Using Ancient and Recent DNA to Explore Relationships of Extinct and Endangered Leiolopisma Skinks (Reptilia: Scincidae) in the Mascarene Islands

Total Page:16

File Type:pdf, Size:1020Kb

Using Ancient and Recent DNA to Explore Relationships of Extinct and Endangered Leiolopisma Skinks (Reptilia: Scincidae) in the Mascarene Islands Molecular Phylogenetics and Evolution 39 (2006) 503–511 www.elsevier.com/locate/ympev Using ancient and recent DNA to explore relationships of extinct and endangered Leiolopisma skinks (Reptilia: Scincidae) in the Mascarene islands J.J. Austin 1, E.N. Arnold ¤ Department of Zoology, Natural History Museum, Cromwell Rd., London SW7 5BD, UK Received 29 August 2005; revised 15 December 2005; accepted 15 December 2005 Available online 10 February 2006 Abstract Phylogenetic analysis, using 1455 bp of recent mtDNA (cytochrome b 714 bp, 12S rRNA 376 bp) and nuclear (c-mos 365 bp) sequence from 42 species and 33 genera of Scincidae, conWrms Leiolopisma telfairii, now conWned to Round island oV Mauritius, is a member of the mainly Australasian Eugongylus group of the Lygosominae. Ancient mtDNA (cytochrome b 307 bp, 12S rRNA 376 bp) was also extracted from subfossils of two other Mascarene taxa that are now extinct: the giant L. mauritiana from Mauritius and Lei- olopisma sp., known only from fragmentary remains from Réunion. Sequence divergences of 4.2–5.7% show that all three forms were distinct and form a clade. There is restricted evidence that L. mauritiana and L. sp. from Réunion were sister species. Monophyly and relationships suggest Leiolopisma arose from a single transmarine invasion of the oceanic Mascarene islands from Australasia, 5600– 7000 km away. This origin is similar to that of Cryptoblepharus skinks and Nactus geckos in the archipelago but contrasts with Phel- suma day geckos, which appear to have arrived from Madagascar where Mascarene Cylindraspis tortoises may also have originated. DiversiWcation of the known species of Leiolopisma occurred from about 2.3–3.4 Mya, probably beginning on Mauritius with later invasion of Réunion. The initial coloniser may have had a relatively large body-size, but L. mauritiana is likely to have become gigan- tic within the Mascarenes. Other relationships supported by this investigation include the following. Scincines: Pamelaescincus + Janetaescincus, and Androngo (Amphiglossus, Paracontias). Lygosomines: Sphenomorphus group—(Sphenomorphus, Lipinia (Ctenotus, Anomalopus (Eulamprus and Gnypetoscincus))): Egernia group—Egernia (Cyclodomorphus, Tiliqua); Eugongylus group—(Oligosoma, Bassiana. (Lampropholis (Niveoscincus, Carlia))). © 2006 Elsevier Inc. All rights reserved. Keywords: Leiolopisma skinks; Island colonisation; Island gigantism; Mascarene islands; Ancient DNA; Mitochondrial DNA; c-mos 1. Introduction 7 (23%) that retain substantial ranges (Arnold, 2000). Among the forms aVected were three large-bodied skinks The Mascarene islands in the Southwest Indian Ocean that are referred to Leiolopisma Duméril and Bibron, (Fig. 1) had the richest oceanic island reptile fauna in the 1839; a genus in which many Australasian species were World, but this was devastated after the arrival of people once included, but which is now restricted to the Masca- and the animals they introduced 500 years ago. Of the 33 rene taxa (Hutchinson et al., 1990). Unlike the Austral- reptile species known to have been present, 15 (46%) are asian species, the Mascarene forms frequently have extinct and 11 (33%) reduced to small relicts, leaving only pterygoid teeth (Arnold, 1980; Hutchinson et al., 1990) and in L. telfairii, the one species in which they can be * checked, there are distinctive features of head scalation Corresponding author. Fax: +44 0 20 7 942 5054. (Hutchinson et al., 1990). Only one of the species, L. telf- E-mail address: [email protected] (E.N. Arnold). W 1 Present address: School of Earth and Environmental Sciences, Univer- airii Desjardins, 1831; survives and is now con ned to the sity of Adelaide, North Terrace, Adelaide, SA 5005, Australia. 150 ha oVshore Round Island, although it was once also 1055-7903/$ - see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.ympev.2005.12.011 504 J.J. Austin, E.N. Arnold / Molecular Phylogenetics and Evolution 39 (2006) 503–511 Fig. 1. (A) Map of the Indian Ocean and surrounding landmasses showing the location of the Mascarane islands. (B) Mascarane islands showing collec- tion localities for Leiolopisma skinks. present on neighbouring Flat island and subfossil mate- elevated number of premaxillary teeth (11 instead of the 9 rial shows that it used to occur widely on the main island usually present in other lygosomines), lack of a separate of Mauritius as well (Arnold, 1980; Fig. 1). A second spe- postorbital bone and a covered Meckel’s canal in the den- cies found on Mauritius, L. mauritiana (Günther, 1877) is tary bone suggests they are members of the mainly Aus- extinct and was one of the largest skinks known. It tralasian Eugongylus group (Greer, 1979). Other typical reached an estimated snout-vent length of around features of this assemblage not checkable in L. mauritiana 340 mm, compared with 170 mm for the largest Round can be discerned in L. telfairii, including parietal scales in Island L. telfairii and an estimated 200 mm for Mauritian contact behind the interparietal, 28 presacral vertebrae sub-fossils of this species (Arnold, 1980). L. mauritiana and a diploid chromosome number of 30 (Hardy, 1979; was originally assigned its own genus, Didosaurus Gün- Donnellan, 1985). In contrast, the fragmentary nature of ther, 1877, its apparent aYnity to L. telfairii being noted available material of the Réunion skink makes it impossi- later (Arnold, 1980). A third, as yet unnamed, taxon ble to be sure of its aYnities, and at the same time it is not occurred on Réunion island 145 km southwest of Mauri- clear how distinct this taxon is from L. telfairii. To test tius and is also extinct, being known only from fragments hypotheses about the relationships of these Mascarene (isolated post-cranial and skull bones, including dentar- skinks and their relative status, they are investigated here, ies). This form was similar to L. telfairii but was more using recent mitochondrial (cytochrome b and 12S robust and had coarser dentition (Arnold, 1980; Arnold rRNA) and nuclear (c-mos) DNA from L. telfairii, and and Bour, Submitted for publication). ancient mtDNA (cytochrome b and 12S rRNA) from the Leiolopisma telfairii and L. mauritiana are clearly two extinct forms. The results are then used to consider members of the Lygosominae, having the characteristic the history and biogeography of Leiolopisma. The investi- features of this group (fused frontal bones, and a second- gation also incidentally tests other hypothesised relation- ary palate—Greer, 1970). Within this assemblage, their ships within the Lygosominae. J.J. Austin, E.N. Arnold / Molecular Phylogenetics and Evolution 39 (2006) 503–511 505 2. Materials and methods Microcon-30 centrifugal Wlter units (Millipore). DNA extraction attempts from alcohol-preserved museum tissues 2.1. Material involved air drying small, 2–3 mm3, pieces of muscle and washing once in 1 ml of 10 mM Tris–HCl (pH 8.0), followed Tissue samples from members of the following assem- by digestion and extraction using the DNeasy tissue kit blages are included (numbers are given in brackets). Lygos- (Qiagen). ominae—Eugongylus group (13), Egernia group (3), For the ancient DNA, short (103–178 bp) overlapping Sphenomorphus group (6) and Mabuya (2); Scincinae (14); segments of the 12S rRNA (»400 bp total) and cytochrome Feylininae (1) and Acontinae (1). Three taxa, Zonosaurus b (307 bp total) genes were ampliWed via two rounds of sp. (Gerrhosauridae), Pseudocordylus capensis and Cordylus PCR as described by Austin et al. (2002, 2004) using combi- cordylus (Cordylidae) were included as outgroups. Samples nations of the following primers: 12S rRNA, 12Sa (Kocher of Mascarene Leiolopisma comprise four individuals from et al., 1989), 12SH1269 (5Ј-TTTCTTTCATAAGGTAGG the extant population of L. telfairii on Round Island, one CTGAC-3Ј), 12SL1266L (5Ј-GAAACTCAGCCTATATA old alcohol-preserved L. telfairii from the extinct popula- CCGCCG-3Ј), 12SH1382L (5Ј-GTTTCATTGTGCTGTT tion on Flat Island, two subfossil bones of the extinct L. CGTGTTC-3Ј), 12SL1357L (5Ј-GTGTAGCAYATAAA mauritiana collected from diVerent localities on Mauritius, GCGGAAGAG-3Ј), 12Sb (Kocher et al., 1989), cyto- and two subfossil bones of the extinct L. sp. population chrome b, L14841 (Kocher et al., 1989), CBH14957 (5Ј-AA from Réunion (Fig. 1). All species and samples included in GTCATCCGTATTGTACGTCTCG-3Ј), CBH14953L (5Ј-G the study are listed in Table 1. CCGTATTGGACATCCCGGGT-3Ј), CBL14936L (5Ј-C AGCAGACATTTCATCCGCATTCA-3Ј), CBH15039L 2.2. DNA extraction, PCR ampliWcation and sequencing (5Ј-GCCGTAATAAAGGCCCCGACCA-3Ј), CBL15030L (5Ј-GCCTCAATATTCTTYATCTGCMTCTA-3Ј), H15149 DNA sources included ethanol-preserved tissue (tail tips (Kocher et al., 1989). Negative extraction and PCR controls and liver), genomic DNA extracts and subfossil bones (no tissue and no DNA extract, respectively) were included (extinct L. mauritiana from Mauritius and L. sp. from alongside all extract and PCR ampliWcation attempts. PCR Réunion). For extant taxa, DNA was extracted from 2 to products were puriWed and sequenced directly as described 3mm3 of preserved tissue samples using standard Protein- by Austin et al. (2002, 2004). All sequences have been ase K digestion and phenol:chloroform protocols (Car- deposited in GenBank (Accession Nos.: AF280114, ranza et al., 1999). Fragments of two mitochondrial genes, AF280115, AF280117–AF280120, AF280122–AF280124, 12S rRNA (»400 bp) and cytochrome b (714 bp), and one AF280129, AF280130, AF280133–AF280135, AY818735– fragment of the nuclear gene,
Recommended publications
  • (Nematoda: Rhabdiasidae) and Hedruris Miyakoensis Sp. N. (Nematoda: Hedruridae) from Skinks of the Ryukyu Archipelago, Japan
    Proc. Helminthol. Soc. Wash. 56(2), 1989, pp. 145-150 Neoentomelas asatoi gen. et sp. n. (Nematoda: Rhabdiasidae) and Hedruris miyakoensis sp. n. (Nematoda: Hedruridae) from Skinks of the Ryukyu Archipelago, Japan HIDEO HASEGAWA Department of Parasitology, School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-01, Japan ABSTRACT: Neoentomelas asatoi gen. et sp. n. (Rhabdiasidae) and Hedruris miyakoensis sp. n. (Hedruridae) are described from skinks of the Ryukyu Archipelago, Japan. Neoentomelas asatoi from the lung of Ateuchosaurus pellopleurus on Okinawa and Amami-oshima islands is distinguished from all other rhabdiasids in having well- developed dorsoventral lips with posteriorly directed lobulate formations. Hedruris miyakoensis from the stom- ach of Scincella boettgeri on Miyako Island differs from other species of the genus by the simple lateral cuticular structures of the interlabia, eggs without peripheral swellings, absence of preanal unpaired papilla, stout spicules with prominent accessory structure, simple hook of the holdfast, and/or difference in the measurements. KEY WORDS: Neoentomelas asatoi, Rhabdiasidae, new genus, Hedruris miyakoensis, Hedruridae, Nematoda, new species, taxonomy, skink, Ateuchosaurus pellopleurus, Scincella boettgeri, Scincidae, Ryukyu Islands, Japan. There have been only a few records of skink TYPE AND ONLY SPECIES: Neoentomelas asa- parasites in the Ryukyu Archipelago, which con- toi. nects the mainland of Japan and Taiwan. During a survey of the helminth fauna in this region, a Neoentomelas asatoi sp. n. rhabdiasid species of unknown genus and an un- (Figs. 1-5) described species of the genus Hedruris were de- DESCRIPTION: Parasitic females (holotype and tected from skinks. The new genus and new 5 paratypes): With characters of the genus out- species are described herein.
    [Show full text]
  • Blumgart Et Al 2017- Herpetological Survey Nosy Komba
    Journal of Natural History ISSN: 0022-2933 (Print) 1464-5262 (Online) Journal homepage: http://www.tandfonline.com/loi/tnah20 Herpetological diversity across intact and modified habitats of Nosy Komba Island, Madagascar Dan Blumgart, Julia Dolhem & Christopher J. Raxworthy To cite this article: Dan Blumgart, Julia Dolhem & Christopher J. Raxworthy (2017): Herpetological diversity across intact and modified habitats of Nosy Komba Island, Madagascar, Journal of Natural History, DOI: 10.1080/00222933.2017.1287312 To link to this article: http://dx.doi.org/10.1080/00222933.2017.1287312 Published online: 28 Feb 2017. Submit your article to this journal Article views: 23 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tnah20 Download by: [BBSRC] Date: 21 March 2017, At: 02:56 JOURNAL OF NATURAL HISTORY, 2017 http://dx.doi.org/10.1080/00222933.2017.1287312 Herpetological diversity across intact and modified habitats of Nosy Komba Island, Madagascar Dan Blumgart a, Julia Dolhema and Christopher J. Raxworthyb aMadagascar Research and Conservation Institute, BP 270, Hellville, Nosy Be, Madagascar; bDivision of Vertebrate Zoology, American, Museum of Natural History, New York, NY, USA ABSTRACT ARTICLE HISTORY A six month herpetological survey was undertaken between March Received 16 August 2016 and September 2015 on Nosy Komba, an island off of the north- Accepted 17 January 2017 west coast of mainland Madagascar which has undergone con- KEYWORDS fi siderable anthropogenic modi cation. A total of 14 species were Herpetofauna; conservation; found that have not been previously recorded on Nosy Komba, Madagascar; Nosy Komba; bringing the total island diversity to 52 (41 reptiles and 11 frogs).
    [Show full text]
  • Addo Elephant National Park Reptiles Species List
    Addo Elephant National Park Reptiles Species List Common Name Scientific Name Status Snakes Cape cobra Naja nivea Puffadder Bitis arietans Albany adder Bitis albanica very rare Night adder Causes rhombeatus Bergadder Bitis atropos Horned adder Bitis cornuta Boomslang Dispholidus typus Rinkhals Hemachatus hemachatus Herald/Red-lipped snake Crotaphopeltis hotamboeia Olive house snake Lamprophis inornatus Night snake Lamprophis aurora Brown house snake Lamprophis fuliginosus fuliginosus Speckled house snake Homoroselaps lacteus Wolf snake Lycophidion capense Spotted harlequin snake Philothamnus semivariegatus Speckled bush snake Bitis atropos Green water snake Philothamnus hoplogaster Natal green watersnake Philothamnus natalensis occidentalis Shovel-nosed snake Prosymna sundevalli Mole snake Pseudapsis cana Slugeater Duberria lutrix lutrix Common eggeater Dasypeltis scabra scabra Dappled sandsnake Psammophis notosticus Crossmarked sandsnake Psammophis crucifer Black-bellied watersnake Lycodonomorphus laevissimus Common/Red-bellied watersnake Lycodonomorphus rufulus Tortoises/terrapins Angulate tortoise Chersina angulata Leopard tortoise Geochelone pardalis Green parrot-beaked tortoise Homopus areolatus Marsh/Helmeted terrapin Pelomedusa subrufa Tent tortoise Psammobates tentorius Lizards/geckoes/skinks Rock Monitor Lizard/Leguaan Varanus niloticus niloticus Water Monitor Lizard/Leguaan Varanus exanthematicus albigularis Tasman's Girdled Lizard Cordylus tasmani Cape Girdled Lizard Cordylus cordylus Southern Rock Agama Agama atra Burrowing
    [Show full text]
  • The Herpetofauna of Timor-Leste: a First Report 19 Doi: 10.3897/Zookeys.109.1439 Research Article Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal ZooKeys 109: 19–86 (2011) The herpetofauna of Timor-Leste: a first report 19 doi: 10.3897/zookeys.109.1439 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research The herpetofauna of Timor-Leste: a first report Hinrich Kaiser1, Venancio Lopes Carvalho2, Jester Ceballos1, Paul Freed3, Scott Heacox1, Barbara Lester3, Stephen J. Richards4, Colin R. Trainor5, Caitlin Sanchez1, Mark O’Shea6 1 Department of Biology, Victor Valley College, 18422 Bear Valley Road, Victorville, California 92395, USA; and The Foundation for Post-Conflict Development, 245 Park Avenue, 24th Floor, New York, New York 10167, USA 2 Universidade National Timor-Lorosa’e, Faculdade de Ciencias da Educaçao, Departamentu da Biologia, Avenida Cidade de Lisboa, Liceu Dr. Francisco Machado, Dili, Timor-Leste 3 14149 S. Butte Creek Road, Scotts Mills, Oregon 97375, USA 4 Conservation International, PO Box 1024, Atherton, Queensland 4883, Australia; and Herpetology Department, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia 5 School of Environmental and Life Sciences, Charles Darwin University, Darwin, Northern Territory 0909, Australia 6 West Midland Safari Park, Bewdley, Worcestershire DY12 1LF, United Kingdom; and Australian Venom Research Unit, Department of Pharmacology, University of Melbourne, Vic- toria 3010, Australia Corresponding author: Hinrich Kaiser ([email protected]) Academic editor: Franco Andreone | Received 4 November 2010 | Accepted 8 April 2011 | Published 20 June 2011 Citation: Kaiser H, Carvalho VL, Ceballos J, Freed P, Heacox S, Lester B, Richards SJ, Trainor CR, Sanchez C, O’Shea M (2011) The herpetofauna of Timor-Leste: a first report. ZooKeys 109: 19–86.
    [Show full text]
  • Draft Animal Keepers Species List
    Revised NSW Native Animal Keepers’ Species List Draft © 2017 State of NSW and Office of Environment and Heritage With the exception of photographs, the State of NSW and Office of Environment and Heritage are pleased to allow this material to be reproduced in whole or in part for educational and non-commercial use, provided the meaning is unchanged and its source, publisher and authorship are acknowledged. Specific permission is required for the reproduction of photographs. The Office of Environment and Heritage (OEH) has compiled this report in good faith, exercising all due care and attention. No representation is made about the accuracy, completeness or suitability of the information in this publication for any particular purpose. OEH shall not be liable for any damage which may occur to any person or organisation taking action or not on the basis of this publication. Readers should seek appropriate advice when applying the information to their specific needs. All content in this publication is owned by OEH and is protected by Crown Copyright, unless credited otherwise. It is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0), subject to the exemptions contained in the licence. The legal code for the licence is available at Creative Commons. OEH asserts the right to be attributed as author of the original material in the following manner: © State of New South Wales and Office of Environment and Heritage 2017. Published by: Office of Environment and Heritage 59 Goulburn Street, Sydney NSW 2000 PO Box A290,
    [Show full text]
  • Husbandry Manual for the Shingleback Lizard Tiliqua Rugosa
    Husbandry Manual for The Shingleback Lizard Tiliqua rugosa GRAY, 1825 Reptilia:Scincidae Compiler: Andrew Titmuss Date of Preparation: 2007 University of Western Sydney, Hawkesbury © Andrew Titmuss 2007 1 A Husbandry Manual template has been developed to standardise information on captive management needs in a concise, accessible and usable form. Currently there is no Husbandry Manual for the Shingleback Lizard. As these lizards are commonly kept in zoological and private collections in Australia and internationally, a Husbandry Manual could be widely used. This Husbandry Manual is set out as per the husbandry manual template designed by Stephen Jackson and Graeme Phipps. The template is a document that was created to maintain husbandry manual uniformity and thus its effectiveness and ease of use. It is intended as a working document. It is designed to be used by any institution, as well as private collections, holding this species. Although these lizards are easy to keep in captivity they do have some special requirements. The aim of the Husbandry Manual is to summarise and consolidate information regarding OHS, natural history, captive management and ethical husbandry techniques and conservation from a variety of sources. It should provide information on appropriate husbandry with scope for improved health and welfare and captive breeding if required. The University of Western Sydney, Hawkesbury Campus, is planning on keeping Shingleback Lizards amongst other species in their reptile unit. This manual can be used by the University of
    [Show full text]
  • The Herpetofauna of the Bai Tu Long National Park, Northeastern Vietnam
    SALAMANDRA 52(1) 23–41 30 AprilHerpetofauna 2016 ISSN of Bai 0036–3375 Tu Long National Park The herpetofauna of the Bai Tu Long National Park, northeastern Vietnam Anna Gawor1, Cuong The Pham2, Truong Quang Nguyen2,3, Tao Thien Nguyen4, Andreas Schmitz5 & Thomas Ziegler1,3 1) Cologne Zoo, Riehler Str. 173, 50735 Köln, Germany 2) Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam 3) Zoological Institute, Department of Terrestrial Ecology, University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany 4) Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam 5) Natural History Museum of Geneva, Department of Herpetology and Ichthyology, C.P. 6434, 1211 Geneva 6, Switzerland Corresponding author: Thomas Ziegler, e-mail: [email protected] Manuscript received: 4 January 2014 Accepted: 31 August 2014 by Edgar Lehr Abstract. We present a comprehensive inventory checklist of the herpetofauna of the Bai Tu Long National Park, Quang Ninh Province, northeastern Vietnam. As a result of our herpetological surveys in 2008, 2009, and 2011, a total of 29 spe- cies were recorded from the national park, comprising eight species of frogs, eleven species of lizards, and ten species of snakes. Thirteen species (or 44.8% of the total number of recorded species) were recorded for the first time from Bai Tu Long National Park, including six frog, four lizard, and three snake species. We provide first information on species rich- ness and frequency of occurrence. The taxonomic status of three species Hylarana( sp., Limnonectes cf.
    [Show full text]
  • Print This Article
    VOLUME 3 ISSUE 1 DECEMBER 2008 MADAGASCAR CONSERVATION & DEVELOPMENT INVESTING FOR A SUSTAINABLE NATURAL ENVIRONMENT FOR FUTURE GENERATIONS OF HUMANS, ANIMALS AND PLANTS OF MADAGASCAR IN THIS ISSUE Taboos & Social Contracts Bats & Bushmeat in Madagascar Endemic Plants in the Mandena Mining Area Radio for Sustain- able Development MADAGASCAR CONSERVATION & DEVELOPMENT VOLUME 3 | ISSUE 1 — DECEMBER 2008 PAGE 2 TABLE OF CONTENTS EDITORIAL 2 Editorial by Wilmé, L. and Waeber, P. O. 5 Foreword by Camara, C. Image in Action 85 Impressum The attachment that we feel to Madagascar compels us to talk ARTICLES about it – its richness, its values, its people and about life lessons 7 Taboos and social contracts: Tools for ecosystem learned and taught. As these experiences may differ in many management – lessons from the Manambolomaty aspects, a journal is the ideal place for sharing our common Lakes RAMSAR site, western Madagascar. Rabearivony J., ideas, as well as expressing our divergent thoughts and theories. Fanameha, E, Mampiandra, J. and Thorstom R. It is also a conduit for the exchange and transmission of our 17 Three flying fox (Pteropodidae: Pteropus rufus) ideas and perspectives to the world. Thus, it is the ambition roosts, three conservation challenges in southeastern of this journal to talk about Madagascar – it’s natural richness Madagascar. Rahaingodrahety, V. N., Andriafidison, D., and its conservation, about development and challenges in the Ratsimbazafy, J., Racey, P. A. and Jenkins, R. K. B. country, and more generally about components and facets of 22 Bats as bushmeat in Madagascar. Jenkins, R. K. B and conservation and development. Racey, P.
    [Show full text]
  • Species Boundaries, Biogeography, and Intra-Archipelago Genetic Variation Within the Emoia Samoensis Species Group in the Vanuatu Archipelago and Oceania" (2008)
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2008 Species boundaries, biogeography, and intra- archipelago genetic variation within the Emoia samoensis species group in the Vanuatu Archipelago and Oceania Alison Madeline Hamilton Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Hamilton, Alison Madeline, "Species boundaries, biogeography, and intra-archipelago genetic variation within the Emoia samoensis species group in the Vanuatu Archipelago and Oceania" (2008). LSU Doctoral Dissertations. 3940. https://digitalcommons.lsu.edu/gradschool_dissertations/3940 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. SPECIES BOUNDARIES, BIOGEOGRAPHY, AND INTRA-ARCHIPELAGO GENETIC VARIATION WITHIN THE EMOIA SAMOENSIS SPECIES GROUP IN THE VANUATU ARCHIPELAGO AND OCEANIA A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Alison M. Hamilton B.A., Simon’s Rock College of Bard, 1993 M.S., University of Florida, 2000 December 2008 ACKNOWLEDGMENTS I thank my graduate advisor, Dr. Christopher C. Austin, for sharing his enthusiasm for reptile diversity in Oceania with me, and for encouraging me to pursue research in Vanuatu. His knowledge of the logistics of conducting research in the Pacific has been invaluable to me during this process.
    [Show full text]
  • Index to Scientific Names of Amphibians and Reptiles for Volume 43 (2008)
    Bull. Chicago Herp. Soc. 43(12):204-206, 2008 Index to Scientific Names of Amphibians and Reptiles for Volume 43 (2008) January 1-16 April 57-72 July 109-124 October 157-172 February 17-32 May 73-92 August 125-140 November 173-188 March 33-56 June 93-108 September 141-156 December 189-208 Acanthophis 24 constrictor 65, 66, 120 Cordylus cataphractus 88 Diplodactylus antarcticus 1, 142 constrictor 96 Craugastor 104 steindachneri 24 hawkei 24 imperator 96 fitzingeri 169 taenicauda 24 praelongus 169 occidentalis 96 mimus 169 Draco 49, 50 rugosus 24 Bogertophis 43 noblei 169 Egernia woolfi 24 Boiga irregularis 23, 63, 107 Crocodylus cunninghami 4, 142 Acanthosaura crucigera 50 Bothrops 157, 158 rhombifer 50 frerei 23 Acris 73 jararacussu 157 siamensis 48 hosmeri 24 crepitans 19, 20, 43, 73 Bradypodion melanocephalum 139 Crotalinus kingii 24 blanchardi 73 Buergeria japonica 105 catenatus 106 stokesii 24 crepitans 73, 78 Bufo 42, 73 viridis 106 Elaphe 42, 43, 75 Acrochordus javanicus 50 americanus 17 Crotalus 74 carinata 100, 101 Adelphobates captivus 89 boreas boreas 90 atrox 88, 200 mandarina 100, 101 Afroedura 52 celebensis 134 ericsmithi 123 obsoleta 20, 137 Agkistrodon marinus 23, 50, 66 horridus 74, 79 porphyracea 100 contortrix 76 terrestris 62 lannomi 123 spiloides 75 piscivorus 76, 106 Bungarus 27 massasaugus 106 taeniura 100 leucostoma 90 Caiman crocodilus 76 messasaugus 106 vulpina 75 Ahaetulla prasina 50 Calloselasma rhodostoma 49, 50 mitchellii 29, 202 Eleutherodactylus 69, 104 Alligator mississippiensis 76, 120 Cantoria violacea
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • History and Function of Scale Microornamentation in Lacertid Lizards
    JOURNALOFMORPHOLOGY252:145–169(2002) HistoryandFunctionofScaleMicroornamentation inLacertidLizards E.N.Arnold* NaturalHistoryMuseum,CromwellRoad,LondonSW75BD,UK ABSTRACTDifferencesinsurfacestructure(ober- mostfrequentlyinformsfromdryhabitatsorformsthat hautchen)ofbodyscalesoflacertidlizardsinvolvecell climbinvegetationawayfromtheground,situations size,shapeandsurfaceprofile,presenceorabsenceoffine wheredirtadhesionislessofaproblem.Microornamen- pitting,formofcellmargins,andtheoccurrenceoflongi- tationdifferencesinvolvingotherpartsofthebodyand tudinalridgesandpustularprojections.Phylogeneticin- othersquamategroupstendtocorroboratethisfunctional formationindicatesthattheprimitivepatterninvolved interpretation.Microornamentationfeaturescandevelop narrowstrap-shapedcells,withlowposteriorlyoverlap- onlineagesindifferentordersandappeartoactadditively pingedgesandrelativelysmoothsurfaces.Deviations inreducingshine.Insomecasesdifferentcombinations fromthisconditionproduceamoresculpturedsurfaceand maybeoptimalsolutionsinparticularenvironments,but havedevelopedmanytimes,althoughsubsequentovert lineageeffects,suchaslimitedreversibilityanddifferent reversalsareuncommon.Likevariationsinscaleshape, developmentalproclivities,mayalsobeimportantintheir differentpatternsofdorsalbodymicroornamentationap- peartoconferdifferentandconflictingperformancead- genesis.Thefinepitsoftenfoundoncellsurfacesare vantages.Theprimitivepatternmayreducefrictiondur- unconnectedwithshinereduction,astheyaresmaller inglocomotionandalsoenhancesdirtshedding,especially thanthewavelengthsofmostvisiblelight.J.Morphol.
    [Show full text]