August 2020 | Vol
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
9Th Grade Ela
9TH GRADE ELA Week of: MAY 11TH WICHITA PUBLIC SCHOOLS 9th, 10th, 11th and 12th Grades Your child should spend up to 90 minutes over the course of each day on this packet. Consider other family-friendly activities during the day such as: Learn how to do laundry. Create a cartoon image Make a bucket list of Look up riddles to Wash the laundry, of your family. things to do after the solve with someone fold and put the quarantine is over with in your family. laundry away. your family. Mindful Minute: Write Do a random act of Teach someone in your Put together a puzzle down what a typical day kindness for someone in family to play one of your with your family. was like pre-quarantine your house. video games. and during quarantine. How have things changed? *All activities are optional. Parents/Guardians please practice responsibility, safety, and supervision. For students with an Individualized Education Program (IEP) who need additional support, Parents/Guardians can refer to the Specialized Instruction and Supports webpage, contact their child’s IEP manager, and/or speak to the special education provider when you are contacted by them. Contact the IEP manager by emailing them directly or by contacting the school. The Specialized Instruction and Supports webpage can be accessed by clicking HERE or by navigating in a web browser to https://www.usd259.org/Page/17540 WICHITA PUBLIC SCHOOLS CONTINUOUS LEARNING HOTLINE AVAILABLE 316-973-4443 MARCH 30 – MAY 21, 2020 MONDAY – FRIDAY 11:00 AM – 1:00 PM ONLY For Multilingual Education Services (MES) support, please call (316) 866-8000 (Spanish and Proprio) or (316) 866-8003 (Vietnamese). -
Evidence for Thermal-Stress-Induced Rockfalls on Mars Impact Crater Slopes
Icarus 342 (2020) 113503 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Evidence for thermal-stress-induced rockfalls on Mars impact crater slopes P.-A. Tesson a,b,*, S.J. Conway b, N. Mangold b, J. Ciazela a, S.R. Lewis c, D. M�ege a a Space Research Centre, Polish Academy of Science, Wrocław, Poland b Laboratoire de Plan�etologie et G�eodynamique UMR 6112, CNRS, Nantes, France c School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK ARTICLE INFO ABSTRACT Keywords: Here we study rocks falling from exposed outcrops of bedrock, which have left tracks on the slope over which Mars, surface they have bounced and/or rolled, in fresh impact craters (1–10 km in diameter) on Mars. The presence of these Thermal stress tracks shows that these rocks have fallen relatively recently because aeolian processes are known to infill Ices topographic lows over time. Mapping of rockfall tracks indicate trends in frequency with orientation, which in Solar radiation � � turn depend on the latitudinal position of the crater. Craters in the equatorial belt (between 15 N and 15 S) Weathering exhibit higher frequencies of rockfall on their north-south oriented slopes compared to their east-west ones. � Craters >15 N/S have notably higher frequencies on their equator-facing slopes as opposed to the other ori entations. We computed solar radiation on the surface of crater slopes to compare insolation patterns with the spatial distribution of rockfalls, and found statistically significant correlations between maximum diurnal inso lation and rockfall frequency. -
Martian Crater Morphology
ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter. -
11 Fall Unamagazine
FALL 2011 • VOLUME 19 • No. 3 FOR ALUMNI AND FRIENDS OF THE UNIVERSITY OF NORTH ALABAMA Cover Story 10 ..... Thanks a Million, Harvey Robbins Features 3 ..... The Transition 14 ..... From Zero to Infinity 16 ..... Something Special 20 ..... The Sounds of the Pride 28 ..... Southern Laughs 30 ..... Academic Affairs Awards 33 ..... Excellence in Teaching Award 34 ..... China 38 ..... Words on the Breeze Departments 2 ..... President’s Message 6 ..... Around the Campus 45 ..... Class Notes 47 ..... In Memory FALL 2011 • VOLUME 19 • No. 3 for alumni and friends of the University of North Alabama president’s message ADMINISTRATION William G. Cale, Jr. President William G. Cale, Jr. The annual everyone to attend one of these. You may Vice President for Academic Affairs/Provost Handy festival contact Dr. Alan Medders (Vice President John Thornell is drawing large for Advancement, [email protected]) Vice President for Business and Financial Affairs crowds to the many or Mr. Mark Linder (Director of Athletics, Steve Smith venues where music [email protected]) for information or to Vice President for Student Affairs is being played. At arrange a meeting for your group. David Shields this time of year Sometimes we measure success by Vice President for University Advancement William G. Cale, Jr. it is impossible the things we can see, like a new building. Alan Medders to go anywhere More often, though, success happens one Vice Provost for International Affairs in town and not hear music. The festival student at a time as we provide more and Chunsheng Zhang is also a reminder that we are less than better educational opportunities. -
Workshop on the Martiannorthern Plains: Sedimentological,Periglacial, and Paleoclimaticevolution
NASA-CR-194831 19940015909 WORKSHOP ON THE MARTIANNORTHERN PLAINS: SEDIMENTOLOGICAL,PERIGLACIAL, AND PALEOCLIMATICEVOLUTION MSATT ..V",,2' :o_ MarsSurfaceandAtmosphereThroughTime Lunar and PlanetaryInstitute 3600 Bay AreaBoulevard Houston TX 77058-1113 ' _ LPI/TR--93-04Technical, Part 1 Report Number 93-04, Part 1 L • DISPLAY06/6/2 94N20382"£ ISSUE5 PAGE2088 CATEGORY91 RPT£:NASA-CR-194831NAS 1.26:194831LPI-TR-93-O4-PT-ICNT£:NASW-4574 93/00/00 29 PAGES UNCLASSIFIEDDOCUMENT UTTL:Workshopon the MartianNorthernPlains:Sedimentological,Periglacial, and PaleoclimaticEvolution TLSP:AbstractsOnly AUTH:A/KARGEL,JEFFREYS.; B/MOORE,JEFFREY; C/PARKER,TIMOTHY PAA: A/(GeologicalSurvey,Flagstaff,AZ.); B/(NationalAeronauticsand Space Administration.GoddardSpaceFlightCenter,Greenbelt,MD.); C/(Jet PropulsionLab.,CaliforniaInst.of Tech.,Pasadena.) PAT:A/ed.; B/ed.; C/ed. CORP:Lunarand PlanetaryInst.,Houston,TX. SAP: Avail:CASIHC A03/MFAOI CIO: UNITEDSTATES Workshopheld in Fairbanks,AK, 12-14Aug.1993;sponsored by MSATTStudyGroupandAlaskaUniv. MAJS:/*GLACIERS/_MARSSURFACE/*PLAINS/*PLANETARYGEOLOGY/*SEDIMENTS MINS:/ HYDROLOGICALCYCLE/ICE/MARS CRATERS/MORPHOLOGY/STRATIGRAPHY ANN: Papersthathavebeen acceptedforpresentationat the Workshopon the MartianNorthernPlains:Sedimentological,Periglacial,and Paleoclimatic Evolution,on 12-14Aug. 1993in Fairbanks,Alaskaare included.Topics coveredinclude:hydrologicalconsequencesof pondedwateron Mars; morpho!ogical and morphometric studies of impact cratersin the Northern Plainsof Mars; a wet-geology and cold-climateMarsmodel:punctuation -
Widespread Crater-Related Pitted Materials on Mars: Further Evidence for the Role of Target Volatiles During the Impact Process ⇑ Livio L
Icarus 220 (2012) 348–368 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Widespread crater-related pitted materials on Mars: Further evidence for the role of target volatiles during the impact process ⇑ Livio L. Tornabene a, , Gordon R. Osinski a, Alfred S. McEwen b, Joseph M. Boyce c, Veronica J. Bray b, Christy M. Caudill b, John A. Grant d, Christopher W. Hamilton e, Sarah Mattson b, Peter J. Mouginis-Mark c a University of Western Ontario, Centre for Planetary Science and Exploration, Earth Sciences, London, ON, Canada N6A 5B7 b University of Arizona, Lunar and Planetary Lab, Tucson, AZ 85721-0092, USA c University of Hawai’i, Hawai’i Institute of Geophysics and Planetology, Ma¯noa, HI 96822, USA d Smithsonian Institution, Center for Earth and Planetary Studies, Washington, DC 20013-7012, USA e NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA article info abstract Article history: Recently acquired high-resolution images of martian impact craters provide further evidence for the Received 28 August 2011 interaction between subsurface volatiles and the impact cratering process. A densely pitted crater-related Revised 29 April 2012 unit has been identified in images of 204 craters from the Mars Reconnaissance Orbiter. This sample of Accepted 9 May 2012 craters are nearly equally distributed between the two hemispheres, spanning from 53°Sto62°N latitude. Available online 24 May 2012 They range in diameter from 1 to 150 km, and are found at elevations between À5.5 to +5.2 km relative to the martian datum. The pits are polygonal to quasi-circular depressions that often occur in dense clus- Keywords: ters and range in size from 10 m to as large as 3 km. -
“Mining” Water Ice on Mars an Assessment of ISRU Options in Support of Future Human Missions
National Aeronautics and Space Administration “Mining” Water Ice on Mars An Assessment of ISRU Options in Support of Future Human Missions Stephen Hoffman, Alida Andrews, Kevin Watts July 2016 Agenda • Introduction • What kind of water ice are we talking about • Options for accessing the water ice • Drilling Options • “Mining” Options • EMC scenario and requirements • Recommendations and future work Acknowledgement • The authors of this report learned much during the process of researching the technologies and operations associated with drilling into icy deposits and extract water from those deposits. We would like to acknowledge the support and advice provided by the following individuals and their organizations: – Brian Glass, PhD, NASA Ames Research Center – Robert Haehnel, PhD, U.S. Army Corps of Engineers/Cold Regions Research and Engineering Laboratory – Patrick Haggerty, National Science Foundation/Geosciences/Polar Programs – Jennifer Mercer, PhD, National Science Foundation/Geosciences/Polar Programs – Frank Rack, PhD, University of Nebraska-Lincoln – Jason Weale, U.S. Army Corps of Engineers/Cold Regions Research and Engineering Laboratory Mining Water Ice on Mars INTRODUCTION Background • Addendum to M-WIP study, addressing one of the areas not fully covered in this report: accessing and mining water ice if it is present in certain glacier-like forms – The M-WIP report is available at http://mepag.nasa.gov/reports.cfm • The First Landing Site/Exploration Zone Workshop for Human Missions to Mars (October 2015) set the target -
Signs of Transport of Chemical Elements and Soil-Forming Processes in Surface Soils at Gale Crater, Mars E.M
47th Lunar and Planetary Science Conference (2016) 2493.pdf SIGNS OF TRANSPORT OF CHEMICAL ELEMENTS AND SOIL-FORMING PROCESSES IN SURFACE SOILS AT GALE CRATER, MARS E.M. Hausrath1, W. Goetz2, A. Cousin3, R.C. Wiens4, P.-Y. Mes- lin3, W. Rapin3 1UNLV, Las Vegas, NV [email protected] 2MPS, Göttingen, Germany 3IRAP, CNRS/UPS, Toulouse, France 4LANL, Los Alamos, NM Introduction: Soils provide an integrated record of martian surface processes. Recorded in soils is in- formation about parent material, the effect of impacts, aeolian and fluvial transport, chemical weathering from both ancient and modern Mars, and addition and loss of material. Analysis of soils can therefore provide important information about the history of Mars. Soil-forming processes in desert soils on Earth are preserved in the chemistry and morphology of those soils. Desert soils often contain desert pavement, an interlocking layer of rocks on the surface of the soil, and a dust-rich layer termed the Av horizon beneath the desert pavement [1]. Desert pavement can indicate age, with a more interlocking pavement indicating greater age [2]. Increasing age also results in a thicker dust-rich layer (Av horizon) beneath the desert pave- ment [2]. This dust-rich layer preserves not only the composition of the deposited aeolian dust, but also evidence of any interactions with liquid water. The Figure 1. NavCam image of the target Soda (indicated dust-rich layer also strongly affects how liquid water with a circle) Image credit: NASA/JPL-Caltech interacts with soils. Soils on Earth, including desert soils, can be stud- ied by analyzing depth profiles such as in soil pits or augered samples. -
Technetium and Rhenium in Volcanic Soils by Icpms
UNLV Retrospective Theses & Dissertations 1-1-2006 Technetium and rhenium in volcanic soils by Icpms Clifton Lee Jones University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds Repository Citation Jones, Clifton Lee, "Technetium and rhenium in volcanic soils by Icpms" (2006). UNLV Retrospective Theses & Dissertations. 2053. http://dx.doi.org/10.25669/fmt8-xke5 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. TECHNETIUM AND RHENIUM IN VOECANIC SOIES BY ICPMS by Clifton Lee Jones Bachelor o f Science University of Nevada, Las Vegas 1979 A thesis submitted in partial fulfillment of the requirements for the Master of Science Degree in Chemistry Department of Chemistry College of Sciences Graduate College University of Nevada, Las Vegas December 2006 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 1441710 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. -
Lunar Crater Volcanic Field (Reveille and Pancake Ranges, Basin and Range Province, Nevada, USA)
Research Paper GEOSPHERE Lunar Crater volcanic field (Reveille and Pancake Ranges, Basin and Range Province, Nevada, USA) 1 2,3 4 5 4 5 1 GEOSPHERE; v. 13, no. 2 Greg A. Valentine , Joaquín A. Cortés , Elisabeth Widom , Eugene I. Smith , Christine Rasoazanamparany , Racheal Johnsen , Jason P. Briner , Andrew G. Harp1, and Brent Turrin6 doi:10.1130/GES01428.1 1Department of Geology, 126 Cooke Hall, University at Buffalo, Buffalo, New York 14260, USA 2School of Geosciences, The Grant Institute, The Kings Buildings, James Hutton Road, University of Edinburgh, Edinburgh, EH 3FE, UK 3School of Civil Engineering and Geosciences, Newcastle University, Newcastle, NE1 7RU, UK 31 figures; 3 tables; 3 supplemental files 4Department of Geology and Environmental Earth Science, Shideler Hall, Miami University, Oxford, Ohio 45056, USA 5Department of Geoscience, 4505 S. Maryland Parkway, University of Nevada Las Vegas, Las Vegas, Nevada 89154, USA CORRESPONDENCE: gav4@ buffalo .edu 6Department of Earth and Planetary Sciences, 610 Taylor Road, Rutgers University, Piscataway, New Jersey 08854-8066, USA CITATION: Valentine, G.A., Cortés, J.A., Widom, ABSTRACT some of the erupted magmas. The LCVF exhibits clustering in the form of E., Smith, E.I., Rasoazanamparany, C., Johnsen, R., Briner, J.P., Harp, A.G., and Turrin, B., 2017, overlapping and colocated monogenetic volcanoes that were separated by Lunar Crater volcanic field (Reveille and Pancake The Lunar Crater volcanic field (LCVF) in central Nevada (USA) is domi variable amounts of time to as much as several hundred thousand years, but Ranges, Basin and Range Province, Nevada, USA): nated by monogenetic mafic volcanoes spanning the late Miocene to Pleisto without sustained crustal reservoirs between the episodes. -
The Mineralogy and Sedimentary History of the Glen Torridon Region, Gale Crater, Mars
52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 1519.pdf THE MINERALOGY AND SEDIMENTARY HISTORY OF THE GLEN TORRIDON REGION, GALE CRATER, MARS. M. T. Thorpe1*, T. F. Bristow2, E. B. Rampe1, J. P. Grotzinger3, V. K. Fox3, K. A. Bennett4, A. B. Bryk5 A. S. Yen6, A. R. VasavaDa6, D. T Vaniman7, V. Tu1, A. H. Treiman8, S. M. Morrison9, D. W. Ming1, R. V. Morris1, A.C. McAdam10, C.A. Malespin11, P. R. Mahaffy10, R. M. Hazen9, S. Gupta11, R. T. Downs12, G. W. Downs12, D. J. DesMarais2, P. I. Craig7, S. J. Chipera7, N. Castle8, D. F. Blake2, anD C. N. Achilles10, 1NASA JSC, Houston ([email protected]), TX, 2NASA Ames Research Center, 3Caltech, 4USGS, 5Univ. California, Berkeley, 6JPL/Caltech, 7PSI, 8LPI, 9Carnegie Institute, 10NASA GSFC, 11Imperial College, 12Univ. Arizona. Introduction: Gale crater was selecteD as member, two Different drill samples from both Glen Curiosity’s lanDing site largely because, from orbit, Etive (GE anD GE2) and Mary Anning (MA and MA3) phyllosilicate-rich strata were identifieD on the slopes of localities as well as Groken (GR) from the Knockfarril Mt. Sharp [1,2]. This phyllosilicate unit was later Hill member, the Glasgow (GG) target from the FIU, dubbed the Glen Torridon (GT) region, and the rover and Hutton (HU) from directly below the contact of the has been traversing this region since early January 2019. FIU anD Greenheugh pediment. Drill powder from each On Earth, phyllosilicates in the rock recorD preserve a sample was DelivereD to the CheMin X-ray history of aqueous conditions, overprinted with diffractometer (XRD). -
A Review of Sample Analysis at Mars-Evolved Gas Analysis Laboratory Analog Work Supporting the Presence of Perchlorates and Chlorates in Gale Crater, Mars
minerals Review A Review of Sample Analysis at Mars-Evolved Gas Analysis Laboratory Analog Work Supporting the Presence of Perchlorates and Chlorates in Gale Crater, Mars Joanna Clark 1,* , Brad Sutter 2, P. Douglas Archer Jr. 2, Douglas Ming 3, Elizabeth Rampe 3, Amy McAdam 4, Rafael Navarro-González 5,† , Jennifer Eigenbrode 4 , Daniel Glavin 4 , Maria-Paz Zorzano 6,7 , Javier Martin-Torres 7,8, Richard Morris 3, Valerie Tu 2, S. J. Ralston 2 and Paul Mahaffy 4 1 GeoControls Systems Inc—Jacobs JETS Contract at NASA Johnson Space Center, Houston, TX 77058, USA 2 Jacobs JETS Contract at NASA Johnson Space Center, Houston, TX 77058, USA; [email protected] (B.S.); [email protected] (P.D.A.J.); [email protected] (V.T.); [email protected] (S.J.R.) 3 NASA Johnson Space Center, Houston, TX 77058, USA; [email protected] (D.M.); [email protected] (E.R.); [email protected] (R.M.) 4 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA; [email protected] (A.M.); [email protected] (J.E.); [email protected] (D.G.); [email protected] (P.M.) 5 Institito de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; [email protected] 6 Centro de Astrobiología (INTA-CSIC), Torrejon de Ardoz, 28850 Madrid, Spain; [email protected] 7 Department of Planetary Sciences, School of Geosciences, University of Aberdeen, Aberdeen AB24 3FX, UK; [email protected] 8 Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Armilla, 18100 Granada, Spain Citation: Clark, J.; Sutter, B.; Archer, * Correspondence: [email protected] P.D., Jr.; Ming, D.; Rampe, E.; † Deceased 28 January 2021.