Well-Partial-Orders and Ordinal Notation Systems

Total Page:16

File Type:pdf, Size:1020Kb

Well-Partial-Orders and Ordinal Notation Systems Faculty of Sciences Department of Mathematics Connecting the Two Worlds: Well-partial-orders and Ordinal Notation Systems Jeroen Van der Meeren Supervisor: Prof. Dr. Andreas Weiermann Dissertation submitted in fulfillment of the requirements for the degree of Doctor (Ph.D.) in Sciences, Mathematics 2015 Copyright. The author and the supervisor give the authorization to consult and to copy parts of this work for personal use only. Any other use is limited by the laws of copyright. Permission to reproduce any material contained in this work should be obtained from the author. This does not include the Ghent University logo on the front page, which remains under full copyright of Ghent University. Das Unendliche hat wie keine andere Frage von jeher so tief das Gem¨utdes Menschen bewegt; das Unendliche hat wie kaum eine andere Idee auf den Verstand so anregend und fruchtbar gewirkt; das Unendliche ist aber auch wie kein anderer Begriff so der Aufkl¨arungbed¨urftig. From time immemorial, the infinite has stirred men's emotions more than any other question. Hardly any other idea has stimu- lated the mind so fruitfully. Yet, no other concept needs clarifi- cation more than it does. - David Hilbert, Uber¨ das Unendliche (On the infinite ) [39] Preface Kruskal claims in his now-classical 1972 paper [47] that well-partial-orders are among the most frequently rediscovered mathematical objects. Well- partial-orders have applications in many fields outside the theory of orders: computer science, proof theory, reverse mathematics, algebra, combinatorics, etc. The maximal order type of a well-partial-order characterizes that order's strength. Moreover, in many natural cases, a well-partial-order's maximal order type can be represented by an ordinal notation system. However, there are a number of natural well-partial-orders whose maximal order types and corresponding ordinal notation systems remain unknown. Prominent exam- ples are Friedman's well-partial-orders of trees with the gap-embeddability relation [76]. The main goal of this dissertation is to investigate a conjecture of Weier- mann [86], thereby addressing the problem of the unknown maximal order types and corresponding ordinal notation systems for Friedman's well-partial- orders [76]. Weiermann's conjecture concerns a class of structures, a typical member of which is denoted by T (W ), each are ordered by a certain gap- embeddability relation. The conjecture indicates a possible approach towards determining the maximal order types of the structures T (W ). Specifically, Weiermann conjectures that the collapsing functions #i correspond to maxi- mal linear extensions of these well-partial-orders T (W ), hence also that these collapsing functions correspond to maximal linear extensions of Friedman's famous well-partial-orders. For a more detailed overview and summary of the dissertation, we refer to the introductory Sections 1.1 and 1.3. ii Preface Acknowledgements The doctoral dissertation you are reading is the result of a four-year journey through the world of logic and proof theory. During this trip, I met many nice people and I am very grateful for the enrichment they gave to my life. They are with too many to sum up, but I definitely want to mention the following persons. First of all, I want to thank my supervisor Prof. Andreas Weiermann for his superb guidance and support during these four years. Andreas, thank you for your time and help. Secondly, I want to thank the other members of my exam committee, Prof. Marnix Van Daele, Prof. Lev Gordeev, Prof. Michael Rathjen, Prof. Monika Seisenberger, Dr. Paul Shafer, Prof. Leo Storme, and Prof. Jasson Vindas. Lev, for your comments and remarks on my dissertation. Michael, for our very fruitful discussions during my visits at Leeds University and for being an splendid co-author. Monika, for being an excellent host when I was visiting Swansea University and for your enthusiasm for my research. I want to thank my current and former colleagues at Ghent University. Es- pecially Korneel Debaene, Karsten Naert, Florian Pelupessy, Erik Rijcken, Sam Sanders, Bert Seghers, Paul Shafer, and Lawrence Wong. Paul and Flo- rian, for being close friends and for our nice discussions on logic. Lawrence and Erik, for being perfect office mates and for creating a nice environment for my research. Korneel, Karsten and Bert, for being good friends and co- students during my time at Ghent University. You were all very supportive. Additionally, I want to thank Leo Storme, Hans Vernaeve, Jasson Vindas and Andreas Weiermann for giving me the opportunity to be the assistant of their courses. I also want to thank my research foundation FWO (Research Foundation - Flanders) for giving me the opportunity to do a Ph.D. in logic. Furthermore, I want to thank all the people I met during conferences, work- iv Acknowledgements shops and research visits. You are with too many to mention. Afraid to forget someone, let me restrict to only those persons that I visited: Michael Rath- jen, Toshiyasu Arai, Ryota Akiyoshi, Kazuyuki Tanaka, Monika Seisenberger, Anton Setzer, Arnold Beckmann, Leszek Ko lodziejczyk, Konrad Zdanowski, Zofia Adamowicz, Alberto Marcone, Emanuele Frittaion, Thomas Forster and Henry Towsner. I want to thank my parents and brother for their support during my studies, especially when I was still living at home. Without them, I would never have been able to become the person that I am today. Furthermore, I want to thank all my friends and family, here and abroad. And last, but definitely not least, I want to thank my girlfriend Sanne. For her love, her immense patience and support. Thanks. Jeroen Van der Meeren May 2015 Contents Preface i Acknowledgements iii 1 Introduction 1 1.1 Historical background . .1 1.1.1 Ordinal notation systems . .1 1.1.2 Well-partial-orderings . .6 1.2 Preliminaries . .7 1.2.1 Notations . .7 1.2.2 Partial orders, linear orders, well-orders and ordinals .7 1.2.3 Ordinal notation systems below Γ0 ........... 10 1.2.4 Ordinal notation systems going beyond the limit of predicativity . 12 1.2.5 Ordinal notation systems without addition . 19 1.2.6 Theories and reverse mathematics . 26 1.2.7 Well-partial-orderings . 29 1.2.8 Examples of and constructors on well-partial-orderings 32 1.2.9 Well-partial-orders with gap-condition . 40 1.2.10 Tree-constructors and Weiermann's conjecture . 42 1.3 Overview and summary of the dissertation and possible appli- cations . 59 2 Unstructured trees 63 2.1 Introduction . 63 2.2 Lower bound . 65 3 Capturing the big Veblen number 69 3.1 Introduction . 69 3.2 Finite multisets of pairs . 70 3.3 Finite sequences of pairs . 83 4 Using one uncountability: the Howard-Bachmann number 95 4.1 Introduction . 95 4.2 Approaching Howard-Bachmann . 98 4.3 Obtaining Howard-Bachmann . 99 5 Capturing the gap-trees with two labels 111 5.1 Introduction . 111 wgap 5.2 Upper bound for o(T2 ).................... 118 wgap 5.3 Lower bound for o(T2 )..................... 130 gap 5.4 Maximal order type of Tn .................... 136 6 Independence results 139 6.1 Introduction . 139 6.2 Impredicative theories . 140 6.2.1 Lower bounds . 142 6.2.2 Upper bounds . 146 6.3 Independence results . 148 1 − 6.3.1 Independence results for ACA0 + (Π1-CA0) ...... 148 6.3.2 A general approach . 151 1 0 − 6.3.3 Independence results for RCA0 + (Π1(Π3)-CA0) .... 152 7 The linearized version 153 7.1 Introduction . 153 7.2 Known results . 156 7.3 From an order-theoretical view . 158 7.3.1 Maximal linear extension of gap-sequences with one and two labels . 158 7.3.2 The order type of (Tn[0]; <) with n > 2 . 160 7.3.3 Binary #-functions . 175 7.4 From a reverse mathematical point of view . 179 A Nederlandstalige samenvatting 185 A.1 Inleiding . 185 A.2 De resultaten . 187 Bibliography 191 Index 197 Chapter 1 Introduction 1.1 Historical background In order that the reader can situate this dissertation in its context, we present a brief overview of ordinal notation systems and well-partial-orders. One can find more complete surveys and overviews of these subjects in the literature (e.g. [20,47]). 1.1.1 Ordinal notation systems Well-orders and ordinal notation systems have been studied for their own order-theoretic and combinatorial interests. Additionally, also their appli- cations in proof-theoretic investigations of formal systems are studied [13, 31, 59, 60, 71, 79]. In this dissertation, we especially focus on the orderings themselves. At the end of the 19th century, Cantor extended the natural numbers into the transfinite by defining ordinals (also called ordinal numbers). It enabled him to study the order of such infinite numbers. In 1908, Veblen [84] intro- duced new fast growing functions on the class of ordinals by his techniques of derivation (i.e. enumerating fixed points of monotonic increasing continuous functions) and iteration. Veblen's techniques of derivation and iteration can be seen as a generalization of Cantor's normal form. Veblen's work gives rise to ordinal representation systems for specific ordinals. Hence, in some way, Veblen's (or Cantor's) work can be considered to be the starting point 2 Section 1.1. Historical background of ordinal notation systems and also of the notorious natural well-ordering problem [20], which is known to be extremely difficult. The natural well- ordering problem is a conceptual question about when a representation of a well-ordering is considered natural. Veblen's article [84] yields the Veblen hierarchy, which is nowadays well-known among most proof-theorists. It consists of a family of functions 'α on ordinals, where α is also an ordinal number.
Recommended publications
  • The Interplay Between Computability and Incomputability Draft 619.Tex
    The Interplay Between Computability and Incomputability Draft 619.tex Robert I. Soare∗ January 7, 2008 Contents 1 Calculus, Continuity, and Computability 3 1.1 When to Introduce Relative Computability? . 4 1.2 Between Computability and Relative Computability? . 5 1.3 The Development of Relative Computability . 5 1.4 Turing Introduces Relative Computability . 6 1.5 Post Develops Relative Computability . 6 1.6 Relative Computability in Real World Computing . 6 2 Origins of Computability and Incomputability 6 2.1 G¨odel’s Incompleteness Theorem . 8 2.2 Incomputability and Undecidability . 9 2.3 Alonzo Church . 9 2.4 Herbrand-G¨odel Recursive Functions . 10 2.5 Stalemate at Princeton Over Church’s Thesis . 11 2.6 G¨odel’s Thoughts on Church’s Thesis . 11 ∗Parts of this paper were delivered in an address to the conference, Computation and Logic in the Real World, at Siena, Italy, June 18–23, 2007. Keywords: Turing ma- chine, automatic machine, a-machine, Turing oracle machine, o-machine, Alonzo Church, Stephen C. Kleene,klee Alan Turing, Kurt G¨odel, Emil Post, computability, incomputabil- ity, undecidability, Church-Turing Thesis (CTT), Post-Church Second Thesis on relative computability, computable approximations, Limit Lemma, effectively continuous func- tions, computability in analysis, strong reducibilities. 1 3 Turing Breaks the Stalemate 12 3.1 Turing’s Machines and Turing’s Thesis . 12 3.2 G¨odel’s Opinion of Turing’s Work . 13 3.3 Kleene Said About Turing . 14 3.4 Church Said About Turing . 15 3.5 Naming the Church-Turing Thesis . 15 4 Turing Defines Relative Computability 17 4.1 Turing’s Oracle Machines .
    [Show full text]
  • The Realm of Ordinal Analysis
    The Realm of Ordinal Analysis Michael Rathjen Department of Pure Mathematics, University of Leeds Leeds LS2 9JT, United Kingdom Denn die Pioniere der Mathematik hatten sich von gewissen Grundlagen brauchbare Vorstellungen gemacht, aus denen sich Schl¨usse,Rechnungsarten, Resultate ergaben, deren bem¨achtigten sich die Physiker, um neue Ergebnisse zu erhalten, und endlich kamen die Techniker, nahmen oft bloß die Resultate, setzten neue Rechnungen darauf und es entstanden Maschinen. Und pl¨otzlich, nachdem alles in sch¨onste Existenz gebracht war, kamen die Mathematiker - jene, die ganz innen herumgr¨ubeln, - darauf, daß etwas in den Grundlagen der ganzen Sache absolut nicht in Ordnung zu bringen sei; tats¨achlich, sie sahen zuunterst nach und fanden, daß das ganze Geb¨audein der Luft stehe. Aber die Maschinen liefen! Man muß daraufhin annehmen, daß unser Dasein bleicher Spuk ist; wir leben es, aber eigentlich nur auf Grund eines Irrtums, ohne den es nicht entstanden w¨are. ROBERT MUSIL: Der mathematische Mensch (1913) 1 Introduction A central theme running through all the main areas of Mathematical Logic is the classification of sets, functions or theories, by means of transfinite hierarchies whose ordinal levels measure their ‘rank’ or ‘complexity’ in some sense appropriate to the underlying context. In Proof Theory this is manifest in the assignment of ‘proof the- oretic ordinals’ to theories, gauging their ‘consistency strength’ and ‘computational power’. Ordinal-theoretic proof theory came into existence in 1936, springing forth from Gentzen’s head in the course of his consistency proof of arithmetic. To put it roughly, ordinal analyses attach ordinals in a given representation system to formal theories.
    [Show full text]
  • Effective Descriptive Set Theory
    Effective Descriptive Set Theory Andrew Marks December 14, 2019 1 1 These notes introduce the effective (lightface) Borel, Σ1 and Π1 sets. This study uses ideas and tools from descriptive set theory and computability theory. Our central motivation is in applications of the effective theory to theorems of classical (boldface) descriptive set theory, especially techniques which have no classical analogues. These notes have many errors and are very incomplete. Some important topics not covered include: • The Harrington-Shore-Slaman theorem [HSS] which implies many of the theorems of Section 3. • Steel forcing (see [BD, N, Mo, St78]) • Nonstandard model arguments • Barwise compactness, Jensen's model existence theorem • α-recursion theory • Recent beautiful work of the \French School": Debs, Saint-Raymond, Lecompte, Louveau, etc. These notes are from a class I taught in spring 2019. Thanks to Adam Day, Thomas Gilton, Kirill Gura, Alexander Kastner, Alexander Kechris, Derek Levinson, Antonio Montalb´an,Dean Menezes and Riley Thornton, for helpful conversations and comments on earlier versions of these notes. 1 Contents 1 1 1 1 Characterizing Σ1, ∆1, and Π1 sets 4 1 1.1 Σn formulas, closure properties, and universal sets . .4 1.2 Boldface vs lightface sets and relativization . .5 1 1.3 Normal forms for Σ1 formulas . .5 1.4 Ranking trees and Spector boundedness . .7 1 1.5 ∆1 = effectively Borel . .9 1.6 Computable ordinals, hyperarithmetic sets . 11 1 1.7 ∆1 = hyperarithmetic . 14 x 1 1.8 The hyperjump, !1 , and the analogy between c.e. and Π1 .... 15 2 Basic tools 18 2.1 Existence proofs via completeness results .
    [Show full text]
  • Arxiv:1702.04163V3 [Math.LO]
    The Euclidean numbers Vieri Benci Lorenzo Bresolin Dipartimento di Matematica Scuola Normale Superiore, Pisa Universit`adi Pisa, Italy. [email protected] [email protected] Marco Forti Dipartimento di Matematica Universit`adi Pisa, Italy. [email protected] Abstract We introduce axiomatically a Nonarchimedean field E, called the field of the Euclidean numbers, where a transfinite sum indicized by ordinal numbers less than the first inaccessible Ω is defined. Thanks to this sum, E becomes a saturated hyperreal field isomorphic to the so called Keisler field of cardinality Ω, and there is a natural isomorphic embedding into E of the semiring Ω equipped by the natural ordinal sum and product. Moreover a notion of limit is introduced so as to obtain that transfinite sums be limits of suitable Ω-sequences of their finite subsums. Finally a notion of numerosity satisfying all Euclidean common notions is given, whose values are nonnegative nonstandard integers of E. Then E can be charachterized as the hyperreal field generated by the real numbers together with the semiring of numerosities (and this explains the name “Euclidean” numbers). Keywords: Nonstandard Analysis, Nonarchimedean fields, Euclidean numerosi- ties MSC[2010]: 26E35, 03H05, 03C20, 03E65, 12L99 arXiv:1702.04163v3 [math.LO] 27 Jun 2020 Introduction In this paper we introduce a numeric field denoted by E, which we name the field of the Euclidean numbers. The theory of the Euclidean numbers combines the Cantorian theory of ordinal numbers with Non Standard Analysis (NSA). From the algebraic point of view, the Eucliean numbers are a non-Archimedean field with a supplementary structure (the Euclidean structure), which charac- terizes it.
    [Show full text]
  • On Relating Theories: Proof-Theoretical Reduction
    This is a repository copy of On Relating Theories: Proof-Theoretical Reduction. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/147184/ Version: Accepted Version Proceedings Paper: Rathjen, M and Toppel, M (2019) On Relating Theories: Proof-Theoretical Reduction. In: Centrone, S, Negri, S, Sarikaya, D and Schuster, PM, (eds.) Mathesis Universalis, Computability and Proof. Humboldt-Kolleg: Proof Theory as Mathesis Universalis, 24-28 Jul 2017, Loveno di Menaggio (Como), Italy. Springer , pp. 311-331. ISBN 978-3-030-20446-4 https://doi.org/10.1007/978-3-030-20447-1_16 © Springer Nature Switzerland AG 2019. This is an author produced version of a paper published in Mathesis Universalis, Computability and Proof. Uploaded in accordance with the publisher's self-archiving policy. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ On relating theories: Proof-theoretical reduction Michael Rathjen and Michael Toppel Department of Pure Mathematics, University of Leeds Leeds LS2 9JT, United Kingdom E-Mail: [email protected] Abstract The notion of proof-theoretical or finitistic reduction of one theory to another has a long tradition.
    [Show full text]
  • Turing Oracle Machines, Online Computing, and Three Displacements in Computability Theory
    Turing Oracle Machines, Online Computing, and Three Displacements in Computability Theory Robert I. Soare∗ January 3, 2009 Contents 1 Introduction 4 1.1 Terminology: Incompleteness and Incomputability . 4 1.2 The Goal of Incomputability not Computability . 5 1.3 Computing Relative to an Oracle or Database . 5 1.4 Continuous Functions and Calculus . 6 2 Origins of Computability and Incomputability 7 2.1 G¨odel'sIncompleteness Theorem . 7 2.2 Alonzo Church . 8 2.3 Herbrand-G¨odelRecursive Functions . 9 2.4 Stalemate at Princeton Over Church's Thesis . 10 2.5 G¨odel'sThoughts on Church's Thesis . 11 3 Turing Breaks the Stalemate 11 3.1 Turing Machines and Turing's Thesis . 11 3.2 G¨odel'sOpinion of Turing's Work . 13 3.2.1 G¨odel[193?] Notes in Nachlass [1935] . 14 3.2.2 Princeton Bicentennial [1946] . 15 ∗Parts of this paper were delivered in an address to the conference, Computation and Logic in the Real World, at Siena, Italy, June 18{23, 2007. Keywords: Turing ma- chine, automatic machine, a-machine, Turing oracle machine, o-machine, Alonzo Church, Stephen C. Kleene, Alan Turing, Kurt G¨odel, Emil Post, computability, incomputability, undecidability, Church-Turing Thesis, Post-Turing Thesis on relative computability, com- putable approximations, Limit Lemma, effectively continuous functions, computability in analysis, strong reducibilities. Thanks are due to C.G. Jockusch, Jr., P. Cholak, and T. Slaman for corrections and suggestions. 1 3.2.3 The Flaw in Church's Thesis . 16 3.2.4 G¨odelon Church's Thesis . 17 3.2.5 G¨odel'sLetter to Kreisel [1968] .
    [Show full text]
  • An Ordinal Analysis of Admissible Set Theory Using Recursion on Ordinal Notations∗
    An ordinal analysis of admissible set theory using recursion on ordinal notations¤ Jeremy Avigad May 23, 2001 Abstract The notion of a function from N to N defined by recursion on ordinal notations is fundamental in proof theory. Here this notion is generalized to functions on the universe of sets, using notations for well-orderings longer than the class of ordinals. The generalization is used to bound the rate of growth of any function on the universe of sets that is Σ1-definable in Kripke-Platek admissible set theory with an axiom of infinity. Formalizing the argument provides an ordinal analysis. 1 Introduction In informal proof-theoretic parlance, the definition of a set of objects is said to be impredicative if it makes reference to a collection of sets that includes the set being defined. A classic example arises if one takes the real numbers to be lower Dedekind cuts of rationals, and then defines the least upper bound of a bounded set of reals to be the intersection of all the upper bounds. A theory is said to be (prima facie) impredicative if its intended interpretation depends on such a definition. The circularity implicit in an impredicative theory poses problems for its ordinal analysis, since the goal of ordinal analysis is to measure the theory’s strength in terms of well-founded ordinal notations — that is, “from the bot- tom up.” For that reason, the first ordinal analyses of impredicative theories, due to Takeuti, Buchholz, and Pohlers were a landmark (see the discussion in the introduction to [7]). Another important step was the move to studying fragments of set theory instead of second-order arithmetic, carried out by J¨ager [12, 13, 14], providing a more natural framework for the analysis of impredica- tivity.
    [Show full text]
  • Constructive Zermelo-Fraenkel Set Theory, Power Set, and the Calculus of Constructions
    This is a repository copy of Constructive zermelo-fraenkel set theory, power set, and the calculus of constructions. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/75182/ Book Section: Rathjen, M (2012) Constructive zermelo-fraenkel set theory, power set, and the calculus of constructions. In: Dybjer, P, Lindström, S, Palmgren, E and Sundholm, G, (eds.) Epistemology versus ontology: Essays on the philosophy and foundations of mathematics in honour of Per Martin-Löf. Logic, Epistemology, and the Unity of Science, 27 . Springer , Dordrecht, Netherlands , 313 - 349. ISBN 9789400744356 https://doi.org/10.1007/978-94-007-4435-6 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Constructive Zermelo-Fraenkel Set Theory, Power Set, and the Calculus of Constructions Michael Rathjen∗ Department of Pure Mathematics, University of Leeds Leeds LS2 9JT, United Kingdom [email protected] May 4, 2012 Abstract Full intuitionistic Zermelo-Fraenkel set theory, IZF, is obtained from constructive Zermelo- Fraenkel set theory, CZF, by adding the full separation axiom scheme and the power set axiom.
    [Show full text]
  • An Introduction to Set Theory
    AN INTRODUCTION TO SET THEORY Professor William A. R. Weiss November 21, 2014 2 Contents 0 Introduction 7 1 LOST 11 2 FOUND 23 3 The Axioms of Set Theory 29 4 The Natural Numbers 37 5 The Ordinal Numbers 47 6 Relations and Orderings 59 7 Cardinality 69 8 What's So Real About The Real Numbers? 79 9 Ultrafilters Are Useful 87 3 4 CONTENTS 10 The Universe 97 11 Reflection 103 12 Elementary Submodels 123 13 Constructibility 139 14 Appendices 155 .1 The Axioms of ZFC . 155 .2 Tentative Axioms . 156 CONTENTS 5 Preface These notes for a graduate course in set theory are on their way to be- coming a book. They originated as handwritten notes in a course at the University of Toronto given by Prof. William Weiss. Cynthia Church pro- duced the first electronic copy in December 2002. James Talmage Adams produced a major revision in February 2005. The manuscript has seen many changes since then, often due to generous comments by students, each of whom I here thank. Chapters 1 to 11 are now close to final form. Chapters 12 and 13 are quite readable, but should not be considered as a final draft. One more chapter will be added. 6 CONTENTS Chapter 0 Introduction Set Theory is the true study of infinity. This alone assures the subject of a place prominent in human culture. But even more, Set Theory is the milieu in which mathematics takes place today. As such, it is expected to provide a firm foundation for all the rest of mathematics.
    [Show full text]
  • Ordinal Notation
    Dmytro Taranovsky Last Update: December 31, 2018 Ordinal Notation Abstract: We introduce a framework for ordinal notation systems, present a family of strong yet simple systems, and give many examples of ordinals in these systems. While much of the material is conjectural, we include systems with conjectured strength beyond second order arithmetic (and plausibly beyond ZFC), and prove well-foundedness for some weakened versions. Contents: 1 Introduction 1.1 Introduction 1.2 Prior Work 1.3 Goals of Ordinal Analysis 2 A Framework for Ordinal Notations — defines the general structure for the notations. 2.1 Definition of the General Notation 2.2 Basic Properties 2.3 Bachmann-Howard Ordinal 2.4 One Variable C 2.5 Reflection Configurations 3 Degrees of Recursive Inaccessibility — presents a notation system for ATR0 plus "for every ordinal a, there is recursively a-inaccessible ordinal". 3.1 Definition of the Notation 3.2 Comparison Relation 3.3 Examples 4 Degrees of Reflection — presents a notation system for KP + Πn reflection and somewhat stronger systems, with the canonical assignment for nonrecursive ordinals. 4.1 Definition of Degrees of Reflection 4.2 Examples and Additional Properties 4.3 Assignment of Degrees 4.4 A Step towards Second Order Arithmetic 5 Main Ordinal Notation System — presents the main notation system, which plausibly reaches second order arithmetic (Z2) or higher. 5.1 Definition and Basic Properties 5.2 Strength of the Main System 5.3 Old Analysis and Examples 6 Beyond Second Order Arithmetic — gives insights for going beyond second order arithmetic and ZFC 6.1 Old Analysis 6.2 New Analysis 7 Iteration of n-built from below — proposes a strengthening of the main system.
    [Show full text]
  • A Tutorial Overview of Ordinal Notations
    A Tutorial Overview of Ordinal Notations Jacques Bailhache ([email protected]) January-April 2018 1 Interest of transfinite ordinal numbers The domain of transfinite ordinal numbers, or ordinals, has the particularity of being the only mathematical domain that cannot be automated. In all other domains of mathematics, it is at least theoretically possible to deduce the theorems automatically from a formal system consisting of a finite set of axioms and rules. But G¨odelproved that given any formal system of a theory sufficiently powerful to contain arithmetics, it is possible to build a proposition that expresses its own unprovability in this formal system. This proposition, which is very huge, has also a meaning as an ordinary arithmetic proposition, but is very useless in ordinary arithmetics. If the formal system is consistent, then this proposition is undecidable. At first sight one could think that we just have to add this proposition to the system as an axiom, but this augmented system also have its own G¨odelianproposition. By adding successively G¨odelianpropositions, we obtain an infinite sequence of systems, and the system defined as the union of all these systems also has its G¨odelianproposition, and so on. But according to Solomon Feferman in "Penrose's G¨odelianargument" http://math.stanford.edu/ feferman/papers/penrose.pdf p.9 : "one obtains completeness for all arithmetical sentences in a progression based on the transfinite iteration of the so-called global or uniform reflection principle" The uniform reflection principle, which is something similar to adding the G¨odelianproposition as an axiom, is described for example in John Harrison's paper "Metatheory and Reflection in Theorem Proving: A Survey and Critique" http://www.cl.cam.ac.uk/ jrh13/papers/reflect.ps.gz p.18 : ` 8n:P r(dφ[n]e) ) φ[n] Harrison also says p.19 : "Feferman showed that a transfinite iteration based on it proves all true sentences of number theory".
    [Show full text]
  • On Some Philosophical Aspects of the Background to Georg Cantor's
    Philosophia Scientiæ Travaux d'histoire et de philosophie des sciences CS 5 | 2005 Fonder autrement les mathématiques On Some Philosophical Aspects of the Background to Georg Cantor’s theory of sets Christian Tapp Electronic version URL: http://journals.openedition.org/philosophiascientiae/386 DOI: 10.4000/philosophiascientiae.386 ISSN: 1775-4283 Publisher Éditions Kimé Printed version Date of publication: 1 August 2005 Number of pages: 157-173 ISBN: 2-84174-372-1 ISSN: 1281-2463 Electronic reference Christian Tapp, “On Some Philosophical Aspects of the Background to Georg Cantor’s theory of sets”, Philosophia Scientiæ [Online], CS 5 | 2005, Online since 01 August 2008, connection on 15 January 2021. URL: http://journals.openedition.org/philosophiascientiae/386 ; DOI: https://doi.org/10.4000/ philosophiascientiae.386 Tous droits réservés On Some Philosophical Aspects of the Background to Georg Cantor’s theory of sets∗ Christian Tapp Résumé : Georg Cantor a cherché à assurer les fondements de sa théorie des ensembles. Cet article présente les différentiations cantoriennes concernant la notion d’infinité et une perspective historique de l’émergence de sa notion d’ensemble. Abstract: Georg Cantor sought secure foundations for his set theory. This article presents an account of Cantor’s differentiations concerning the notion of infinity and a tentative historical parsepctive on his notion of set. ∗I am indebted to Joseph W. Dauben for his helpful advise. — Comments to the author are welcome. Philosophia Scientiæ, cahier spécial 5, 2005, 157–173. 158 Christian Tapp 1Introduction Historical accounts of the life and work of Georg Cantor (1845-1918) have generally focused chiefly on his mathematical creations, i.
    [Show full text]