Molecular Characterization of the Freshwater Snail Physella Acuta. Journey R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Annotated Draft Genome for Radix Auricularia (Gastropoda, Mollusca)
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Plymouth ElectronicGBE Archive and Research Library An Annotated Draft Genome for Radix auricularia (Gastropoda, Mollusca) Tilman Schell1,2,*, Barbara Feldmeyer2, Hanno Schmidt2, Bastian Greshake3, Oliver Tills4, Manuela Truebano4, Simon D. Rundle4, Juraj Paule5, Ingo Ebersberger2,3, and Markus Pfenninger1,2 1Molecular Ecology Group, Institute for Ecology, Evolution and Diversity, Goethe-University, Frankfurt am Main, Germany 2Adaptation and Climate, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany 3Department for Applied Bioinformatics, Institute for Cell Biology and Neuroscience Goethe-University, Frankfurt am Main, Germany 4Marine Biology and Ecology Research Centre, Marine Institute, School of Marine Science and Engineering, Plymouth University, United Kingdom 5Department of Botany and Molecular Evolution, Senckenberg Research Institute, Frankfurt am Main, Germany *Corresponding author: E-mail: [email protected]. Accepted: February 14, 2017 Data deposition: This project has been deposited at NCBI under the accession PRJNA350764. Abstract Molluscs are the second most species-rich phylum in the animal kingdom, yet only 11 genomes of this group have been published so far. Here, we present the draft genome sequence of the pulmonate freshwater snail Radix auricularia. Six whole genome shotgun libraries with different layouts were sequenced. The resulting assembly comprises 4,823 scaffolds with a cumulative length of 910 Mb and an overall read coverage of 72Â. The assembly contains 94.6% of a metazoan core gene collection, indicating an almost complete coverage of the coding fraction. The discrepancy of ~ 690 Mb compared with the estimated genome size of R. -
Universidade Federal Do Ceará – Ufc Instituto Ciências Do Mar – Labomar Mestrado Em Ciências Marinhas Tropicais
UNIVERSIDADE FEDERAL DO CEARÁ – UFC INSTITUTO CIÊNCIAS DO MAR – LABOMAR MESTRADO EM CIÊNCIAS MARINHAS TROPICAIS HILTON DE CASTRO GALVÃO FILHO TAXONOMIA DAS ESPÉCIES DO GÊNERO ELYSIA RISSO, 1818 (MOLLUSCA: GASTROPODA: SACOGLOSSA) DO BRASIL FORTALEZA - CEARÁ 2013 HILTON DE CASTRO GALVÃO FILHO TAXONOMIA DAS ESPÉCIES DO GÊNERO ELYSIA RISSO, 1818 (MOLLUSCA: GASTROPODA: SACOGLOSSA) DO BRASIL Dissertação submetida à Coordenação do Curso de Pós-Graduação em Ciências Marinhas Tropicais do Instituto de Ciências do Mar da Universidade Federal do Ceará, como requisito parcial para obtenção do grau de Mestre. Orientadora: Profª. Drª. Helena Matthews-Cascon FORTALEZA-CEARÁ 2013 HILTON DE CASTRO GALVÃO FIHO TAXONOMIA DAS ESPÉCIES DO GÊNERO ELYSIA RISSO, 1818 (MOLLUSCA: GASTROPODA: SACOGLOSSA) DO BRASIL Dissertação submetida à Coordenação do Curso de Pós-Graduação em Ciências Marinhas Tropicais do Instituto de Ciências do Mar da Universidade Federal do Ceará, como requisito parcial para obtenção do grau de Mestre. Aprovada em ___ / ___ / ___ BANCA EXAMINADORA ____________________________________________ Profª. Dra. Helena Matthews Cascon (Orientadora) Universidade Federal do Ceará – UFC ____________________________________________ Profª. Dra. Inês Xavier Martins Universidade Federal do Semi-Árido – UFERSA ____________________________________________ Dr. Carlo Magenta Cunha Museu de Zoologia da Universidade de São Paulo - MUZUSP Aos meus pais, Hilton e Ivete, E às minhas irmãs, Marina, Marília e Mariana. AGRADECIMENTOS À minha família, especialmente meu pai, Hilton, minha mãe, Ivete, e minhas irmãs Marina, Marília e Mariana, que sempre foram meu alicerce durante o percurso acadêmico mais árduo. À minha orientadora, professora Helena, pelo grande exemplo profissional, pela paciência, compreensão e ensinamentos. Agradeço também por toda a confiança depositada em mim desde o início da minha carreira. -
Cell Mediated Immune Response of the Mediterranean Sea Urchin Paracentrotus
*Manuscript Click here to view linked References Cell mediated immune response of the Mediterranean sea urchin Paracentrotus lividus after PAMPs stimulation. A Romero, B Novoa, A Figueras * Marine Research Institute - CSIC. Eduardo Cabello 6, 36208 Vigo, Spain. *Corresponding author: Tlf: 34 986 21 44 63 Fax 34 986 29 27 62 E-mail: [email protected] [email protected], [email protected] Submitted to: DCI January 2016 1 Abstract The Mediterranean sea urchin (Paracentrotus lividus) is of great ecological and economic importance for the European aquaculture. Yet, most of the studies regarding echinoderm´s immunological defense mechanisms reported so far have used the sea urchin Strongylocentrotus purpuratus as a model, and information on the immunological defense mechanisms of Paracentrotus lividus and other sea urchins, is scarce. To remedy this gap in information, in this study, flow cytometry was used to evaluate several cellular immune mechanisms, such as phagocytosis, cell cooperation, and ROS production in P. lividus coelomocytes after PAMP stimulation. Two cell populations were described. Of the two, the amoeboid-phagocytes were responsible for the phagocytosis and ROS production. Cooperation between amoeboid-phagocytes and non-adherent cells resulted in an increased phagocytic response. Stimulation with several PAMPs modified the phagocytic activity and the production of ROS. The premise that the coelomocytes were activated by the bacterial components was confirmed by the expression levels of two cell mediated immune genes: LPS-Induced TNF-alpha Factor (LITAF) and macrophage migration inhibitory factor (MIF). These results have helped us understand the cellular immune mechanisms in P. lividus and their modulation after PAMP stimulation. -
Diversity of Norwegian Sea Slugs (Nudibranchia): New Species to Norwegian Coastal Waters and New Data on Distribution of Rare Species
Fauna norvegica 2013 Vol. 32: 45-52. ISSN: 1502-4873 Diversity of Norwegian sea slugs (Nudibranchia): new species to Norwegian coastal waters and new data on distribution of rare species Jussi Evertsen1 and Torkild Bakken1 Evertsen J, Bakken T. 2013. Diversity of Norwegian sea slugs (Nudibranchia): new species to Norwegian coastal waters and new data on distribution of rare species. Fauna norvegica 32: 45-52. A total of 5 nudibranch species are reported from the Norwegian coast for the first time (Doridoxa ingolfiana, Goniodoris castanea, Onchidoris sparsa, Eubranchus rupium and Proctonotus mucro- niferus). In addition 10 species that can be considered rare in Norwegian waters are presented with new information (Lophodoris danielsseni, Onchidoris depressa, Palio nothus, Tritonia griegi, Tritonia lineata, Hero formosa, Janolus cristatus, Cumanotus beaumonti, Berghia norvegica and Calma glau- coides), in some cases with considerable changes to their distribution. These new results present an update to our previous extensive investigation of the nudibranch fauna of the Norwegian coast from 2005, which now totals 87 species. An increase in several new species to the Norwegian fauna and new records of rare species, some with considerable updates, in relatively few years results mainly from sampling effort and contributions by specialists on samples from poorly sampled areas. doi: 10.5324/fn.v31i0.1576. Received: 2012-12-02. Accepted: 2012-12-20. Published on paper and online: 2013-02-13. Keywords: Nudibranchia, Gastropoda, taxonomy, biogeography 1. Museum of Natural History and Archaeology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway Corresponding author: Jussi Evertsen E-mail: [email protected] IntRODUCTION the main aims. -
Nudibranchia: Flabellinidae) from the Red and Arabian Seas
Ruthenica, 2020, vol. 30, No. 4: 183-194. © Ruthenica, 2020 Published online October 1, 2020. http: ruthenica.net Molecular data and updated morphological description of Flabellina rubrolineata (Nudibranchia: Flabellinidae) from the Red and Arabian seas Irina A. EKIMOVA1,5, Tatiana I. ANTOKHINA2, Dimitry M. SCHEPETOV1,3,4 1Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, RUSSIA; 2A.N. Severtsov Institute of Ecology and Evolution, Leninskiy prosp. 33, 119071 Moscow, RUSSIA; 3N.K. Koltzov Institute of Developmental Biology RAS, Vavilov str. 26, 119334 Moscow, RUSSIA; 4Moscow Power Engineering Institute (MPEI, National Research University), 111250 Krasnokazarmennaya 14, Moscow, RUSSIA. 5Corresponding author; E-mail: [email protected] ABSTRACT. Flabellina rubrolineata was believed to have a wide distribution range, being reported from the Mediterranean Sea (non-native), the Red Sea, the Indian Ocean and adjacent seas, and the Indo-West Pacific and from Australia to Hawaii. In the present paper, we provide a redescription of Flabellina rubrolineata, based on specimens collected near the type locality of this species in the Red Sea. The morphology of this species was studied using anatomical dissections and scanning electron microscopy. To place this species in the phylogenetic framework and test the identity of other specimens of F. rubrolineata from the Indo-West Pacific we sequenced COI, H3, 16S and 28S gene fragments and obtained phylogenetic trees based on Bayesian and Maximum likelihood inferences. Our morphological and molecular results show a clear separation of F. rubrolineata from the Red Sea from its relatives in the Indo-West Pacific. We suggest that F. rubrolineata is restricted to only the Red Sea, the Arabian Sea and the Mediterranean Sea and to West Indian Ocean, while specimens from other regions belong to a complex of pseudocryptic species. -
Nudipleura Bathydorididae Bathydoris Clavigera AY165754 2064 AY427444 1383 AF249222 445 AF249808 599
!"#$"%&'"()*&**'+),#-"',).+%/0+.+()-,)12+),",1+.)$./&3)1/),+-),'&$,)45&("3'+&.-6) !"#$%&'()*"%&+,)-"#."%)-'/%0(%1/'2,3,)45/6"%7/')89:0/5;,)8/'(7")<=)>(5#&%?)@)A(BC"/5)DBC'E752,3 +F/G"':H/%:)&I)A"'(%/)JB&#K#:/H#)FK%"H(B#,)4:H&#GC/'/)"%7)LB/"%)M/#/"'BC)N%#.:$:/,)OC/)P%(Q/'#(:K)&I)O&RK&,)?S+S?) *"#C(T"%&C",)*"#C(T",)UC(V")2WWSX?Y;,)Z"G"%=)2D8D-S-"Q"'("%)D:":/)U&55/B.&%)&I)[&&5&1K,)A9%BCC"$#/%#:'=)2+,)X+2;W) A9%BC/%,)</'H"%K=)3F/G"':H/%:)-(&5&1K)NN,)-(&[/%:'$H,)\$7T(1SA"6(H(5("%#SP%(Q/'#(:]:,)<'&^C"7/'%/'#:'=)2,)X2+?2) _5"%/11SA"'.%#'(/7,)</'H"%K`);D8D-S-"Q"'("%)D:":/)U&55/B.&%)&I)_"5/&%:&5&1K)"%7)</&5&1K,)</&V(&)U/%:/')\AP,) M(BC"'7S>"1%/'SD:'=)+a,)Xa333)A9%BC/%,)</'H"%K`)?>/#:/'%)4$#:'"5("%)A$#/$H,)\&BR/7)-"1);b,)>/5#CG&&5)FU,)_/':C,) >4)YbXY,)4$#:'"5("=))U&''/#G&%7/%B/)"%7)'/c$/#:#)I&')H":/'("5#)#C&$57)V/)"77'/##/7):&)!=*=)d/H"(5e)R"%&f"&'(=$S :&RK&="B=gGh) 7&33'+8+#1-.9)"#:/.8-;/#<) =-*'+)7>?)8$B5/&.7/)#/c$/%B/#)&I)G'(H/'#)$#/7)I&')"HG5(iB".&%)"%7)#/c$/%B(%1 =-*'+)7@?)<"#:'&G&7)#G/B(/#)"%7)#/c$/%B/#)$#/7)(%):C/)GCK5&1/%/.B)'/B&%#:'$B.&%)&I)/$:CK%/$'"%)B5"7/#)(%B5$7(%1) M(%1(B$5&(7/" A"$&.+)7>?)M46A\):'//#)V"#/7)&%)I&$'S1/%/)7":"#/:)T(:C&$:)&%/)&I):T&)H"g&')%$7(G5/$'"%)#$VB5"7/#e)d"h)8$7(V'"%BC(") d!"#$%&'()*+"%7),-.)/)&"h)"%7)dVh)_5/$'&V'"%BC&(7/")d0.-1('2("34$1*+"%7)5'/#$'/6*'3)"h= A"$&.+)7@?)O(H/SB"5(V'":/7)-J4DO):'//#)T(:C&$:)&%/)&I)I&$')B"5(V'".&%)G'(&'#e)d"h)i'#:)#G5(:)T(:C(%)J$&G(#:C&V'"%BC(")"%7) dVh)#G5(:#)V/:T//%)7"(%4$)1/)"%7)8/-"9'.)"%7)dBh)V/:T//%):)39)41.'6*)*)"%7):C'//)&:C/')'(%1(B$5(7#= A"$&.+)7B?)A'-"K/#):'//)V"#/7)&%)I&$'S1/%/)7":"#/:= -
Study on the Ethiopian Freshwater Molluscs, Especially on Identification, Distribution and Ecology of Vector Snails of Human Schistosomiasis
Jap. J. Trop. Med. Hyg., Vol. 3, No. 2, 1975, pp. 107-134 107 STUDY ON THE ETHIOPIAN FRESHWATER MOLLUSCS, ESPECIALLY ON IDENTIFICATION, DISTRIBUTION AND ECOLOGY OF VECTOR SNAILS OF HUMAN SCHISTOSOMIASIS HIROSHI ITAGAKI1, NORIJI SUZUKI2, YOICHI ITO2, TAKAAKI HARA3 AND TEFERRA WONDE4 Received for publication 17 February 1975 Abstract: Many surveys were carried out in Ethiopia from January 1969 to January 1971 to study freshwater molluscs, especially the intermediate and potential host snails of Schistosoma mansoni and S. haematobium, to collect their ecological data, and to clarify the distribution of the snails in the country. The gastropods collected consisted of two orders, the Prosobranchia and Pulmonata. The former order contained three families (Thiaridae, Viviparidae and Valvatidae) and the latter four families (Planorbidae, Physidae, Lymnaeidae and Ancylidae). The pelecypods contained four families : the Unionidae, Mutelidae, Corbiculidae and Sphaeriidae. Biomphalaria pfeifferi rueppellii and Bulinus (Physopsis)abyssinicus are the most important hosts of S. mansoniand S. haematobium respectively. The freshwater snail species could be grouped into two distibution patterns, one of which is ubiquitous and the other sporadic. B. pfeifferirueppellii and Bulinus sericinus belong to the former pattern and Biomphalaria sudanica and the members of the subgenus Physopsis to the latter. Pictorial keys were prepared for field workers of schistosomiasis to identify freshwater molluscs in Ethiopia. Habitats of bulinid and biomphalarian snails were ecologically surveyed in connection with the epidemiology of human schistosomiasis. Rain falls and nutritional conditions of habitat appear to influence the abundance and distribution of freshwater snails more seriously than do temperature and pH, but water current affects the distribution frequently. -
“Opisthobranchia”! a Review on the Contribution of Mesopsammic Sea Slugs to Euthyneuran Systematics
Thalassas, 27 (2): 101-112 An International Journal of Marine Sciences BYE BYE “OPISTHOBRANCHIA”! A REVIEW ON THE CONTRIBUTION OF MESOPSAMMIC SEA SLUGS TO EUTHYNEURAN SYSTEMATICS SCHRÖDL M(1), JÖRGER KM(1), KLUSSMANN-KOLB A(2) & WILSON NG(3) Key words: Mollusca, Heterobranchia, morphology, molecular phylogeny, classification, evolution. ABSTRACT of most mesopsammic “opisthobranchs” within a comprehensive euthyneuran taxon set. During the last decades, textbook concepts of “Opisthobranchia” have been challenged by The present study combines our published morphology-based and, more recently, molecular and unpublished topologies, and indicates that studies. It is no longer clear if any precise distinctions monophyletic Rhodopemorpha cluster outside of can be made between major opisthobranch and Euthyneura among shelled basal heterobranchs, acte- pulmonate clades. Worm-shaped, mesopsammic taxa onids are the sister to rissoellids, and Nudipleura such as Acochlidia, Platyhedylidae, Philinoglossidae are the basal offshoot of Euthyneura. Furthermore, and Rhodopemorpha were especially problematic in Pyramidellidae, Sacoglossa and Acochlidia cluster any morphology-based system. Previous molecular within paraphyletic Pulmonata, as sister to remaining phylogenetic studies contained a very limited sampling “opisthobranchs”. Worm-like mesopsammic hetero- of minute and elusive meiofaunal slugs. Our recent branch taxa have clear independent origins and thus multi-locus approaches of mitochondrial COI and 16S their similarities are the result of convergent evolu- rRNA genes and nuclear 18S and 28S rRNA genes tion. Classificatory and evolutionary implications (“standard markers”) thus included representatives from our tree hypothesis are quite dramatic, as shown by some examples, and need to be explored in more detail in future studies. (1) Bavarian State Collection of Zoology. Münchhausenstr. -
Freshwater Snail Guide
A Beginner’s Guide to Freshwater Snails of Central Scotland Freshwater snails are a diverse and fascinating group of molluscs found in ponds, lochs, canals, rivers and watery ditches all across the globe. This guide is a simple introduction to some of the most commonly encountered and easily identifiable freshwater snail species in Central Scotland. How do I look for freshwater snails? 1) Choose your spot: anywhere with water – your garden pond, a nearby river, canal or loch – is likely to have snails. 2) Grab a pond net (buy online or make your own by attaching a sieve to the end of an old broom or mop), a white tray or tub and a hand-lens or magnifier. 3) Fill the tray with water from your chosen habitat. Sweep the net around in the water, making sure to get among any vegetation (don’t go too near the bottom or you’ll get a net full of mud), empty your net into the water-filled tray and identify what you have found! Snail shell features Spire Whorls Some snail species have a hard plate called an ‘operculum’ Height which they Mouth (Aperture) use to seal the mouth of the shell when they are inside Height Pointed shell Flat shell Width Width Pond Snails (Lymnaeidae) Variable in size. Mouth always on right-hand side, shells usually long and pointed. Great Pond Snail Common Pond Snail Lymnaea stagnalis Radix balthica Largest pond snail. Common in ponds Fairly rounded and ’fat’. Common in weedy lakes, canals and sometimes slow river still waters. pools. -
Ringiculid Bubble Snails Recovered As the Sister Group to Sea Slugs
www.nature.com/scientificreports OPEN Ringiculid bubble snails recovered as the sister group to sea slugs (Nudipleura) Received: 13 May 2016 Yasunori Kano1, Bastian Brenzinger2,3, Alexander Nützel4, Nerida G. Wilson5 & Accepted: 08 July 2016 Michael Schrödl2,3 Published: 08 August 2016 Euthyneuran gastropods represent one of the most diverse lineages in Mollusca (with over 30,000 species), play significant ecological roles in aquatic and terrestrial environments and affect many aspects of human life. However, our understanding of their evolutionary relationships remains incomplete due to missing data for key phylogenetic lineages. The present study integrates such a neglected, ancient snail family Ringiculidae into a molecular systematics of Euthyneura for the first time, and is supplemented by the first microanatomical data. Surprisingly, both molecular and morphological features present compelling evidence for the common ancestry of ringiculid snails with the highly dissimilar Nudipleura—the most species-rich and well-known taxon of sea slugs (nudibranchs and pleurobranchoids). A new taxon name Ringipleura is proposed here for these long-lost sisters, as one of three major euthyneuran clades with late Palaeozoic origins, along with Acteonacea (Acteonoidea + Rissoelloidea) and Tectipleura (Euopisthobranchia + Panpulmonata). The early Euthyneura are suggested to be at least temporary burrowers with a characteristic ‘bubble’ shell, hypertrophied foot and headshield as exemplified by many extant subtaxa with an infaunal mode of life, while the expansion of the mantle might have triggered the explosive Mesozoic radiation of the clade into diverse ecological niches. The traditional gastropod subclass Euthyneura is a highly diverse clade of snails and slugs with at least 30,000 living species1,2. -
Pomacea Canaliculata) Behaviors in Different Water Temperature Gradients
water Article Comparison of Invasive Apple Snail (Pomacea canaliculata) Behaviors in Different Water Temperature Gradients Mi-Jung Bae 1, Eui-Jin Kim 1 and Young-Seuk Park 2,* 1 Nakdonggang National Institute of Biological Resources, Sangju 37242, Korea; [email protected] (M.-J.B.); [email protected] (E.-J.K.) 2 Department of Biology, Kyung Hee University, Dongdaemun, Seoul 02447, Korea * Correspondence: [email protected]; Tel.: +82-2-961-0946 Abstract: Pomacea canaliculata (known as invasive apple snail) is a freshwater snail native to South America that was introduced into many countries (including Asia and North America) as a food source or for organic farming systems. However, it has invaded freshwater ecosystems and become a serious agricultural pest in paddy fields. Water temperature is an important factor determining behavior and successful establishment in new areas. We examined the behavioral responses of P. canaliculata with water temperature changes from 25 ◦C to 30 ◦C, 20 ◦C, and 15 ◦C by quantifying changes in nine behaviors. At the acclimated temperature (25 ◦C), the mobility of P. canaliculata was low during the day, but high at night. Clinging behavior increased as the water temperature decreased from 25 ◦C to 20 ◦C or 15 ◦C. Conversely, ventilation and food consumption increased when the water temperature increased from 25 ◦C to 30 ◦C. A self-organizing map (an unsupervised artificial neural network) was used to classify the behavioral patterns into seven clusters at different water temperatures. These results suggest that the activity levels or certain behaviors of P. canaliculata vary with the water temperature conditions. -
Version of the Manuscript
Accepted Manuscript Antarctic and sub-Antarctic Nacella limpets reveal novel evolutionary charac- teristics of mitochondrial genomes in Patellogastropoda Juan D. Gaitán-Espitia, Claudio A. González-Wevar, Elie Poulin, Leyla Cardenas PII: S1055-7903(17)30583-3 DOI: https://doi.org/10.1016/j.ympev.2018.10.036 Reference: YMPEV 6324 To appear in: Molecular Phylogenetics and Evolution Received Date: 15 August 2017 Revised Date: 23 July 2018 Accepted Date: 30 October 2018 Please cite this article as: Gaitán-Espitia, J.D., González-Wevar, C.A., Poulin, E., Cardenas, L., Antarctic and sub- Antarctic Nacella limpets reveal novel evolutionary characteristics of mitochondrial genomes in Patellogastropoda, Molecular Phylogenetics and Evolution (2018), doi: https://doi.org/10.1016/j.ympev.2018.10.036 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Version: 23-07-2018 SHORT COMMUNICATION Running head: mitogenomes Nacella limpets Antarctic and sub-Antarctic Nacella limpets reveal novel evolutionary characteristics of mitochondrial genomes in Patellogastropoda Juan D. Gaitán-Espitia1,2,3*; Claudio A. González-Wevar4,5; Elie Poulin5 & Leyla Cardenas3 1 The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China 2 CSIRO Oceans and Atmosphere, GPO Box 1538, Hobart 7001, TAS, Australia.