 5, 8–10]. Rainfall and temperature households in this area do not have access to piped clean have been reported as the main climatic factors that water and have poor sanitary facilities [19, 20] making determine the distribution of intermediate host snails [4, them vulnerable to water-borne diseases (WBDs) includ- 11, 12]. ing schistosomiasis. Te study area is approximately Although the afore-mentioned factors have been well 40 × 30 km and mostly characterised by seasonal streams studied, their importance varies from one ecological zone fowing towards the Pongola food plain and two main to another and even from one water body to another in rivers (Pongolo and Ngwavuma) and there are two major the same ecological zone. Te ecological factors infuence dams—Nsunduza and Namaneni (Fig. 1). the presence and abundance of intermediate host snails [13]. Tus, it is important to conduct studies at a local Surveys for schistosomiasis vector snails scale to identify factors that are signifcant in particular Bulinus globosus and Bio. pfeiferi snails were sampled habitats to understand the schistosomiasis transmis- from 16 sites distributed across the whole study area sion dynamics [14]. Information on the ecology, tempo- (Fig. 1) every month from May 2014 to May 2015. Sam- ral distribution and population dynamics of B. globosus pling sites (including streams and dams) were identi- and Bio. pfeiferi at a local scale is needed to enhance the fed based on observations on human water contact [21] knowledge of the spatial and seasonal distribution and and following Appleton and Miranda’s [6] advice that factors infuencing these patterns [11]. Tis provides snails need to be collected from suspected transmis- critical data for the development and optimization of sion sites and screened for infection for the purposes control and management of the disease [15]. Although of local schistosomiasis surveillance. Twelve of the sites much work has been done to unravel the limiting factors were located at pools along the seasonal streams and 4 for snail habitat preferences [11, 12, 16], it is important to sites were located at dams to capture the spatial varia- gather data at a micro-geographical scale to understand tion in snail population dynamics at human water con- the local transmission dynamics [11, 16, 17]. tact patterns and diferent habitats. Te snail sampling Manyangadze et al. Parasites Vectors (2021) 14:222 Page 3 of 9 Fig. 1 Study area and snail sampling sites (indicated by red star) in Ingwavuma (Ndumo area), uMkhanyakude District, KwaZulu-Natal, South Africa (May 2014 to May 2015) (Adapted from Manyangadze et al., [11]) was semi-quantitative and was conducted by the same temperature, pH, salinity and conductivity were meas- two technicians using scoops made from a kitchen sieve ured using a portable water meter (Hanna Instruments, mounted on a broom stick [22, 23] and handpicking live Møllevænget, Sweden). Remote sensing data including visible snails for 30 min on each site [6]. Snails collected the climatic
Recommended publications
  • Epidemiology and Control of Human Schistosomiasis In
    Mazigo et al. Parasites & Vectors 2012, 5:274 http://www.parasitesandvectors.com/content/5/1/274 REVIEW Open Access Epidemiology and control of human schistosomiasis in Tanzania Humphrey D Mazigo1,2,3,4*, Fred Nuwaha2, Safari M Kinung’hi3, Domenica Morona1, Angela Pinot de Moira4, Shona Wilson4, Jorg Heukelbach5 and David W Dunne4 Abstract In Tanzania, the first cases of schistosomiasis were reported in the early 19th century. Since then, various studies have reported prevalences of up to 100% in some areas. However, for many years, there have been no sustainable control programmes and systematic data from observational and control studies are very limited in the public domain. To cover that gap, the present article reviews the epidemiology, malacology, morbidity, and the milestones the country has made in efforts to control schistosomiasis and discusses future control approaches. The available evidence indicates that, both urinary and intestinal schistosomiasis are still highly endemic in Tanzania and cause significant morbidity.Mass drug administration using praziquantel, currently used as a key intervention measure, has not been successful in decreasing prevalence of infection. There is therefore an urgent need to revise the current approach for the successful control of the disease. Clearly, these need to be integrated control measures. Keywords: Schistosomiasis, S. mansoni, S. Mansoni, epidemiology, morbidity, control, Tanzania Review accessed by public health intervention managers and Background policy makers. Availability of this information will not Human schistosomiasis is second only to malaria in sub- only help in implementation of control programs but Saharan Africa (SSA) for causing severe morbidities. also will serve to guide control activities in areas with Of the world's 207 million estimated cases of schisto- the greatest needs and allocation of resources such as somiasis, 93% occur in SSA and the United Republic of drugs.
    [Show full text]
  • Host-Parasite Interactions: Snails of the Genus Bulinus and Schistosoma Marqrebowiei BARBARA ELIZABETH DANIEL Department of Biol
    / Host-parasite interactions: Snails of the genus Bulinus and Schistosoma marqrebowiei BARBARA ELIZABETH DANIEL Department of Biology (Medawar Building) University College London A Thesis submitted for the degree of Doctor of Philosophy in the University of London December 1989 1 ProQuest Number: 10609762 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10609762 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ABSTRACT Shistes c m c a In Africa the schistosomes that belong to the haematobium group are transmitted in a highly species specific manner by snails of the genus Bulinus. Hence the miracidial larvae of a given schistosome will develop in a compatible snail but upe*\. ^entering an incompatible snail an immune response will be elicited which destroys the trematode. 4 The factors governing such interactions were investigated using the following host/parasite combination? Bulinus natalensis and B^_ nasutus with the parasite Spect'e3 marqrebowiei. This schistosome^develops in B^_ natalensis but not in B_;_ nasutus. The immune defence system of snails consists of cells (haemocytes) and haemolymph factors.
    [Show full text]
  • Study on the Ethiopian Freshwater Molluscs, Especially on Identification, Distribution and Ecology of Vector Snails of Human Schistosomiasis
    Jap. J. Trop. Med. Hyg., Vol. 3, No. 2, 1975, pp. 107-134 107 STUDY ON THE ETHIOPIAN FRESHWATER MOLLUSCS, ESPECIALLY ON IDENTIFICATION, DISTRIBUTION AND ECOLOGY OF VECTOR SNAILS OF HUMAN SCHISTOSOMIASIS HIROSHI ITAGAKI1, NORIJI SUZUKI2, YOICHI ITO2, TAKAAKI HARA3 AND TEFERRA WONDE4 Received for publication 17 February 1975 Abstract: Many surveys were carried out in Ethiopia from January 1969 to January 1971 to study freshwater molluscs, especially the intermediate and potential host snails of Schistosoma mansoni and S. haematobium, to collect their ecological data, and to clarify the distribution of the snails in the country. The gastropods collected consisted of two orders, the Prosobranchia and Pulmonata. The former order contained three families (Thiaridae, Viviparidae and Valvatidae) and the latter four families (Planorbidae, Physidae, Lymnaeidae and Ancylidae). The pelecypods contained four families : the Unionidae, Mutelidae, Corbiculidae and Sphaeriidae. Biomphalaria pfeifferi rueppellii and Bulinus (Physopsis)abyssinicus are the most important hosts of S. mansoniand S. haematobium respectively. The freshwater snail species could be grouped into two distibution patterns, one of which is ubiquitous and the other sporadic. B. pfeifferirueppellii and Bulinus sericinus belong to the former pattern and Biomphalaria sudanica and the members of the subgenus Physopsis to the latter. Pictorial keys were prepared for field workers of schistosomiasis to identify freshwater molluscs in Ethiopia. Habitats of bulinid and biomphalarian snails were ecologically surveyed in connection with the epidemiology of human schistosomiasis. Rain falls and nutritional conditions of habitat appear to influence the abundance and distribution of freshwater snails more seriously than do temperature and pH, but water current affects the distribution frequently.
    [Show full text]
  • Laboratory Feeding of Bulinus Truncatus and Bulinus Globosus with Tridax Procumbens Leaves
    Vol. 5(3), pp. 31-35, March 2013 DOI: 10.5897/JPVB 13.0109 Journal of Parasitology and ISSN 2141-2510 © 2013 Academic Journals http://www.academicjournals.org/JPVB Vector Biology Full Length Research Paper Laboratory feeding of Bulinus truncatus and Bulinus globosus with Tridax procumbens leaves O. M. Agbolade*, O. W. Lawal and K. A. Jonathan Department of Plant Science and Applied Zoology, Parasitology and Medical Entomology Laboratory, Olabisi Onabanjo University, P.M.B. 2002, Ago-Iwoye, Ogun State, Nigeria. Accepted 18 March, 2013 Suitability of Tridax procumbens leaves in laboratory feeding of Bulinus truncatus and Bulinus globosus was assessed in comparison with Lactuca sativa between September and October, 2011. The snails were collected from Eri-lope stream in Ago-Iwoye, while T. procumbens were collected from the Mini Campus of the Olabisi Onabanjo University, Ago-Iwoye, Ijebu North, Southwestern Nigeria. For B. truncatus, fresh, sun-dried and oven-dried T. procumbens were used, while only fresh T. procumbens were used for B. globosus. The mean percentage survivals of B. truncatus fed with fresh, sun-dried and oven-dried T. procumbens compared with those of the corresponding control snails showed no significant difference (2 = 0.51, 1.85, and 2.21, respectively). B. truncatus fed with fresh T. procumbens had the highest mean live-weight percentage increase (46.4%) as compared to those fed with sun-dried and oven-dried (2 = 45.65). The mean percentage survival of B. globosus fed with fresh T. procumbens (79.2%) was similar with that of the control (84.6%) (2 = 0.18).
    [Show full text]
  • The Benthic Macro-Invertebrate Fauna of Owalla Reservoir, Osun State, Southwest, Nigeria
    Egyptian Journal of Aquatic Biology & Fisheries Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt. ISSN 1110 – 6131 Vol. 23(5): 341 - 356 (2019) www.ejabf.journals.ekb.eg The Benthic Macro-Invertebrate Fauna of Owalla Reservoir, Osun State, Southwest, Nigeria Aduwo, Adedeji Idowu and Adeniyi, Israel Funso Limnology and Hydrobiology Laboratory, Zoology Department, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria. *[email protected] & [email protected] ARTICLE INFO ABSTRACT Article History: The benthic macro-invertebrate composition of Owalla Reservoir in Received: Feb. 23, 2019 Southwest Nigeria was surveyed over two annual cycles (2011 – 2013). The Accepted: Nov. 28, 2019 study aimed at providing information on their taxonomic composition, Online: Dec. 2019 abundance and distribution pattern (both in time and space) of the occurring _______________ species in the reservoir. Twenty (20) sampling stations representing the major Keywords : habitat types and basins were established across the reservoir. Bottom Phytobenthos sediments were collected using a Van Veen grab and sieved through a 0.5 mm Zoobenthos mesh sieve using the reservoir water. The residues were preserved inside a open water specimen bottle in 10 % formalin and labeled appropriately for specimen littoral analysis and identification which were carried out in the laboratory using anthropogenic appropriate identification keys. The benthic macro-invertebrates of Owalla Reservoir comprised 18 different species belonging to three major phyla (Arthropoda, Annelida and Mollusca), with a total abundance of 5076 individuals. Melanoides tuberculata was the most dominant species (90 % occurrence) and the most abundant (4128 individuals). Enallagma sp. was the least occurring (10 %) while Physa acuta, Radix natalensis and Mutela sp.
    [Show full text]
  • Schistosomiasis in Lake Malaŵi and the Potential Use of Indigenous Fish for Biological Control
    6 Schistosomiasis in Lake Malaŵi and the Potential Use of Indigenous Fish for Biological Control Jay R. Stauffer, Jr.1 and Henry Madsen2 1School of Forest Resources, Penn State University, University Park, PA 2DBL Centre for Health Research and Development, Faculty of Life Sciences, University of Copenhagen, Frederiksberg 1USA 2Denmark 1. Introduction Schistosomiasis is a parasitic disease of major public health importance in many countries in Africa, Asia, and South America, with an estimated 200 million people infected worldwide (World Health Organization, 2002). The disease is caused by trematodes of the genus Schistosoma that require specific freshwater snail species to complete their life cycles (Fig. 1). People contract schistosomiasis when they come in contact with water containing the infective larval stage (cercariae) of the trematode. Fig. 1. Life cycle of schistosomes (Source: CDC/Alexander J. da Silva, PhD/Melanie Moser) www.intechopen.com 120 Schistosomiasis Schistosome transmission, Schistosoma haematobium, is a major public health concern in the Cape Maclear area of Lake Malaŵi (Fig. 2), because the disease poses a great problem for local people and reduces revenue from tourism. Until the mid-1980’s, the open shores of Lake Malaŵi were considered free from human schistosomes (Evans, 1975; Stauffer et al., 1997); thus, only within relatively protected areas of the lake or tributaries would transmission take place. These areas were suitable habitat of intermediate host snail, Bulinus globosus. During mid-1980’s, reports indicated that transmission also occurred along open shorelines. It is now evident that in the southern part of the lake, especially Cape Maclear on Nankumba Peninsula, transmission occurs along exposed shorelines with sandy sediment devoid of aquatic plants via another intermediate host, Bulinus nyassanus (Madsen et al., 2001, 2004).
    [Show full text]
  • Assessing the Diversity and Distribution of Potential Intermediate Hosts Snails for Urogenital Schistosomiasis: Bulinus Spp
    Chibwana et al. Parasites Vectors (2020) 13:418 https://doi.org/10.1186/s13071-020-04281-1 Parasites & Vectors RESEARCH Open Access Assessing the diversity and distribution of potential intermediate hosts snails for urogenital schistosomiasis: Bulinus spp. (Gastropoda: Planorbidae) of Lake Victoria Fred D. Chibwana1,2*, Immaculate Tumwebaze1, Anna Mahulu1, Arthur F. Sands1 and Christian Albrecht1 Abstract Background: The Lake Victoria basin is one of the most persistent hotspots of schistosomiasis in Africa, the intesti- nal form of the disease being studied more often than the urogenital form. Most schistosomiasis studies have been directed to Schistosoma mansoni and their corresponding intermediate snail hosts of the genus Biomphalaria, while neglecting S. haematobium and their intermediate snail hosts of the genus Bulinus. In the present study, we used DNA sequences from part of the cytochrome c oxidase subunit 1 (cox1) gene and the internal transcribed spacer 2 (ITS2) region to investigate Bulinus populations obtained from a longitudinal survey in Lake Victoria and neighbouring systems during 2010–2019. Methods: Sequences were obtained to (i) determine specimen identities, diversity and phylogenetic positions, (ii) reconstruct phylogeographical afnities, and (iii) determine the population structure to discuss the results and their implications for the transmission and epidemiology of urogenital schistosomiasis in Lake Victoria. Results: Phylogenies, species delimitation methods (SDMs) and statistical parsimony networks revealed the presence of two main groups of Bulinus species occurring in Lake Victoria; B. truncatus/B. tropicus complex with three species (B. truncatus, B. tropicus and Bulinus sp. 1), dominating the lake proper, and a B. africanus group, prevalent in banks and marshes.
    [Show full text]
  • Irrigation and Schistosomiasis in Africa: Ecological Aspects
    RESEARCH REPORT Irrigation and Schistosomiasis 99 in Africa: Ecological Aspects Eline Boelee and Henry Madsen International Water Management IWMI is a Future Harvest Center Institute supported by the CGIAR Research Reports IWMI’s mission is to improve water and land resources management for food, livelihoods and nature. In serving this mission, IWMI concentrates on the integration of policies, technologies and management systems to achieve workable solutions to real problems—practical, relevant results in the field of irrigation and water and land resources. The publications in this series cover a wide range of subjects—from computer modeling to experience with water user associations—and vary in content from directly applicable research to more basic studies, on which applied work ultimately depends. Some research reports are narrowly focused, analytical and detailed empirical studies; others are wide-ranging and synthetic overviews of generic problems. Although most of the reports are published by IWMI staff and their collaborators, we welcome contributions from others. Each report is reviewed internally by IWMI’s own staff and Fellows, and by external reviewers. The reports are published and distributed both in hard copy and electronically (www.iwmi.org) and where possible all data and analyses will be available as separate downloadable files. Reports may be copied freely and cited with due acknowledgment. Research Report 99 Irrigation and Schistosomiasis in Africa: Ecological Aspects Eline Boelee and Henry Madsen International Water Management Institute P O Box 2075, Colombo, Sri Lanka i IWMI receives its principal funding from 58 governments, private foundations, and international and regional organizations known as the Consultative Group on International Agricultural Research (CGIAR).
    [Show full text]
  • Molecular Characterization of the Freshwater Snail Physella Acuta. Journey R
    University of New Mexico UNM Digital Repository Biology ETDs Electronic Theses and Dissertations 12-1-2013 Molecular characterization of the freshwater snail Physella acuta. Journey R. Nolan Follow this and additional works at: https://digitalrepository.unm.edu/biol_etds Recommended Citation Nolan, Journey R.. "Molecular characterization of the freshwater snail Physella acuta.." (2013). https://digitalrepository.unm.edu/ biol_etds/87 This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Biology ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Journey R. Nolan Candidate Biology Department This thesis is approved, and it is acceptable in quality and form for publication: Approved by the Thesis Committee: Dr. Coenraad M. Adema , Chairperson Dr. Stephen Stricker Dr. Cristina Takacs-Vesbach i Molecular characterization of the freshwater snail Physella acuta. by JOURNEY R. NOLAN B.S., BIOLOGY, UNIVERSITY OF NEW MEXICO, 2009 M.S., BIOLOGY, UNIVERSITY OF NEW MEXICO, 2013 THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Masters of Science Biology The University of New Mexico, Albuquerque, New Mexico DECEMBER 2013 ii ACKNOWLEDGEMENTS I would like to thank Dr. Sam Loker and Dr. Bruce Hofkin for undergraduate lectures at UNM that peaked my interest in invertebrate biology. I would also like to thank Dr. Coen Adema for recommending a work-study position in his lab in 2009, studying parasitology, and for his continuing mentoring efforts to this day. The position was influential in my application to UNM PREP within the Department of Biology and would like to thank the mentors Dr.
    [Show full text]
  • Epidemiology and Control of Human Schistosomiasis In
    Mazigo et al. Parasites & Vectors 2012, 5:274 http://www.parasitesandvectors.com/content/5/1/274 REVIEW Open Access Epidemiology and control of human schistosomiasis in Tanzania Humphrey D Mazigo1,2,3,4*, Fred Nuwaha2, Safari M Kinung’hi3, Domenica Morona1, Angela Pinot de Moira4, Shona Wilson4, Jorg Heukelbach5 and David W Dunne4 Abstract In Tanzania, the first cases of schistosomiasis were reported in the early 19th century. Since then, various studies have reported prevalences of up to 100% in some areas. However, for many years, there have been no sustainable control programmes and systematic data from observational and control studies are very limited in the public domain. To cover that gap, the present article reviews the epidemiology, malacology, morbidity, and the milestones the country has made in efforts to control schistosomiasis and discusses future control approaches. The available evidence indicates that, both urinary and intestinal schistosomiasis are still highly endemic in Tanzania and cause significant morbidity.Mass drug administration using praziquantel, currently used as a key intervention measure, has not been successful in decreasing prevalence of infection. There is therefore an urgent need to revise the current approach for the successful control of the disease. Clearly, these need to be integrated control measures. Keywords: Schistosomiasis, S. mansoni, S. Mansoni, epidemiology, morbidity, control, Tanzania Review accessed by public health intervention managers and Background policy makers. Availability of this information will not Human schistosomiasis is second only to malaria in sub- only help in implementation of control programs but Saharan Africa (SSA) for causing severe morbidities. also will serve to guide control activities in areas with Of the world's 207 million estimated cases of schisto- the greatest needs and allocation of resources such as somiasis, 93% occur in SSA and the United Republic of drugs.
    [Show full text]
  • Article-P850.Pdf
    Am. J. Trop. Med. Hyg., 96(4), 2017, pp. 850–855 doi:10.4269/ajtmh.16-0614 Copyright © 2017 by The American Society of Tropical Medicine and Hygiene Divergent Effects of Schistosoma haematobium Exposure on Intermediate-Host Snail Species Bulinus nasutus and Bulinus globosus from Coastal Kenya H. Curtis Kariuki,1 Julianne A. Ivy,2 Eric M. Muchiri,1 Laura J. Sutherland,2 and Charles H. King2* 1Division of Vector Borne Diseases, Ministry of Health, Nairobi, Kenya; 2Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio Abstract. Schistosoma haematobium infection causes urogenital schistosomiasis, a chronic inflammatory disease that is highly prevalent in many parts of sub-Saharan Africa. Bulinid snails are the obligate intermediate hosts in the transmission of this parasite. In the present study, Bulinus globosus and Bulinus nasutus snails from coastal Kenya were raised in the laboratory and exposed to miracidia derived from sympatric S. haematobium specimens to assess the species-specific impact of parasite contact and infection. The snails’ subsequent patterns of survival, cercarial shedding, and reproduction were monitored for up to 3 months postexposure. Schistosoma haematobium exposure significantly decreased the survival of B. globosus, but not of B. nasutus. Although both species were capable of transmitting S. haematobium,theB. globosus study population had a greater cumulative incidence of cercarial shedders and a higher average number of cercariae shed per snail than did the B. nasutus population. The effects of prior parasite exposure on snail reproduction were different between the two species. These included more numerous production of egg masses by exposed B.
    [Show full text]
  • Studies on the Morphology and Compatibility Between Schistosoma Hæmatobium and the Bulinus Sp
    African Journal of Biotechnology Vol. 4 (9), pp. 1010-1016, September 2005 Available online at http://www.academicjournals.org/AJB ISSN 1684–5315 © 2005 Academic Journals Full Length Research Paper Studies on the morphology and compatibility between Schistosoma hæmatobium and the Bulinus sp. complex (gastropoda: planorbidae) in Cameroon Mimpfoundi Remy* and Ndassa Arouna General Biology Laboratory Faculty of Science, P.O Box 812 Yaoundé I Cameroon. Accepted March, 2005 A description is given of the morphological variation of the shell, the radula features and the copulatory organ of Bulinus sp. (2n=36) from four populations in the western Cameroon crater lakes. To assess the role of diploid snails belonging to the Bulinus natalensis/tropicus complex in the transmission of urinary schistosomiasis in Cameroon, the relation between Bulinus sp. (from four Cameroon crater lakes) and Schistosoma haematobium (from three transmission foci) were studied. Bulinus sp. in the present study refers to the diploid snail (2n=36) tentatively identified as Bulinus natalensis or as Bulinus tropicus in the Cameroon crater lakes. The percentage infection of snails challenged ranged from 03.33 to 06.00% for Nchout Monoun population and from 01.85 to 04.76% for Monoun Ngouondam population. No progeny from Petponoun-East and Petponoun-West were experimentally successfully infected with S. haematobium. All the 351 snails dissected were euphallic. Previous malacological surveys revealed the absence of Bulinus sp. naturally infected with human schistosomes. These results suggested that Bulinus sp. was not susceptible to infection with S. haematobium in the Cameroon Western highland crater lakes. These observations justify the absence of transmission foci (for urinary schistosomiasis) in this area.
    [Show full text]