Oil and Gas Operator Representative Workover and Intervention Well Control
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wellcap® IADC WELL CONTROL ACCREDITATION PROGRAM WELL SERVICING OPERATIONS – SNUBBING CORE CURRICULUM and RELATED JOB SKILLS
WellCAP® IADC WELL CONTROL ACCREDITATION PROGRAM WELL SERVICING OPERATIONS – SNUBBING CORE CURRICULUM AND RELATED JOB SKILLS FORM WCT-2SS SUPERVISORY LEVEL The purpose of the core curriculum is to identify a body of knowledge and a set of job skills that can be used to provide well control skills for well servicing operations. The curriculum is divided into three certification types: Coiled Tubing, Snubbing, and Wireline (Wireline is presented in document WCT – 2WSW) and within each certification, three levels: Introductory, Fundamental, and Supervisory. Students may complete an individual certification (e.g., Coiled Tubing) or combination certifications (e.g., Coiled Tubing and Snubbing). All knowledge and skills for each individual certification must be addressed when combining certifications. The suggested target students for each core curriculum level are as follows: INTRODUCTORY: New Hires (May also be appropriate for non-technical personnel) FUNDAMENTAL: Helpers, Assistants, “Hands” involved with the operational aspects of the unit and who may act/operate the unit under direct supervision of a certified Unit Operator or Supervisor. SUPERVISORY: Unit Operators, Supervisors, Superintendents, and Project Foreman Upon completion of a well control training course based on curriculum guidelines, the student should be able to perform the job skills in italics identified by a "!" mark (e.g., ! Identify causes of kicks). Form WCT-2SS WellCAP Curriculum Guidelines – Well Servicing - Snubbing Revision 040416 Supervisory Page 1 CORE CURRICULUM -
Ultra-Deepwater Advisory Committee (UDAC) Risk Assessment Technical Support
(U N C L A S S I F I E D ROUGH DRAFT FOR DISCUSSION PURPOSE ONLY) Risk Informed Decision Support for UDW Drilling Ultra-Deepwater Advisory Committee (UDAC) Risk Assessment Technical Support Dasari V. Rao, Division Leader, Decision Applications Division Chris Smith and Elena Melchert, DOE Program Oversight (U N C L A S S I F I E D) Operated by the Los Alamos National Security, LLC for the DOE/NNSA Summary of LANL AnalysesU N C L A S S I F I E D Status update and a review of preliminary findings • Over the past three decades there has been a steady decrease in ‘major’ kick frequency; more recently, frequency is about 1 in 10 wells. A majority of the kicks occur in the shallower regions where the primary hazard is the release of natural gas, some condensates and synthetic mud to the environs. A small fraction (1 in 100 wells) kick while drilling and cementing in the target region where oil and other condensates present blowout hazard. • Ultra-deep water formations stratigraphy and reservoir properties are significantly different compared to previous operational experience. • Our modeling efforts included development of accident progression event trees that enumerated an exhaustive list of possible accident sequences; barrier analyses that quantified reliability of each barrier; and physics-based well dynamics models that explicitly captured timing of events. We have used a generic well design and well operations that are consistent with IADC and API guidance. • Important barriers in place to mitigate a kick (e.g., Lower Marine Riser connection (LMRP), Blowout Preventer (BOP) and Drill Pipe Safety Valves) are vulnerable to control system and design deficiencies. -
Manufacturer Annular BOP: Choke and Kill Valves: Wellhead Connector
Rig Name: Equipment Owner: The purchaser or renter of the equipment to be installed onto the Equipment User: The company that owns the well, wellhead or wellhead assembli Name: Person(s) Completing Name: Document: Name: Name: Time to Complete Document (hours): Number of Shear Rams: Number of Sealing Shear Rams: Test Ram Installed: BOP Classification Size Manufacturer Ram Type BOP: Annular BOP: Choke and Kill Valves: Wellhead Connector: LMRP Connector: Choke Manifold: e wellhead or wellhead assemblies. ies on which the equipment is to be installed. Title: Title: Title: Title: Press. Rating Model 1 Scope 1.1 Purpose 1.1.1 The purpose of this standard is to provide requirements on the installation and testing of blowout prevention equipment systems on land and marine drilling rigs (barge, platform, bottom-supported, and floating). Blowout preventer equipment systems are comprised of a combination of various components. The following components are required for operation under varying rig and well conditions: a) blowout preventers (BOPs); b) choke and kill lines; 1.1.2 c) choke manifolds; d) control systems; e) auxiliary equipment. 1.1.3 The primary functions of these systems are to confine well fluids to the wellbore, provide means to add fluid to the wellbore, and allow controlled volumes to be removed from the wellbore. Diverters, shut-in devices, and rotating head systems (rotating control devices) are not addressed in this standard (see API 64 and API 16RCD, respectively); their primary purpose is to safely divert or direct flow rather than to confine fluids to the 1.1.4 wellbore. 1.2 Well Control 1.2 Procedures and techniques for well control are not included in this standard since they are beyond the scope of equipment systems contained herein. -
Wild Well Global Services Brief
GLOBAL SERVICES BRIEF 2021 wildwell.com V. 04 LOCATIONS Corporate Office Drilling Technology Center 2202 Oil Center Court Houston, Texas 77073 USA Regional Response Locations UNITED STATES Houston, Texas Odessa, Texas Greeley, Colorado Roaring Branch, Pennsylvania INTERNATIONAL Aberdeen, Scotland Dammam, Kingdom of Saudi Arabia Dubai, UAE Kuala Lumpur, Malaysia Port Harcourt, Nigeria Stavanger, Norway Singapore Well Control Training Centers UNITED STATES Houston, Texas Corpus Christi, Texas Odessa, Texas Tyler, Texas Lafayette, Louisiana Oklahoma City, Oklahoma Casper, Wyoming Williston, North Dakota Canonsburg, Pennsylvania Global Services Brief +1.281.784.4700 // wildwell.com TABLE OF CONTENTS Corporate Overview ..................................................................1 Forensic Studies .....................................................................12 Emergency Response Services ............................................5 Design to Industry Standards ..................................................12 Blowout & Well Control Response ............................................5 Fitness for Purpose Assessment .............................................12 Pressure Control ......................................................................5 Risk Management Services ................................................13 Well Control Engineering Services .......................................6 Well Control Emergency Response Plans ................................13 Blowout Rate Modeling (Worst Case Discharge Analysis) -
How to Solve Your Long Lateral Problems
A Deep Well Services White Paper in Conjunction with SPE Penn State How to Solve Your Long Lateral Problems Trevor Heyl, Senior Petroleum and Natural Gas Engineering Student at The Pennsylvania State University & Matt Tourigny, VP of Marketing at Deep Well Services www.deepwellservices.com Table of Contents Executive Summary..……………...……………………………………….……….…..….. 2 Challenges with Longer Laterals ……………………………………….…………..……. 2 Existing Solutions ……………………………..…………………………………….….….. 3 Coiled Tubing …….………….….……….…….……………………………………..… 3 Rig-Assist Snubbing Units.……………..………..................................................… 4 Hydraulic Completion Units..….………………………………………………….……..… 5 Cost Comparison ……………………………………………………………………..... 7 HCU Technologies …………………………………………………………………....... 8 Case Studies ……………………………..……..……..………………………….……….. 11 What to Look for in a Solution …….………………………………...…………….…….. 17 Conclusion …………..……………..…..…..….……….……………………………..….... 17 Deep Well Services ………….……..…...……..………………………………………….. 18 Page | 1 Executive Summary Longer laterals impose challenges with current completion methods. The low-price environment in the oil and gas field forces operators to focus on cost-saving methods anywhere practical. Wells with longer laterals have become more prominent in the industry due to their additional contact with the formation, increased productivity and the ability to save money. However, conventional completion methods are a limiting factor due to their decreasing efficiencies with respect to lateral length and problems that thereby -
Dynamic Kill of Underground Blowouts
DYNAMIC KILL OF UNDERGROUND BLOWOUTS ALVARO F. NEGRÃO, PETROBRAS VICTOR GERARDO VALLEJO-ARRIETA, PEMEX ADAM T. BOURGOYNE, JR. LSU JOHN ROGERS SMITH, LSU Table of Contents Non - Newtonian Kill Fluids ................................................. 47 EXECUTIVE SUMMARY ............................... 3 Reservoir Model..................................................................... 53 Formation Fluid Rate Determination.................................... 54 Global Solution Scheme......................................................... 56 INTRODUCTION ............................................ 4 CONCLUSIONS......................................................................... 67 NOMENCLATURE ................................................................... 67 CONCEPT................................................................................... 4 SUMMARY ................................................................................. 8 STEADY-STATE DYNAMIC KILL COMPUTER MODEL FOR DYNAMIC KILL COMPUTER PROGRAM ............................. 71 OF AN UNDERGROUND BLOWOUT COMPUTER PROGRAM IMPLEMENTING THE CONSIDERING FRACTURE PROCEDURE............................................................................. 71 PROPAGATION ............................................. 9 Work Sheet Descriptions...................................................... 71 Input Data................................................................................ 73 INTRODUCTION....................................................................... -
An Introduction to Well Integrity Rev 0, 04 December 2012
An Introduction to Well Integrity Rev 0, 04 December 2012 0 Preface This document has been prepared as a joint project between members of the Norwegian Oil and Gas Association's Well Integrity Forum (WIF) and professors at NTNU and UiS. The intention with the document is to provide a document that can be used in educating personnel in well integrity and especially students at the universities. Authors of this document have been: Hans-Emil Bensnes Torbergsen, Eni Norge Hilde Brandanger Haga, Statoil Sigbjørn Sangesland, NTNU Bernt Sigve Aadnøy, UiS Jan Sæby, Shell Ståle Johnsen, Total Marvin Rausand, NTNU Mary Ann Lundeteigen NTNU 0 04.12.12 Original document Revision Date of issue Reason for Issue 1 Index Preface ................................................................................................................................................ 1 List of Abbreviations ................................................................................................................................ 6 List of figures ............................................................................................................................................ 1 List of Tables ............................................................................................................................................ 4 1. What is well integrity? (Well integrity – concepts and terminology) ........................................... 5 2. Background and History .................................................................................................................. -
30 CFR Ch. II (7–1–12 Edition) § 250.616
§ 250.616 30 CFR Ch. II (7–1–12 Edition) (2) You may use a set of hydrau- a well under pressure utilizing equip- lically-operated combination rams for ment specifically designed for that pur- the blind rams and shear rams. pose, i.e., snubbing operations, shall in- (3) You may use a set of hydrau- clude the following: lically-operated combination rams for (1) One set of pipe rams hydraulically the hydraulic two-way slip rams and operated, and the hydraulically-operated pipe rams. (2) Two sets of stripper-type pipe (4) You must attach a dual check rams hydraulically operated with spac- valve assembly to the coiled tubing er spool. connector at the downhole end of the (h) An inside BOP or a spring-loaded, coiled tubing string for all coiled tub- back-pressure safety valve and an es- ing well-workover operations. If you sentially full-opening, work-string plan to conduct operations without downhole check valves, you must de- safety valve in the open position shall scribe alternate procedures and equip- be maintained on the rig floor at all ment in Form BSEE–0124, Application times during well-workover operations for Permit to Modify and have it ap- when the tree is removed or during proved by the District Manager. well-workover operations with the tree (5) You must have a kill line and a installed and using small tubing as the separate choke line. You must equip work string. A wrench to fit the work- each line with two full-opening valves string safety valve shall be readily and at least one of the valves must be available. -
Surface Well Test Equipment
Surface well test equipment A unique combination of well testing solutions and aftermarket support About NOV National Oilwell Varco (NOV) is a worldwide leader in the design, manufacture and sale of equipment and components used in oil and gas drilling and production operations and the provision of oilfield services to the upstream oil and gas industry. Through our broad capabilities and vision, our family of companies is positioned and ready to serve the needs of this challenging, evolving industry. We have the technical expertise, advanced equipment and readily available support necessary for our customers’ success. NOV Completion & Production Solutions NOV Completion & Production Solutions integrates technologies for well completions and oil and gas production. We design, manufacture and sell equipment and technologies needed for well stimulation, well intervention and artificial lift systems. In addition, we focus on offshore production with floating production systems and subsea production technologies. In every type of environment, we bring together engineering operational expertise and field-proven solutions with a foundation of safety and risk management that helps you control costs and achieve lasting success. Intervention and Stimulation Equipment (ISE) Our engineering, manufacturing and service expertise delivers field-proven solutions that help you control costs, increase service value and achieve success. We partner with you to address your operational challenges and apply extensive research, testing, state-of-the-art engineering and manufacturing to deliver the field-proven equipment and performance you demand. It isn’t often that you find everything you are looking for in one place. At the Intervention and Stimulation Equipment (ISE) business unit of NOV, we combine years of experience with trusted brand names to deliver complete solutions that maximize efficiency, improve your service value and increase your bottom line. -
IRP 13: Wireline Operations an Industry Recommended Practice (IRP) for the Canadian Oil and Gas Industry Volume 13 – 2020
IRP 13: Wireline Operations An Industry Recommended Practice (IRP) for the Canadian Oil and Gas Industry Volume 13 – 2020 EDITION: 2 SANCTION DATE: February 19, 2020 Copyright/Right to Reproduce Copyright for this Industry Recommended Practice is held by Energy Safety Canada, 2020. All rights reserved. No part of this IRP may be reproduced, republished, redistributed, stored in a retrieval system, or transmitted unless the user references the copyright ownership of Energy Safety Canada. Disclaimer This IRP is a set of best practices and guidelines compiled by knowledgeable and experienced industry and government personnel. It is intended to provide the operator with general advice regarding the specific topic. It was developed under the auspices of the Drilling and Completions Committee (DACC). IRPs are provided for informational purposes. Users shall be fully responsible for consequences arising from their use of any IRP. The recommendations set out in this IRP are meant to allow flexibility and must be used in conjunction with competent technical judgment. It is recognized that any one practice or procedure may not be appropriate for all users and situations. It remains the responsibility of the user of this IRP to judge its suitability for a particular application and to employ sound business, scientific, engineering and safety judgment in using the information contained in this IRP. If there is any inconsistency or conflict between any of the recommended practices contained in this IRP and an applicable legislative or regulatory requirement, the legislative or regulatory requirement shall prevail. IRPs are by their nature intended to be applicable across industry, but each jurisdiction may have different or unique legal requirements. -
Snubbing Operations
IRP 15: Snubbing Operations An Industry Recommended Practice (IRP) for the Canadian Oil and Gas Industry Volume 15 - 2020 EDITION: 4 SANCTION DATE: February 2020 Operational Practices and Procedures IRP 15 Snubbing Operations Copyright/Right to Reproduce Copyright for this Industry Recommended Practice is held by Energy Safety Canada, 2020. All rights reserved. No part of this IRP may be reproduced, republished, redistributed, stored in a retrieval system, or transmitted unless the user references the copyright ownership of Energy Safety Canada. Disclaimer This IRP is a set of best practices and guidelines compiled by knowledgeable and experienced industry and government personnel. It is intended to provide the operator with general advice regarding the specific topic. It was developed under the auspices of the Drilling and Completions Committee (DACC). IRPs are provided for informational purposes. Users shall be fully responsible for consequences arising from their use of any IRP. The recommendations set out in this IRP are meant to allow flexibility and must be used in conjunction with competent technical judgment. It is recognized that any one practice or procedure may not be appropriate for all users and situations. It remains the responsibility of the user of this IRP to judge its suitability for a particular application and to employ sound business, scientific, engineering and safety judgment in using the information contained in this IRP. If there is any inconsistency or conflict between any of the recommended practices contained in this IRP and an applicable legislative or regulatory requirement, the legislative or regulatory requirement shall prevail. IRPs are by their nature intended to be applicable across industry, but each jurisdiction may have different or unique legal requirements. -
Development and Assessment of Well Control Procedures for Extended Reach and Multilateral Wells Utilizing Computer Simulation
Devel opment and Assessment of Well Control Procedures for Extended Reach and Multilateral Wells Utilizing Computer Simulation by Dr. Jerome J. Schubert, Texas A&M University Dr. Jonggeun Choe, Seoul National University, Korea Mr. Bjorn Gjorv, Texas A&M University Mr. Max Long, Texas A&M University Final Project Report Prepared for the Minerals Management Service Under the MMS/OTRC Cooperative Research Agreement 1435-01-99-CA-31003 Task Order 85222 Project Number 440 December 2004 OTRC Library Number: 12/04-A146 “The views and conclusions contained in this document are those of the authors and should not be interpreted as represent ing the opinions or policies of the U.S. Government. Mention of trade names or commercial products does not constitute their endorsement by the U. S. Government”. For more information contact: Offshore Technology Research Center Texas A&M University 1200 Mariner Drive College Station, Texas 77845-3400 (979) 845-6000 or Offshore Technology Research Center The University of Texas at Austin 1 University Station C3700 Austin, Texas 78712-0318 (512) 471-6989 A National Science Foundation Graduated Engineering Research Center DEVELOPMENT AND ASSESSMENT OF WELL CONTROL PROCEDURES FOR EXTENDED REACH AND MULTILATERAL WELLS UTILIZING COMPUTER SIMULATION EXECUTIVE SUMMARY Project Description This project included four tasks. Task 1 - Perform a literature search of the state of the art in well control for vertical, directional, horizontal, extended reach, and multi-lateral wells. Task 2 - Modify an existing Windows-based well control simulator that has been developed by Dr. Jonggeun Choe for use in more conventional wellbores to model extended reach and multilateral wells.