Irrigation and Schistosomiasis in Africa: Ecological Aspects

Total Page:16

File Type:pdf, Size:1020Kb

Irrigation and Schistosomiasis in Africa: Ecological Aspects RESEARCH REPORT Irrigation and Schistosomiasis 99 in Africa: Ecological Aspects Eline Boelee and Henry Madsen International Water Management IWMI is a Future Harvest Center Institute supported by the CGIAR Research Reports IWMI’s mission is to improve water and land resources management for food, livelihoods and nature. In serving this mission, IWMI concentrates on the integration of policies, technologies and management systems to achieve workable solutions to real problems—practical, relevant results in the field of irrigation and water and land resources. The publications in this series cover a wide range of subjects—from computer modeling to experience with water user associations—and vary in content from directly applicable research to more basic studies, on which applied work ultimately depends. Some research reports are narrowly focused, analytical and detailed empirical studies; others are wide-ranging and synthetic overviews of generic problems. Although most of the reports are published by IWMI staff and their collaborators, we welcome contributions from others. Each report is reviewed internally by IWMI’s own staff and Fellows, and by external reviewers. The reports are published and distributed both in hard copy and electronically (www.iwmi.org) and where possible all data and analyses will be available as separate downloadable files. Reports may be copied freely and cited with due acknowledgment. Research Report 99 Irrigation and Schistosomiasis in Africa: Ecological Aspects Eline Boelee and Henry Madsen International Water Management Institute P O Box 2075, Colombo, Sri Lanka i IWMI receives its principal funding from 58 governments, private foundations, and international and regional organizations known as the Consultative Group on International Agricultural Research (CGIAR). Support is also given by the Governments of Ghana, Pakistan, South Africa, Sri Lanka and Thailand. The authors: Eline Boelee is a health and irrigation specialist at the IWMI office in Ethiopia; Henry Madsen is a senior researcher at DBL - Institute for Health Research and Development, Charlottenlund, Denmark. He is specialized in freshwater biology with primary focus on ecology and control of freshwater snails. Acknowledgments: We would like to express our gratitude to reviewers of the manuscript for their useful suggestions. Boelee, E.; Madsen, H. 2006. Irrigation and schistosomiasis in Africa: Ecological aspects. Colombo, Sri Lanka: International Water Management Institute. 39p. (IWMI Research Report 99) / schistosomiasis / environmental control / ecology / public health / surface irrigation / water storage / design / irrigation programs / irrigation management / irrigation canals / velocity / aquatic plants / Africa / ISSN 1026-0862 ISBN 92-9090-631-6 ISBN 978-92-9090-631-5 Copyright © 2006, by IWMI. All rights reserved. Cover photograph by Henry Madsen shows laundry and other water uses, including snail sampling, in the "Office du Niger," Mali. Please send inquiries and comments to: [email protected] Contents Summary v Introduction 1 Irrigation in Africa 6 Examples of Schistosomiasis in African Irrigation 8 Environmental Control of Schistosomiasis in Irrigation 19 Conclusion 24 Literature Cited 27 iii iii SUMMARY This research report discusses ecological aspects circumstances, for example, inadequate water of schistosomiasis transmission and options for management and system maintenance that its control in irrigated areas in Africa through result in water stagnation and weed growing. environmental measures. Human schistosomiasis These are common features in African irrigation is endemic in 46 African countries. After being systems along with increased human population infected by larvae emerging from human excreta densities and lack of sanitation and domestic and urine deposited in the water, freshwater snails water supply. act as intermediate hosts. They, in turn, produce Snail-control can be an important component larvae that enter through the skin of people who of integrated campaigns against schistosomiasis are exposed to the contaminated water. Many transmission. Chemicals (molluscicides) can be surface irrigation systems in Africa create effective in the control of snails on the short term, favorable snail-breeding conditions that facilitate but not as a long-term measure as they are too the transmission of schistosomiasis. This process expensive, eco-toxic and unsustainable. is illustrated with examples from different Environmental control of schistosomes' agro-ecological regions, including Morocco, Mali, intermediate hosts (freshwater snails) offers good Sudan, Cameroon, Egypt, Burkina Faso, Kenya alternative approaches, especially when they and Zimbabwe. reduce man-water contact as well. The main The presence and density of snails differ options available are adapted system design, much among sites and vary within irrigated adequate water management and proper areas and over seasons, often subject to local maintenance. v v Irrigation and Schistosomiasis in Africa: Ecological Aspects Eline Boelee and Henry Madsen Introduction There are numerous examples that substantiate schistosomiasis transmission. Many examples the fact that the establishment of irrigation are presented to illustrate the variability among projects and other water resources development different irrigation schemes in Africa in order to projects have increased transmission of provide a better understanding of the ecological schistosomiasis and other water-related diseases aspects of schistosomiasis transmission. These (see reviews by e.g., Deacon 1983; Oomen cases are primarily based on the authors’ et al. 1988 and 1990; Talla et al. 1990; Bolton personal experiences, supplemented with data 1992; Hunter et al. 1993; Grosse 1993; Steele from literature to encompass a greater part of the et al. 1997; Hervé and Brengues 1998; Ofoezie wide spectrum of irrigation schemes encountered 2002). Schistosomiasis and other water-related in the African continent. After the case studies, diseases, while expected to remain public health options for control of schistosomes' intermediate problems of significance may become more hosts are discussed with emphasis on ecological acute as a result of the growing human and engineering measures of snail and population, and the ensuing demands on energy transmission control. and food that will lead to expanded and intensified exploitation of water resources in Africa. It is, therefore, important that health Schistosomiasis considerations are addressed when evaluating potential benefits of new irrigation schemes, and Schistosomiasis is a chronic, debilitating parasitic that measures are taken to minimize health disease caused by blood flukes of the genus problems related to the new ecological settings Schistosoma. Freshwater snails, after being (Tiffen 1991). Clearly, the potential health risks infected by schistosome “miracidiae,” (larvae that of water resources development are related to emerge by the hatching of eggs found in human problems already present in the area. However, excreta, deposited in the water) act as the possibility of new diseases being introduced intermediate hosts. The infected snails produce or existing diseases reaching epidemic other larvae called “cercariae,” which infect proportions (as was seen in the Richard Toll area humans by entering the body through the skin of Senegal — e.g., see Gryseels et al. 1994; de during water contact (figure 1). The disease, also Clerq et al. 2000; Sow et al. 2002), cannot be known as "bilharzia," is endemic in 74 countries ruled out. in Africa, South America and Asia. Worldwide, an This research report discusses distribution estimated 200 million people are infected, of patterns of the intermediate host snails in which 20 million is assumed to suffer from more irrigation and environmental aspects of or less a severe form of the disease creating 4.5 1 million DALYs1 lost (WHO Expert Committee FIGURE 1. 2002). Schistosomiasis is endemic in 46 out of Transmission cycle of urinary schistosomiasis. the 54 countries in the African continent (table 1, figure 2). The disease may cause damage to various tissues (the bladder, liver or the intestines) depending on the species, and lower the resistance of the infected person to other Adult S.haematobium diseases. There are 16 different known species of worms Schistosoma (S), of which 5 are infective to man -- S. mansoni, S. haematobium, S. intercalatum, S. japonicum and S. mekongi. The species differ according to their snail intermediate hosts, egg morphology, final location of the adult worms in the human body, resulting symptoms, and their geographical distribution (Doumenge et al. 1987). The most common forms of the disease in Africa are: intestinal schistosomiasis, which is caused by S. mansoni; and urinary schistosomiasis, which is caused by S. haematobium. In sub-Saharan Africa, approximately 393 million people are at risk of infection from S. mansoni, of Bulinus snails which 54 million are infected. Those numbers for Source: Boelee 1999 S. haematobium are estimated to be as high as 436 million at risk, of which 112 million are Transmission can take place in almost any infected (van der Werf et al. 2003). type of habitat e.g., from large lakes and rivers to The intermediate hosts of schistosomes in small seasonal ponds and streams. Although Africa are freshwater pulmonate snails, which transmission may be intense in both natural and belong to the "Planorbidae" family. The species man-made water bodies, the latter seems belong
Recommended publications
  • Mitochondrial Genome of Bulinus Truncatus (Gastropoda: Lymnaeoidea): Implications for Snail Systematics and Schistosome Epidemiology
    Journal Pre-proof Mitochondrial genome of Bulinus truncatus (Gastropoda: Lymnaeoidea): implications for snail systematics and schistosome epidemiology Neil D. Young, Liina Kinkar, Andreas J. Stroehlein, Pasi K. Korhonen, J. Russell Stothard, David Rollinson, Robin B. Gasser PII: S2667-114X(21)00011-X DOI: https://doi.org/10.1016/j.crpvbd.2021.100017 Reference: CRPVBD 100017 To appear in: Current Research in Parasitology and Vector-Borne Diseases Received Date: 21 January 2021 Revised Date: 10 February 2021 Accepted Date: 11 February 2021 Please cite this article as: Young ND, Kinkar L, Stroehlein AJ, Korhonen PK, Stothard JR, Rollinson D, Gasser RB, Mitochondrial genome of Bulinus truncatus (Gastropoda: Lymnaeoidea): implications for snail systematics and schistosome epidemiology, CORTEX, https://doi.org/10.1016/ j.crpvbd.2021.100017. This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2021 The Author(s). Published by Elsevier B.V. Journal Pre-proof Mitochondrial genome of Bulinus truncatus (Gastropoda: Lymnaeoidea): implications for snail systematics and schistosome epidemiology Neil D. Young a,* , Liina Kinkar a, Andreas J. Stroehlein a, Pasi K. Korhonen a, J.
    [Show full text]
  • Study on the Ethiopian Freshwater Molluscs, Especially on Identification, Distribution and Ecology of Vector Snails of Human Schistosomiasis
    Jap. J. Trop. Med. Hyg., Vol. 3, No. 2, 1975, pp. 107-134 107 STUDY ON THE ETHIOPIAN FRESHWATER MOLLUSCS, ESPECIALLY ON IDENTIFICATION, DISTRIBUTION AND ECOLOGY OF VECTOR SNAILS OF HUMAN SCHISTOSOMIASIS HIROSHI ITAGAKI1, NORIJI SUZUKI2, YOICHI ITO2, TAKAAKI HARA3 AND TEFERRA WONDE4 Received for publication 17 February 1975 Abstract: Many surveys were carried out in Ethiopia from January 1969 to January 1971 to study freshwater molluscs, especially the intermediate and potential host snails of Schistosoma mansoni and S. haematobium, to collect their ecological data, and to clarify the distribution of the snails in the country. The gastropods collected consisted of two orders, the Prosobranchia and Pulmonata. The former order contained three families (Thiaridae, Viviparidae and Valvatidae) and the latter four families (Planorbidae, Physidae, Lymnaeidae and Ancylidae). The pelecypods contained four families : the Unionidae, Mutelidae, Corbiculidae and Sphaeriidae. Biomphalaria pfeifferi rueppellii and Bulinus (Physopsis)abyssinicus are the most important hosts of S. mansoniand S. haematobium respectively. The freshwater snail species could be grouped into two distibution patterns, one of which is ubiquitous and the other sporadic. B. pfeifferirueppellii and Bulinus sericinus belong to the former pattern and Biomphalaria sudanica and the members of the subgenus Physopsis to the latter. Pictorial keys were prepared for field workers of schistosomiasis to identify freshwater molluscs in Ethiopia. Habitats of bulinid and biomphalarian snails were ecologically surveyed in connection with the epidemiology of human schistosomiasis. Rain falls and nutritional conditions of habitat appear to influence the abundance and distribution of freshwater snails more seriously than do temperature and pH, but water current affects the distribution frequently.
    [Show full text]
  • Stability and Genetic Basis of Variability of Phally Polymorphism in Natural Populations of the Self-Fertile Freshwater Snail Bulinus Truncatus
    Genet. Res., Camb. (1996), 68, pp. 23-33 With 4 text-figures Copyright © 1996 Cambridge University Press 23 Stability and genetic basis of variability of phally polymorphism in natural populations of the self-fertile freshwater snail Bulinus truncatus CLAUDIE DOUMS1*, RABIOU LABBO2 AND PHILIPPE JARNE1 ' Genetique et Environnement CC065, Institut des Sciences de TEvolution, Universite Montpellier II, Place Eugene Bataillon, 34095, Montpellier cedex 5, France 2OCCGE, Niamey, Niger (Received 29 September 1995 and in revised form 18 March 1996) Summary We investigated the genetic variability for phally polymorphism within and between natural populations of the hermaphrodite self-fertile freshwater snail Bulinus truncatus. Phally polymorphism is characterized by the co-occurrence in natural populations of regular hermaphrodite individuals (euphallic) and individuals deprived of the male copulatory organ (aphallic). The two morphs can both self-fertilize and outcross. However, aphallic individuals cannot outcross as males. We examined the variation of the aphally ratio in 22 natural populations from Niger over two successive years. During the second years, populations were sampled three times at 3 week intervals. The aphally ratio was highly variable among populations at a given sampling data and remained relatively stable over time. For 10 of these populations, one population from Corsica and two from Sardinia, we also estimated the between- and within- population variability, analysing the aphally ratio of 346 families under laboratory conditions. The aphally ratio varied significantly among populations and was highly correlated with the aphally ratio of the natural populations. Some within-population variability, associated with a high value of the broad sense heritability, was observed in four populations out of 13.
    [Show full text]
  • Laboratory Feeding of Bulinus Truncatus and Bulinus Globosus with Tridax Procumbens Leaves
    Vol. 5(3), pp. 31-35, March 2013 DOI: 10.5897/JPVB 13.0109 Journal of Parasitology and ISSN 2141-2510 © 2013 Academic Journals http://www.academicjournals.org/JPVB Vector Biology Full Length Research Paper Laboratory feeding of Bulinus truncatus and Bulinus globosus with Tridax procumbens leaves O. M. Agbolade*, O. W. Lawal and K. A. Jonathan Department of Plant Science and Applied Zoology, Parasitology and Medical Entomology Laboratory, Olabisi Onabanjo University, P.M.B. 2002, Ago-Iwoye, Ogun State, Nigeria. Accepted 18 March, 2013 Suitability of Tridax procumbens leaves in laboratory feeding of Bulinus truncatus and Bulinus globosus was assessed in comparison with Lactuca sativa between September and October, 2011. The snails were collected from Eri-lope stream in Ago-Iwoye, while T. procumbens were collected from the Mini Campus of the Olabisi Onabanjo University, Ago-Iwoye, Ijebu North, Southwestern Nigeria. For B. truncatus, fresh, sun-dried and oven-dried T. procumbens were used, while only fresh T. procumbens were used for B. globosus. The mean percentage survivals of B. truncatus fed with fresh, sun-dried and oven-dried T. procumbens compared with those of the corresponding control snails showed no significant difference (2 = 0.51, 1.85, and 2.21, respectively). B. truncatus fed with fresh T. procumbens had the highest mean live-weight percentage increase (46.4%) as compared to those fed with sun-dried and oven-dried (2 = 45.65). The mean percentage survival of B. globosus fed with fresh T. procumbens (79.2%) was similar with that of the control (84.6%) (2 = 0.18).
    [Show full text]
  • The Benthic Macro-Invertebrate Fauna of Owalla Reservoir, Osun State, Southwest, Nigeria
    Egyptian Journal of Aquatic Biology & Fisheries Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt. ISSN 1110 – 6131 Vol. 23(5): 341 - 356 (2019) www.ejabf.journals.ekb.eg The Benthic Macro-Invertebrate Fauna of Owalla Reservoir, Osun State, Southwest, Nigeria Aduwo, Adedeji Idowu and Adeniyi, Israel Funso Limnology and Hydrobiology Laboratory, Zoology Department, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria. *[email protected] & [email protected] ARTICLE INFO ABSTRACT Article History: The benthic macro-invertebrate composition of Owalla Reservoir in Received: Feb. 23, 2019 Southwest Nigeria was surveyed over two annual cycles (2011 – 2013). The Accepted: Nov. 28, 2019 study aimed at providing information on their taxonomic composition, Online: Dec. 2019 abundance and distribution pattern (both in time and space) of the occurring _______________ species in the reservoir. Twenty (20) sampling stations representing the major Keywords : habitat types and basins were established across the reservoir. Bottom Phytobenthos sediments were collected using a Van Veen grab and sieved through a 0.5 mm Zoobenthos mesh sieve using the reservoir water. The residues were preserved inside a open water specimen bottle in 10 % formalin and labeled appropriately for specimen littoral analysis and identification which were carried out in the laboratory using anthropogenic appropriate identification keys. The benthic macro-invertebrates of Owalla Reservoir comprised 18 different species belonging to three major phyla (Arthropoda, Annelida and Mollusca), with a total abundance of 5076 individuals. Melanoides tuberculata was the most dominant species (90 % occurrence) and the most abundant (4128 individuals). Enallagma sp. was the least occurring (10 %) while Physa acuta, Radix natalensis and Mutela sp.
    [Show full text]
  • Schistosomiasis in Lake Malaŵi and the Potential Use of Indigenous Fish for Biological Control
    6 Schistosomiasis in Lake Malaŵi and the Potential Use of Indigenous Fish for Biological Control Jay R. Stauffer, Jr.1 and Henry Madsen2 1School of Forest Resources, Penn State University, University Park, PA 2DBL Centre for Health Research and Development, Faculty of Life Sciences, University of Copenhagen, Frederiksberg 1USA 2Denmark 1. Introduction Schistosomiasis is a parasitic disease of major public health importance in many countries in Africa, Asia, and South America, with an estimated 200 million people infected worldwide (World Health Organization, 2002). The disease is caused by trematodes of the genus Schistosoma that require specific freshwater snail species to complete their life cycles (Fig. 1). People contract schistosomiasis when they come in contact with water containing the infective larval stage (cercariae) of the trematode. Fig. 1. Life cycle of schistosomes (Source: CDC/Alexander J. da Silva, PhD/Melanie Moser) www.intechopen.com 120 Schistosomiasis Schistosome transmission, Schistosoma haematobium, is a major public health concern in the Cape Maclear area of Lake Malaŵi (Fig. 2), because the disease poses a great problem for local people and reduces revenue from tourism. Until the mid-1980’s, the open shores of Lake Malaŵi were considered free from human schistosomes (Evans, 1975; Stauffer et al., 1997); thus, only within relatively protected areas of the lake or tributaries would transmission take place. These areas were suitable habitat of intermediate host snail, Bulinus globosus. During mid-1980’s, reports indicated that transmission also occurred along open shorelines. It is now evident that in the southern part of the lake, especially Cape Maclear on Nankumba Peninsula, transmission occurs along exposed shorelines with sandy sediment devoid of aquatic plants via another intermediate host, Bulinus nyassanus (Madsen et al., 2001, 2004).
    [Show full text]
  • Freshwater Snails of Biomedical Importance in the Niger River Valley
    Rabone et al. Parasites Vectors (2019) 12:498 https://doi.org/10.1186/s13071-019-3745-8 Parasites & Vectors RESEARCH Open Access Freshwater snails of biomedical importance in the Niger River Valley: evidence of temporal and spatial patterns in abundance, distribution and infection with Schistosoma spp. Muriel Rabone1* , Joris Hendrik Wiethase1, Fiona Allan1, Anouk Nathalie Gouvras1, Tom Pennance1,2, Amina Amadou Hamidou3, Bonnie Lee Webster1, Rabiou Labbo3,4, Aidan Mark Emery1, Amadou Djirmay Garba3,5 and David Rollinson1 Abstract Background: Sound knowledge of the abundance and distribution of intermediate host snails is key to understand- ing schistosomiasis transmission and to inform efective interventions in endemic areas. Methods: A longitudinal feld survey of freshwater snails of biomedical importance was undertaken in the Niger River Valley (NRV) between July 2011 and January 2016, targeting Bulinus spp. and Biomphalaria pfeiferi (intermedi- ate hosts of Schistosoma spp.), and Radix natalensis (intermediate host of Fasciola spp.). Monthly snail collections were carried out in 92 sites, near 20 localities endemic for S. haematobium. All bulinids and Bi. pfeiferi were inspected for infection with Schistosoma spp., and R. natalensis for infection with Fasciola spp. Results: Bulinus truncatus was the most abundant species found, followed by Bulinus forskalii, R. natalensis and Bi. pfeiferi. High abundance was associated with irrigation canals for all species with highest numbers of Bulinus spp. and R. natalensis. Seasonality in abundance was statistically signifcant in all species, with greater numbers associated with dry season months in the frst half of the year. Both B. truncatus and R. natalensis showed a negative association with some wet season months, particularly August.
    [Show full text]
  • Molecular Characterization of the Freshwater Snail Physella Acuta. Journey R
    University of New Mexico UNM Digital Repository Biology ETDs Electronic Theses and Dissertations 12-1-2013 Molecular characterization of the freshwater snail Physella acuta. Journey R. Nolan Follow this and additional works at: https://digitalrepository.unm.edu/biol_etds Recommended Citation Nolan, Journey R.. "Molecular characterization of the freshwater snail Physella acuta.." (2013). https://digitalrepository.unm.edu/ biol_etds/87 This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Biology ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Journey R. Nolan Candidate Biology Department This thesis is approved, and it is acceptable in quality and form for publication: Approved by the Thesis Committee: Dr. Coenraad M. Adema , Chairperson Dr. Stephen Stricker Dr. Cristina Takacs-Vesbach i Molecular characterization of the freshwater snail Physella acuta. by JOURNEY R. NOLAN B.S., BIOLOGY, UNIVERSITY OF NEW MEXICO, 2009 M.S., BIOLOGY, UNIVERSITY OF NEW MEXICO, 2013 THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Masters of Science Biology The University of New Mexico, Albuquerque, New Mexico DECEMBER 2013 ii ACKNOWLEDGEMENTS I would like to thank Dr. Sam Loker and Dr. Bruce Hofkin for undergraduate lectures at UNM that peaked my interest in invertebrate biology. I would also like to thank Dr. Coen Adema for recommending a work-study position in his lab in 2009, studying parasitology, and for his continuing mentoring efforts to this day. The position was influential in my application to UNM PREP within the Department of Biology and would like to thank the mentors Dr.
    [Show full text]
  • Biomphalaria and Bulinus Spp
    Acta Tropica 132 (2014) 64–74 Contents lists available at ScienceDirect Acta Tropica jo urnal homepage: www.elsevier.com/locate/actatropica Regulation of laboratory populations of snails (Biomphalaria and Bulinus spp.) by river prawns, Macrobrachium spp. (Decapoda, Palaemonidae): Implications for control of schistosomiasis a,∗,1 b a Susanne H. Sokolow , Kevin D. Lafferty , Armand M. Kuris a Ecology Evolution and Marine Biology Department, University of California Santa Barbara, Santa Barbara, CA, 93106, USA b Western Ecological Research Center, US Geological Survey, c/o Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA a r a t i c l e i n f o b s t r a c t Article history: Human schistosomiasis is a common parasitic disease endemic in many tropical and subtropical Received 29 October 2013 countries. One barrier to achieving long-term control of this disease has been re-infection of treated Received in revised form patients when they swim, bathe, or wade in surface fresh water infested with snails that harbor and 13 December 2013 release larval parasites. Because some snail species are obligate intermediate hosts of schistosome para- Accepted 19 December 2013 sites, removing snails may reduce parasitic larvae in the water, reducing re-infection risk. Here, we Available online 31 December 2013 evaluate the potential for snail control by predatory freshwater prawns, Macrobrachium rosenbergii and M. vollenhovenii, native to Asia and Africa, respectively. Both prawn species are high value, protein-rich Keywords: Predation human food commodities, suggesting their cultivation may be beneficial in resource-poor settings where few other disease control options exist.
    [Show full text]
  • Article-P850.Pdf
    Am. J. Trop. Med. Hyg., 96(4), 2017, pp. 850–855 doi:10.4269/ajtmh.16-0614 Copyright © 2017 by The American Society of Tropical Medicine and Hygiene Divergent Effects of Schistosoma haematobium Exposure on Intermediate-Host Snail Species Bulinus nasutus and Bulinus globosus from Coastal Kenya H. Curtis Kariuki,1 Julianne A. Ivy,2 Eric M. Muchiri,1 Laura J. Sutherland,2 and Charles H. King2* 1Division of Vector Borne Diseases, Ministry of Health, Nairobi, Kenya; 2Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio Abstract. Schistosoma haematobium infection causes urogenital schistosomiasis, a chronic inflammatory disease that is highly prevalent in many parts of sub-Saharan Africa. Bulinid snails are the obligate intermediate hosts in the transmission of this parasite. In the present study, Bulinus globosus and Bulinus nasutus snails from coastal Kenya were raised in the laboratory and exposed to miracidia derived from sympatric S. haematobium specimens to assess the species-specific impact of parasite contact and infection. The snails’ subsequent patterns of survival, cercarial shedding, and reproduction were monitored for up to 3 months postexposure. Schistosoma haematobium exposure significantly decreased the survival of B. globosus, but not of B. nasutus. Although both species were capable of transmitting S. haematobium,theB. globosus study population had a greater cumulative incidence of cercarial shedders and a higher average number of cercariae shed per snail than did the B. nasutus population. The effects of prior parasite exposure on snail reproduction were different between the two species. These included more numerous production of egg masses by exposed B.
    [Show full text]
  • Studies on the Morphology and Compatibility Between Schistosoma Hæmatobium and the Bulinus Sp
    African Journal of Biotechnology Vol. 4 (9), pp. 1010-1016, September 2005 Available online at http://www.academicjournals.org/AJB ISSN 1684–5315 © 2005 Academic Journals Full Length Research Paper Studies on the morphology and compatibility between Schistosoma hæmatobium and the Bulinus sp. complex (gastropoda: planorbidae) in Cameroon Mimpfoundi Remy* and Ndassa Arouna General Biology Laboratory Faculty of Science, P.O Box 812 Yaoundé I Cameroon. Accepted March, 2005 A description is given of the morphological variation of the shell, the radula features and the copulatory organ of Bulinus sp. (2n=36) from four populations in the western Cameroon crater lakes. To assess the role of diploid snails belonging to the Bulinus natalensis/tropicus complex in the transmission of urinary schistosomiasis in Cameroon, the relation between Bulinus sp. (from four Cameroon crater lakes) and Schistosoma haematobium (from three transmission foci) were studied. Bulinus sp. in the present study refers to the diploid snail (2n=36) tentatively identified as Bulinus natalensis or as Bulinus tropicus in the Cameroon crater lakes. The percentage infection of snails challenged ranged from 03.33 to 06.00% for Nchout Monoun population and from 01.85 to 04.76% for Monoun Ngouondam population. No progeny from Petponoun-East and Petponoun-West were experimentally successfully infected with S. haematobium. All the 351 snails dissected were euphallic. Previous malacological surveys revealed the absence of Bulinus sp. naturally infected with human schistosomes. These results suggested that Bulinus sp. was not susceptible to infection with S. haematobium in the Cameroon Western highland crater lakes. These observations justify the absence of transmission foci (for urinary schistosomiasis) in this area.
    [Show full text]
  • Gastropod-Borne Trematode Communities of Man-Made Reservoirs in Zimbabwe, with a Special Focus on Fasciola and Schistosoma Helminth Parasites
    FACULTY OF SCIENCE Gastropod-borne trematode communities of man-made reservoirs in Zimbabwe, with a special focus on Fasciola and Schistosoma helminth parasites Ruben SCHOLS Supervisor: Prof. Dr. Filip Volckaert Thesis presented in KU Leuven, Leuven (BE) fulfilment of the requirements Co-supervisor and mentor: Dr. Tine Huyse for the degree of Master of Science Royal Museum for Central Africa, Tervuren (BE) in Biology Co-supervisor: Prof. Dr. Maxwell Barson University of Zimbabwe, Harare (ZW) Academic year 2018-2019 © Copyright by KU Leuven Without written permission of the promotors and the authors it is forbidden to reproduce or adapt in any form or by any means any part of this publication. Requests for obtaining the right to reproduce or utilize parts of this publication should be addressed to KU Leuven, Faculteit Wetenschappen, Geel Huis, Kasteelpark Arenberg 11 bus 2100, 3001 Leuven (Heverlee), Telephone +32 16 32 14 01. A written permission of the promotor is also required to use the methods, products, schematics and programs described in this work for industrial or commercial use, and for submitting this publication in scientific contests. i ii Preface The thesis took almost a year from preparing the field trip to completing the writing process. Many people assisted me with the data collection and the writing process of this thesis. Without them this work would not have reached the present quality and each of them deserves a personal mention of gratitude here. First and foremost, I would like to thank Dr. Tine Huyse and prof. Filip Volckaert for providing me with the opportunity to work on this extremely interesting subject.
    [Show full text]