Bottom Blowouts Utilizing the Concept Of
Total Page:16
File Type:pdf, Size:1020Kb
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2002 Analytical model to control off - bottom blowouts utilizing the concept of simultaneous dynamic seal and bullheading Victor Gerardo Vallejo-Arrieta Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Petroleum Engineering Commons Recommended Citation Vallejo-Arrieta, Victor Gerardo, "Analytical model to control off - bottom blowouts utilizing the concept of simultaneous dynamic seal and bullheading" (2002). LSU Doctoral Dissertations. 3078. https://digitalcommons.lsu.edu/gradschool_dissertations/3078 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. ANALYTICAL MODEL TO CONTROL OFF - BOTTOM BLOWOUTS UTILIZING THE CONCEPT OF SIMULTANEOUS DYNAMIC SEAL AND BULLHEADING A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in Partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Petroleum Engineering by Victor Gerardo Vallejo-Arrieta B.S., Universidad Nacional Autonoma de Mexico, 1988 M.S., Universidad Nacional Autonoma de Mexico, 1996 August 2002 © Copyright 2002 Victor Gerardo Vallejo-Arrieta All rights reserved ii DEDICATION I wish to dedicate this work to my mother for her love and prayer, to my wife for her understanding and support during all the time that this research was being developed, and especially to my daughter, Valeria for her inspiration and encouragement. iii ACKNOWLEDGMENTS The author manifests his deepest gratitude to Prof. John Rogers Smith for the time, patience and substantial support he provided to complete this study. Sincere appreciation is extended to Dr. Adam Ted Bourgoyne, Jr. and Dr. Julius P. Langlinais for appropriate and valuable suggestions. Thanks are also due to Dr. Tryfon Charalampopoulos. The author is gratefully indebted to Dr. Andrew K. Wojtanowicz, due to his assistance, this Ph.D. project was possible. Acknowledgements are extended to the entire Craft and Hawkins Department of Petroleum Engineering, especially to the professors for their excellent academic teaching. The author wishes to express special gratitude to Petroleos Mexicanos (Pemex) for supporting him during the doctoral program. Special thanks to M. en I. Carlos Rasso Zamora, M. en I. Carlos Osornio Vázquez, M. en I. Alfredo Rios Jimenez, and M. en I. Humberto Castro Martínez for their support and trust in him. iv TABLE OF CONTENTS DEDICATION……………………………………………………………… iii ACKNOWLEDGMENTS…………………………………………………. iv LIST OF TABLES………………………………………………………… viii LIST OF FIGURES………………………………………………………. ix NOMENCLATURE……………………………………………………….. xiii ABSTRACT……………………………………………………………….. xx CHAPTER 1 – INTRODUCTION……………………………………….. 1 1.1 Blowout Definition……………………………………………. 1 1.2 Blowout Consequences……………………………………... 2 1.3 Blowout Control Intervention Techniques…………………. 3 1.4 Conventional Well Control Procedures……………………. 7 1.5 Off - Bottom Well Control Complications………………….. 8 1.6 Non - Conventional Well Control Procedures…………….. 10 1.7 Objectives of Research……………………………………… 12 1.8 Scope of Research…………………………………………… 13 CHAPTER 2 - LITERATURE REVIEW…………………………………. 15 2.1 Blowout Statistics and Trends ………………………………. 15 2.2 Steady State Flow Models…………………………………… 21 2.3 Unsteady State Flow Models………………………………... 35 CHAPTER 3 - CURRENT ENGINEERING PROCEDURES FOR OFF - BOTTOM BLOWOUT CONTROL………………. 42 3.1 Dynamic Kill…………………………………………………… 42 3.1.1 Concept……………………………………………… 42 3.1.2 Mathematical Model and Methodology…………... 46 3.1.3 Computer Program…………………………………. 50 3.1.4 Applications to and Limitations for Off – Bottom Conditions…………………………………………… 55 3.2 Momentum Kill………………………………………………... 59 3.2.1 Concept……………………………………………… 59 3.2.2 Mathematical Model and Methodology…………... 60 3.2.3 Computer Program…………………………………. 62 3.2.4 Momentum Kill Analysis……………………………. 64 3.2.4.1 Analytical Study…………………………… 64 3.2.4.2 Analysis of Actual Blowouts Controlled by Applying the Momentum Method……. 74 3.2.5 Conclusions Regarding the Momentum Method… 87 v CHAPTER 4 - DYNAMIC SEAL - BULLHEADING METHOD……….. 89 4.1 Principle……………………………………………………….. 89 4.1.1 Dynamic Seal Mathematical Model ……………… 94 4.1.1.1 Model Assumptions……………………... 95 4.1.1.2 Wellbore Model………………………….. 96 4.1.1.2.1 Newtonian Kill Fluids…………. 97 4.1.1.2.2 Non - Newtonian Kill Fluids….. 100 4.1.1.3 Reservoir Model………………………… 108 4.1.1.4 Formation Fluid Rate Determination…. 110 4.1.1.5 Global Solution Scheme……………….. 113 4.1.1.5.1 Initial Conditions……………… 114 4.1.1.5.2 Boundary Conditions………… 115 4.1.1.5.3 Pressure Traverse Calculation 118 4.1.2 Bullheading Mathematical Model……………….. 121 4.1.2.1 Model Assumptions…………………….. 122 4.1.2.2 Formation Fluid Removal Efficiency….. 122 4.1.2.3 Mathematical Derivation……………….. 127 4.1.2.4 Global Solution Procedure…………….. 131 4.1.2.5 Field Case Application…………………. 134 CHAPTER 5 - DYNAMIC SEAL - BULLHEADING PROGRAM AND APLICATIONS………………………………………….. 136 5.1 Computer Program for the Proposed Method…………… 136 5.1.1 Input Data…………………………………………. 140 5.1.2 Potential Applications of the Program…………. 142 5.1.2.1 Specific Applications of the Method…. 143 5.2 Results of the Applications………………………………... 145 5.2.1 Post - analysis of an Actual Field Case………... 145 5.2.1.1 Actual Kill Operations………………….. 146 5.2.1.2 Simulation of Actual Case…………….. 147 5.2.1.3 Dynamic Seal - Bullheading Kill……… 148 5.2.1.4 Conventional Off - Bottom Dynamic Kill 153 5.2.1.5 Comparison of the Methods…………… 154 5.2.2 Hypothetical Case………………………………… 155 5.2.2.1 Dynamic Seal - Bullheading Kill………. 156 5.2.2.2 Conventional Off - Bottom Dynamic Kill 162 5.2.2.3 Comparison of the Predicted Results… 163 5.3 Advantages and Disadvantages of the Proposed Method 164 CHAPTER 6 - SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 167 6.1 Summary……………………………………………………… 167 6.2 Conclusions…………………………………………………... 169 6.2.1 Conventional Dynamic Kill Method………………. 169 6.2.2 Momentum Kill Method……………………………. 170 6.2.3 Dynamic Seal - Bullheading Method…………….. 170 vi 6.3 Recommendations…………………………………………… 172 REFERENCES…………………………………………………………… 174 APPENDIX A - DERIVATION OF THE MOMENTUM KILL EQUATIONS 180 APPENDIX B - DERIVATION OF THE PRESSURE GRADIENT EQUATION……………………………………………. 185 APPENDIX C – EXAMPLES OF THE OUTPUTS OF THE PROGRAM 195 VITA……………………………………………………………………… 202 vii LIST OF TABLES Table 2.1 Number of blowouts during operational phase (Holan5)……… 16 Table2.2 Duration of various blowouts (Holan5)………………………….. 20 Table 3.1 Blowout data from Mobil Oil Indonesia's Arun field well C-II-232 52 Table 3.2 Results from different dynamic models for Arun gas blowout 55 Table 3.3 Comparison of the momentum kill results…………………….. 64 Table 3.4 Magnitudes of steady state pressures for the control given by reference 8…………………………………………….. 77 Table 5.1 Input date required by the computer program……...………… 141 Table 5.2 Actual kill parameters for the field case……………………….. 147 Table 5.3 Actual and calculated surface pressures for the field case70… 148 Table 5.4 Suggested kill parameters for the dynamic seal – bullheading method……………………………………………………..……… 149 Table 5.5 Dynamic kill parameters………………...……………………….. 154 Table 5.6 Suggested kill parameters by the proposed method………….. 157 Table 5.7 Suggested kill parameters by the dynamic method…………… 162 viii LIST OF FIGURES Figure 1.1 Typical capping operation………………………………………. 4 Figure 1.2 Relief well intervention technique……………………………… 5 Figure 1.3 Surface intervention through an injection string……………… 7 Figure 1.4 In off - bottom scenarios the mixture (formation and kill fluid) properties below of the injection point are unknown………… 8 Figure 2.1 Number of blowouts with different blowing fluids (Skalle et al4) 17 Figure 2.2 Number of blowouts with different blowing fluids (Holand5)… 18 Figure 2.3 Cumulative percentage of blowouts versus duration (Skalle et4)….………………..…………………..………..……... 19 Figure 3.1 Effect of frictional pressure losses on bottom hole pressure... 43 Figure 3.2 Reservoir and wellbore as a single hydraulic system………... 45 Figure 3.3 Reservoir inflow performance and wellbore hydraulic performance at blowout conditions…………………………….. 47 Figure 3.4 Wellbore hydraulic performance for various kill fluid injection rates…………………………………………………….. 49 Figure 3.5 Algorithm to estimate the dynamic kill parameters…………… 51 Figure 3.6 Predicted kill flow rate for Arun blowout………………………. 53 Figure 3.7 Effect of short injection string on dynamic kill………………… 56 Figure 3.8 The well may unload if a considerable amount of gas remains in the wellbore…………………….……………………………… 57 Figure 3.9 Effect of utilizing system analysis approach in off - bottom scenarios ………………………………………………………… 58 Figure 3.10 Kill and formation fluid collision at injection string depth…... 60 Figure 3.11 Algorithm to estimate the momentum kill parameters……… 63 ix Figure 3.12 Critical gas velocity versus in-situ gas velocity for an actual Blowout8……………..……………………..…………………… 73 Figure 3.13 Blowout conditions given by Grace8………………………….. 74 Figure 3.14 Dynamic kill analysis for the blowout give by Grace8………. 76 Figure 3.15 Pressure profile through string for the blowout given by Grace8……………………….………………………... 78 Figure 3.16