Rodent Presentation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Socioeconomic and Ecological Aspects of Field Rat Control in Tropical and Subtropical Countries Bans Kurylas
SOCIOECONOMIC AND ECOLOGICAL ASPECTS OF FIELD RAT CONTROL IN TROPICAL AND SUBTROPICAL COUNTRIES BANS KURYLAS. Thai-German Rodent Control Project. German Agency for Technical Cooperation (GTZ), P.O. Box 9-34, Bangkok. Thailand. ABSTRACT: The vital question. as to the cause of the pennanent increase in field rat populations throughout most tropical and subtropical areas. has been the subject of researchers and fielcM!en during the past years, in the hope of finding an answer to this problem. Man has made his way through history wherein he was gradually able to renounce nature and establish his own man-made cultural frame. Unlike other marrmals. man has no natural instincts to guide him through life. Brain and spirit have to compensate for lack of. physical capabilities and instincts. Man was forced to change his natural surroundings in order to serve his special and ever-growing needs . Survival meant not only using nature but more so changing it in order to develop his culture. The field rat has become man's "cultural treader"! Myomorpha is the largest suborder of the Order Rodentia. Of the 1700 rodents known to man. more than 1100 belong to this group. The greater part of the Myomorpha species are found within two families, which are Cricetidae with about 567 species and Muridae with about 475 species. Most of these rodents live either in trees or under the ground. They rarely collide with man's interest. Only a few rodent species have become "field rats" and seem to dwell in and utilize man's cultural steppe. Some species have even become cosmopolitan and are found in Europe. -
Learning About Mammals
Learning About Mammals The mammals (Class Mammalia) includes everything from mice to elephants, bats to whales and, of course, man. The amazing diversity of mammals is what has allowed them to live in any habitat from desert to arctic to the deep ocean. They live in trees, they live on the ground, they live underground, and in caves. Some are active during the day (diurnal), while some are active at night (nocturnal) and some are just active at dawn and dusk (crepuscular). They live alone (solitary) or in great herds (gregarious). They mate for life (monogamous) or form harems (polygamous). They eat meat (carnivores), they eat plants (herbivores) and they eat both (omnivores). They fill every niche imaginable. Mammals come in all shapes and sizes from the tiny pygmy shrew, weighing 1/10 of an ounce (2.8 grams), to the blue whale, weighing more than 300,000 pounds! They have a huge variation in life span from a small rodent living one year to an elephant living 70 years. Generally, the bigger the mammal, the longer the life span, except for bats, which are as small as rodents, but can live for up to 20 years. Though huge variation exists in mammals, there are a few physical traits that unite them. 1) Mammals are covered with body hair (fur). Though marine mammals, like dolphins and whales, have traded the benefits of body hair for better aerodynamics for traveling in water, they do still have some bristly hair on their faces (and embryonically - before birth). Hair is important for keeping mammals warm in cold climates, protecting them from sunburn and scratches, and used to warn off others, like when a dog raises the hair on its neck. -
Perissodactyla: Tapirus) Hints at Subtle Variations in Locomotor Ecology
JOURNAL OF MORPHOLOGY 277:1469–1485 (2016) A Three-Dimensional Morphometric Analysis of Upper Forelimb Morphology in the Enigmatic Tapir (Perissodactyla: Tapirus) Hints at Subtle Variations in Locomotor Ecology Jamie A. MacLaren1* and Sandra Nauwelaerts1,2 1Department of Biology, Universiteit Antwerpen, Building D, Campus Drie Eiken, Universiteitsplein, Wilrijk, Antwerp 2610, Belgium 2Centre for Research and Conservation, Koninklijke Maatschappij Voor Dierkunde (KMDA), Koningin Astridplein 26, Antwerp 2018, Belgium ABSTRACT Forelimb morphology is an indicator for order Perissodactyla (odd-toed ungulates). Modern terrestrial locomotor ecology. The limb morphology of the tapirs are widely accepted to belong to a single enigmatic tapir (Perissodactyla: Tapirus) has often been genus (Tapirus), containing four extant species compared to that of basal perissodactyls, despite the lack (Hulbert, 1973; Ruiz-Garcıa et al., 1985) and sev- of quantitative studies comparing forelimb variation in eral regional subspecies (Padilla and Dowler, 1965; modern tapirs. Here, we present a quantitative assess- ment of tapir upper forelimb osteology using three- Wilson and Reeder, 2005): the Baird’s tapir (T. dimensional geometric morphometrics to test whether bairdii), lowland tapir (T. terrestris), mountain the four modern tapir species are monomorphic in their tapir (T. pinchaque), and the Malayan tapir (T. forelimb skeleton. The shape of the upper forelimb bones indicus). Extant tapirs primarily inhabit tropical across four species (T. indicus; T. bairdii; T. terrestris; T. rainforest, with some populations also occupying pinchaque) was investigated. Bones were laser scanned wet grassland and chaparral biomes (Padilla and to capture surface morphology and 3D landmark analysis Dowler, 1965; Padilla et al., 1996). was used to quantify shape. -
First Systematic Study of Late Pleistocene Rat Fossils From
Sains Malaysiana 48(12)(2019): 2613–2622 http://dx.doi.org/10.17576/jsm-2019-4812-02 First Systematic Study of Late Pleistocene Rat Fossils from Batu Caves: New Record of Extinct Species and Biogeography Implications (Kajian Sistematik Pertama Fosil Tikus Akhir Pleistosen dari Batu Caves: Rekod Baharu Spesies yang Telah Pupus dan Implikasi Biogeografi) ISHLAHUDA HANI SAHAK, LIM TZE TSHEN, ROS FATIHAH MUHAMMAD*, NUR SYIMAH IZZAH ABDULLAH THANI & MOHAMMAD AMIN ABD AZIZ ABSTRACT This paper presents the first systematic study of rat (Murinae) isolated dental fossils collected from Late Pleistocene (66000 years ago) cave breccia deposits in Cistern Cave, Batu Caves, Selangor. The cave is partly deposited with fine, coarse and pebbly breccia mixed with abundant mammal fossil cemented to the wall and ceiling of the cave. A total of 39 specimens of teeth and jaw fragments of Murinae were recovered among other large and small mammal remains. Dental morphology and size comparisons suggest that the fossils belong to extinct and extant species which occurred in Peninsular Malaysia and adjacent regions. The species identified are Chiropodomys gliroides, Leopoldamys sabanus, Leopoldamys minutus, Maxomys whiteheadi, Maxomys rajah and Rattus rattus. Almost all species identified from the fossils are known as markers for lowland forested environments. Keywords: Caves fossils; Murinae; Peninsular Malaysia; quaternary ABSTRAK Kertas ini membentangkan kajian sistematik pertama fosil gigi tikus (Murinae) yang ditemui di dalam endapan breksia gua yang berusia Akhir Pleistosen (66000 tahun dahulu) di Gua Cistern, Batu Caves, Selangor. Sebahagian daripada gua ini dilitupi endapan breksia berbutir halus, kasar dan berpebel, bercampur aduk dengan fosil mamalia yang melekat pada dinding dan siling gua. -
Diversification of Muroid Rodents Driven by the Late Miocene Global Cooling Nelish Pradhan University of Vermont
University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2018 Diversification Of Muroid Rodents Driven By The Late Miocene Global Cooling Nelish Pradhan University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Biochemistry, Biophysics, and Structural Biology Commons, Evolution Commons, and the Zoology Commons Recommended Citation Pradhan, Nelish, "Diversification Of Muroid Rodents Driven By The Late Miocene Global Cooling" (2018). Graduate College Dissertations and Theses. 907. https://scholarworks.uvm.edu/graddis/907 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. DIVERSIFICATION OF MUROID RODENTS DRIVEN BY THE LATE MIOCENE GLOBAL COOLING A Dissertation Presented by Nelish Pradhan to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Biology May, 2018 Defense Date: January 8, 2018 Dissertation Examination Committee: C. William Kilpatrick, Ph.D., Advisor David S. Barrington, Ph.D., Chairperson Ingi Agnarsson, Ph.D. Lori Stevens, Ph.D. Sara I. Helms Cahan, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT Late Miocene, 8 to 6 million years ago (Ma), climatic changes brought about dramatic floral and faunal changes. Cooler and drier climates that prevailed in the Late Miocene led to expansion of grasslands and retreat of forests at a global scale. -
Dental Adaptation in Murine Rodents (Muridae): Assessing Mechanical Predictions Stephanie A
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2010 Dental Adaptation in Murine Rodents (Muridae): Assessing Mechanical Predictions Stephanie A. Martin Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES DENTAL ADAPTATION IN MURINE RODENTS (MURIDAE): ASSESSING MECHANICAL PREDICTIONS By STEPHANIE A. MARTIN A Thesis in press to the Department of Biological Science in partial fulfillment of the requirements for the degree of Master of Science Degree Awarded: Spring Semester, 2010 Copyright©2010 Stephanie A. Martin All Rights Reserved The members of the committee approve the thesis of Stephanie A. Martin defended on March 22, 2010. ______________________ Scott J. Steppan Professor Directing Thesis _____________________ Gregory Erickson Committee Member _____________________ William Parker Committee Member Approved: __________________________________________________________________ P. Bryant Chase, Chair, Department of Biological Science The Graduate School has verified and approved the above-named committee members. ii TABLE OF CONTENTS List of Tables......................................................................................................................iv List of Figures......................................................................................................................v Abstract...............................................................................................................................vi -
Host and Viral Traits Predict Zoonotic Spillover from Mammals Kevin J
LETTER doi:10.1038/nature22975 Host and viral traits predict zoonotic spillover from mammals Kevin J. Olival1, Parviez R. Hosseini1, Carlos Zambrana-Torrelio1, Noam Ross1, Tiffany L. Bogich1 & Peter Daszak1 The majority of human emerging infectious diseases are zoonotic, highest for Bunya-, Flavi- and Arenaviruses in rodents; Flavi-, Bunya- with viruses that originate in wild mammals of particular concern and Rhabdoviruses in bats; and Herpesviruses in non-human primates (for example, HIV, Ebola and SARS)1–3. Understanding patterns (Extended Data Fig. 2). Of 586 mammalian viruses in our dataset, of viral diversity in wildlife and determinants of successful cross- 263 (44.9%) have been detected in humans, 75 of which are exclu- species transmission, or spillover, are therefore key goals for sively human and 188 (71.5% of human viruses) zoonotic—defined pandemic surveillance programs4. However, few analytical tools operationally here as viruses detected at least once in humans and at exist to identify which host species are likely to harbour the next least once in another mammal species (Methods). The proportion human virus, or which viruses can cross species boundaries5–7. Here of zoonotic viruses is higher for RNA (159 of 382, 41.6%) than DNA we conduct a comprehensive analysis of mammalian host–virus (29 of 205, 14.1%) viruses. The observed number of viruses per wild relationships and show that both the total number of viruses that host species was comparable when averaged across orders, but bats, infect a given species and the proportion likely to be zoonotic are primates, and rodents had a higher proportion of observed zoonotic predictable. -
Nocturnal Rodents
Nocturnal Rodents Peter Holm Objectives (Chaetodipus spp. and Perognathus spp.) and The monitoring protocol handbook (Petryszyn kangaroo rats (Dipodomys spp.) belong to the 1995) states: “to document general trends in family Heteromyidae (heteromyids), while the nocturnal rodent population size on an annual white-throated woodrats (Neotoma albigula), basis across a representative sample of habitat Arizona cotton rat (Sigmodon arizonae), cactus types present in the monument”. mouse (Peromyscus eremicus), and grasshopper mouse (Onychomys torridus), belong to the family Introduction Muridae. Sigmodon arizonae, a native riparian Nocturnal rodents constitute the prey base for species relatively new to OPCNM, has been many snakes, owls, and carnivorous mammals. recorded at the Dos Lomitas and Salsola EMP All nocturnal rodents, except for the grasshopper sites, adjacent to Mexican agricultural fields. mouse, are primary consumers. Whereas Botta’s pocket gopher (Thomomys bottae) is the heteromyids constitute an important guild lone representative of the family Geomyidae. See of granivores, murids feed primarily on fruit Petryszyn and Russ (1996), Hoffmeister (1986), and foliage. Rodents are also responsible for Petterson (1999), Rosen (2000), and references considerable excavation and mixing of soil layers therein, for a thorough review. (bioturbation), “predation” on plants and seeds, as well as the dispersal and caching of plant seeds. As part of the Sensitive Ecosystems Project, Petryszyn and Russ (1996) conducted a baseline Rodents are common in all monument habitats, study originally titled, Special Status Mammals are easily captured and identified, have small of Organ Pipe Cactus National Monument. They home ranges, have high fecundity, and respond surveyed for nocturnal rodents and other quickly to changes in primary productivity and mammals in various habitats throughout the disturbance (Petryszyn 1995, Petryszyn and Russ monument and found that murids dominated 1996, Petterson 1999). -
In the Pleistocene of South America: Biogeographic and Paleoenvironmental Implications
Journal of South American Earth Sciences 82 (2018) 76e90 Contents lists available at ScienceDirect Journal of South American Earth Sciences journal homepage: www.elsevier.com/locate/jsames The southernmost record of a large erethizontid rodent (Hystricomorpha: Erethizontoidea) in the Pleistocene of South America: Biogeographic and paleoenvironmental implications * Raúl I. Vezzosi a, , Leonardo Kerber b a Laboratorio de Paleontología de Vertebrados, Centro de Investigaciones Científicas y Transferencia de Tecnología a la Produccion, Consejo Nacional de Investigaciones Científicas y Tecnicas, Materi y Espana,~ E3105BWA, Diamante, Argentina b CAPPA - Centro de Apoio a Pesquisa Paleontologica da Quarta Colonia,^ Universidade Federal de Santa Maria, Sao~ Joao~ do Pol^esine, Rua Maximiliano Vizzotto, 598, CEP 97230-000, Brazil article info abstract Article history: The South American porcupines (Erethizontidae) are included in two genera: Chaetomys and Coendou. Received 19 October 2017 The latter is a very speciose taxon, with about 13 living species. During at least the late Plioceneeearly Received in revised form Pleistocene, erethizontids immigrated to Central and North America during the Great American Biotic 23 December 2017 Interchange. Although some Pleistocene fossils have been reported, the Quaternary history of this clade Accepted 24 December 2017 is still understudied. The only known extinct species is Coendou magnus. In this work, a fossil of a Available online 30 December 2017 porcupine is reported from an Upper Pleistocene fluvial sedimentary sequence cropping out in the Northern Pampa geomorphological region, Santa Fe Province, Argentina. Despite this group having Keywords: Fossil record different living forms widely distributed in South American Neotropical woodland habitats, the Pleis- Quaternary tocene occurrences of Erethizontidae are scarce and limited to Upper Pleistocene deposits from Bolivia, Regional extinction Brazil, and Uruguay. -
Over 40% of All Mammal Species in the Next 2 Labs
Rodents Class Rodentia 5 (depends) Suborders 33 (maybe more) Families about 481 genera, 2277+ species Over 40% of all mammal species in the next 2 labs Sciuromorpha: squirrels, dormice, mountain beaver, and relatives Castorimorpha: beavers, gophers, kangaroo rats, pocket mice, and relatives Myomorpha: mice, rats, gerbils, jerboas, and relatives Anomaluromorpha: scaly-tailed squirrels and springhares Hystricomorpha: hystricognath rodents...lots of South American and African species, mostly Because rodents are such a Why rodents are evil... diverse and speciose group, their higher-level taxonomy keeps being revised. Hard to keep up! In recent decades, there have been 2, 3, 4 or 5 Suborders, depending on the revision, and Families keep getting pooled and split. We’ll just focus on some of the important Families and leave their relationships to future generations. They are a diverse and Why rodents are fun... speciose group, occur in just about every kind of habitat and climate, and show the broadest ecological diversity of any group of mammals. There are terrestrial, arboreal, scansorial, subterranean, and semiaquatic rodents. There are solitary, pair-forming, and social rodents. There are plantigrade, cursorial, You could spend your whole fossorial, bipedal, swimming life studying this group! and gliding rodents. (Some do.) General characteristics of rodents •Specialized ever-growing, self-sharpening incisors (2 upper, 2 lower) separated from cheek teeth by diastema; no canines •Cheek teeth may be ever-growing or rooted, but show a variety of cusp patterns, often with complex loops and folds of enamel and dentine reflecting the diet; cusp patterns also often useful taxonomically •Mostly small, average range of body size is 20-100 g, but some can get pretty large (capybara is largest extant species, may reach 50 kg) •Mostly herbivorous (including some specialized as folivores and granivores) or omnivorous •Females with duplex uterus, baculum present in males •Worldwide distribution, wide range of habitats and ecologies And now, on to a few Families.. -
Biology of Rodents and Lagomorphs
Taxonomy of rodents Biology of rodents and lagomorphs Class : Mammalia (mammals) Order: Rodentia (rodents) Family : Muride (rats and mice) Joanna Godawa Stormark Sub-family: Murinae Genus: Mus Species: Mus musculus Linnaeus, 1758 Genus: Rattus Species: Rattus norvegicus (Berkenhout, 1769) Rodent features Rodent origin and distribution 2 pairs of incisors in the upper and lower jaw Rodent are monophyletics Behind the incisors is a large gap in the tooth rows The sub-family Murinae emerged in Southeastern called diastema Asia at the end of the oligocene and the start of the miocene periodes (25-20 mill. years ago) Most species are nocturnal Occurs throughout the world, excluding Most species are continuously polyoestrous Antartica The mouse Rodent diet Most species are herbivores, some are omnivores and insectivores Herbivore rodents are coprophagous Mouse breeding Mouse breeding The modern laboratory mouse is a hybrid of three sub-species: Mus musculus musculus , M. m. domesticus and M. m. castaneus The gestation period is 20 days Lifespan is 1-2 years The average litter size is 10-12 Mouse as all rodents is polyoestrouse Sexual cycle lasts 5 (4-7) days The pups weigh 0.5 to 1.5 grams at birth The Whitten effect occurs – the synchronization of the estrous cycles of female exposed to the pheromones of a male Pups are weaned at 3 weeks of age The Bruce effect occurs - the exposure of a recently bred mouse to the pheromones of a strange male mouse prevent implantation or produce pseudopregnancy Lee Boot effect occurs Mouse behaviour Mouse -
Increased Geographic Sampling Reveals Considerable New Genetic
Mammalian Biology 79 (2014) 24–35 Contents lists available at ScienceDirect Mammalian Biology jou rnal homepage: www.elsevier.com/locate/mambio Original Investigation Increased geographic sampling reveals considerable new genetic diversity in the morphologically conservative African Pygmy Mice (Genus Mus; Subgenus Nannomys) a,∗ a d a,b,c Jennifer Lamb , Sarah Downs , Seth Eiseb , Peter John Taylor a School of Life Sciences, New Biology Building, University of KwaZulu-Natal, University Road, Westville, KwaZulu-Natal 3630, South Africa b Department of Ecology and Resource Management, School of Environmental Sciences, University of Venda, Post Bag X5050, Thohoyandou 0950, South Africa c Core Team Member, Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Post Bag X1, Matieland 7602, South Africa d University of Namibia, Windhoek, Namibia a r a t i b s c l e i n f o t r a c t Article history: African endemic pygmy mice (Genus Mus; sub-genus Nannomys) have considerable economic and public Received 7 March 2013 health significance, and some species exhibit novel sex determination systems, making accurate knowl- Accepted 19 August 2013 edge of their phylogenetics and distribution limits important. This phylogenetic study was based on the by Frank E. Zachos mitochondrial control region and cytochrome b gene, for which a substantial body of published data was Available online 13 September 2013 available. Study specimens were sourced from eight previously unsampled or poorly sampled countries, and include samples morphologically identified as Mus bufo, M. indutus, M. callewaerti, M. triton and M. Keywords: neavei. These analyses increase the known genetic diversity of Nannomys from 65 to 102 haplotypes; at Nannomys least 5 unassigned haplotypes are distinguished by potentially species-level cytochrome b genetic dis- Mus bufo tances.