Genetic Insights on Sleep Schedules
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genetic Variants in WNT2B and BTRC Predict Melanoma Survival
ACCEPTED MANUSCRIPT Genetic Variants in WNT2B and BTRC Predict Melanoma Survival Qiong Shi1, 2, 3, 9, Hongliang Liu2, 3, 9, Peng Han2, 3, 4, 9, Chunying Li1, Yanru Wang2, 3, Wenting Wu5, Dakai Zhu6, Christopher I. Amos6, Shenying Fang7, Jeffrey E. Lee7, Jiali Han5, 8* and Qingyi Wei2, 3* 1Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China; 2Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA, 3Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA, 4Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, China; 5Department of Epidemiology, Fairbanks School of Public Health, Indiana University Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis,MANUSCRIPT IN 46202, USA 6Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA; 7Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA. 8Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA 9These authors contributed equally to this work. ACCEPTED *Correspondence: Qingyi Wei, M.D., Ph.D., Duke Cancer Institute, Duke University Medical Center and Department of Medicine, Duke School of Medicine, 905 S LaSalle Street, Durham, NC 27710, USA, Tel.: (919) 660-0562, E-mail: [email protected] and Jiali Han, M.D., Ph.D., 1 _________________________________________________________________________________ This is the author's manuscript of the article published in final edited form as: Shi, Q., Liu, H., Han, P., Li, C., Wang, Y., Wu, W., … Wei, Q. -
Casein Kinase 1 Isoforms in Degenerative Disorders
CASEIN KINASE 1 ISOFORMS IN DEGENERATIVE DISORDERS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Theresa Joseph Kannanayakal, M.Sc., M.S. * * * * * The Ohio State University 2004 Dissertation Committee: Approved by Professor Jeff A. Kuret, Adviser Professor John D. Oberdick Professor Dale D. Vandre Adviser Professor Mike X. Zhu Biophysics Graduate Program ABSTRACT Casein Kinase 1 (CK1) enzyme is one of the largest family of Serine/Threonine protein kinases. CK1 has a wide distribution spanning many eukaryotic families. In cells, its kinase activity has been found in various sub-cellular compartments enabling it to phosphorylate many proteins involved in cellular maintenance and disease pathogenesis. Tau is one such substrate whose hyperphosphorylation results in degeneration of neurons in Alzheimer’s disease (AD). AD is a slow neuroprogessive disorder histopathologically characterized by Granulovacuolar degeneration bodies (GVBs) and intraneuronal accumulation of tau in Neurofibrillary Tangles (NFTs). The level of CK1 isoforms, CK1α, CK1δ and CK1ε has been shown to be elevated in AD. Previous studies of the correlation of CK1δ with lesions had demonstrated its importance in tau hyperphosphorylation. Hence we investigated distribution of CK1α and CK1ε with the lesions to understand if they would play role in tau hyperphosphorylation similar to CK1δ. The kinase results were also compared with lesion correlation studies of peptidyl cis/trans prolyl isomerase (Pin1) and caspase-3. Our results showed that among the enzymes investigated, CK1 isoforms have the greatest extent of colocalization with the lesions. We have also investigated the distribution of CK1α with different stages of NFTs that follow AD progression. -
Substrate Trapping Proteomics Reveals Targets of the Trcp2
Substrate Trapping Proteomics Reveals Targets of the TrCP2/FBXW11 Ubiquitin Ligase Tai Young Kim,a,b* Priscila F. Siesser,a,b Kent L. Rossman,b,c Dennis Goldfarb,a,d Kathryn Mackinnon,a,b Feng Yan,a,b XianHua Yi,e Michael J. MacCoss,e Randall T. Moon,f Channing J. Der,b,c Michael B. Majora,b,d Department of Cell Biology and Physiology,a Lineberger Comprehensive Cancer Center,b Department of Pharmacology,c and Department of Computer Science,d University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Genome Sciencese and Department of Pharmacology and HHMI,f University of Washington, Seattle, Washington, USA Defining the full complement of substrates for each ubiquitin ligase remains an important challenge. Improvements in mass spectrometry instrumentation and computation and in protein biochemistry methods have resulted in several new methods for ubiquitin ligase substrate identification. Here we used the parallel adapter capture (PAC) proteomics approach to study TrCP2/FBXW11, a substrate adaptor for the SKP1–CUL1–F-box (SCF) E3 ubiquitin ligase complex. The processivity of the ubiquitylation reaction necessitates transient physical interactions between FBXW11 and its substrates, thus making biochemi- cal purification of FBXW11-bound substrates difficult. Using the PAC-based approach, we inhibited the proteasome to “trap” ubiquitylated substrates on the SCFFBXW11 E3 complex. Comparative mass spectrometry analysis of immunopurified FBXW11 protein complexes before and after proteasome inhibition revealed 21 known and 23 putatively novel substrates. In focused studies, we found that SCFFBXW11 bound, polyubiquitylated, and destabilized RAPGEF2, a guanine nucleotide exchange factor that activates the small GTPase RAP1. -
Supplementary Table 1. Genes Mapped in Core Cancer
Supplementary Table 1. Genes mapped in core cancer pathways annotated by KEGG (Kyoto Encyclopedia of Genes and Genomes), MIPS (The Munich Information Center for Protein Sequences), BIOCARTA, PID (Pathway Interaction Database), and REACTOME databases. EP300,MAP2K1,APC,MAP3K7,ZFYVE9,TGFB2,TGFB1,CREBBP,MAP BIOCARTA TGFB PATHWAY K3,TAB1,SMAD3,SMAD4,TGFBR2,SKIL,TGFBR1,SMAD7,TGFB3,CD H1,SMAD2 TFDP1,NOG,TNF,GDF7,INHBB,INHBC,COMP,INHBA,THBS4,RHOA,C REBBP,ROCK1,ID1,ID2,RPS6KB1,RPS6KB2,CUL1,LOC728622,ID4,SM AD3,MAPK3,RBL2,SMAD4,RBL1,NODAL,SMAD1,MYC,SMAD2,MAP K1,SMURF2,SMURF1,EP300,BMP8A,GDF5,SKP1,CHRD,TGFB2,TGFB 1,IFNG,CDKN2B,PPP2CB,PPP2CA,PPP2R1A,ID3,SMAD5,RBX1,FST,PI KEGG TGF BETA SIGNALING PATHWAY TX2,PPP2R1B,TGFBR2,AMHR2,LTBP1,LEFTY1,AMH,TGFBR1,SMAD 9,LEFTY2,SMAD7,ROCK2,TGFB3,SMAD6,BMPR2,GDF6,BMPR1A,B MPR1B,ACVRL1,ACVR2B,ACVR2A,ACVR1,BMP4,E2F5,BMP2,ACVR 1C,E2F4,SP1,BMP7,BMP8B,ZFYVE9,BMP5,BMP6,ZFYVE16,THBS3,IN HBE,THBS2,DCN,THBS1, JUN,LRP5,LRP6,PPP3R2,SFRP2,SFRP1,PPP3CC,VANGL1,PPP3R1,FZD 1,FZD4,APC2,FZD6,FZD7,SENP2,FZD8,LEF1,CREBBP,FZD9,PRICKLE 1,CTBP2,ROCK1,CTBP1,WNT9B,WNT9A,CTNNBIP1,DAAM2,TBL1X R1,MMP7,CER1,MAP3K7,VANGL2,WNT2B,WNT11,WNT10B,DKK2,L OC728622,CHP2,AXIN1,AXIN2,DKK4,NFAT5,MYC,SOX17,CSNK2A1, CSNK2A2,NFATC4,CSNK1A1,NFATC3,CSNK1E,BTRC,PRKX,SKP1,FB XW11,RBX1,CSNK2B,SIAH1,TBL1Y,WNT5B,CCND1,CAMK2A,NLK, CAMK2B,CAMK2D,CAMK2G,PRKACA,APC,PRKACB,PRKACG,WNT 16,DAAM1,CHD8,FRAT1,CACYBP,CCND2,NFATC2,NFATC1,CCND3,P KEGG WNT SIGNALING PATHWAY LCB2,PLCB1,CSNK1A1L,PRKCB,PLCB3,PRKCA,PLCB4,WIF1,PRICK LE2,PORCN,RHOA,FRAT2,PRKCG,MAPK9,MAPK10,WNT3A,DVL3,R -
Deregulated Wnt/Β-Catenin Program in High-Risk Neuroblastomas Without
Oncogene (2008) 27, 1478–1488 & 2008 Nature Publishing Group All rights reserved 0950-9232/08 $30.00 www.nature.com/onc ONCOGENOMICS Deregulated Wnt/b-catenin program in high-risk neuroblastomas without MYCN amplification X Liu1, P Mazanek1, V Dam1, Q Wang1, H Zhao2, R Guo2, J Jagannathan1, A Cnaan2, JM Maris1,3 and MD Hogarty1,3 1Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA; 2Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA and 3Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA Neuroblastoma (NB) is a frequently lethal tumor of Introduction childhood. MYCN amplification accounts for the aggres- sive phenotype in a subset while the majority have no Neuroblastoma (NB) is a childhood embryonal malig- consistently identified molecular aberration but frequently nancy arising in the peripheral sympathetic nervous express MYC at high levels. We hypothesized that acti- system. Half of all children with NB present with features vated Wnt/b-catenin (CTNNB1) signaling might account that define their tumorsashigh riskwith poor overall for this as MYC is a b-catenin transcriptional target and survival despite intensive therapy (Matthay et al., 1999). multiple embryonal and neural crest malignancies have A subset of these tumors are characterized by high-level oncogenic alterations in this pathway. NB cell lines without genomic amplification of the MYCN proto-oncogene MYCN amplification express higher levels of MYC and (Matthay et al., 1999) but the remainder have no b-catenin (with aberrant nuclear localization) than MYCN- consistently identified aberration to account for their amplified cell lines. -
Molecular Cloning of a Candidate Tumor Suppressor Gene, DLC1, from Chromosome 3P21.31
[CANCER RESEARCH 59, 1966–1972, April 15, 1999] Molecular Cloning of a Candidate Tumor Suppressor Gene, DLC1, from Chromosome 3p21.31 Yataro Daigo, Tadashi Nishiwaki, Teru Kawasoe, Mayumi Tamari, Eiju Tsuchiya, and Yusuke Nakamura2 Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108, Japan [Y. D., T. N., T. K., M. T., Y. N.], and Department of Pathology, Saitama Cancer Center Research Institute, Saitama, Japan [E. T.] ABSTRACT MATERIALS AND METHODS The short arm of chromosome 3 is thought to contain multiple tumor Cell Lines and Primary Tumor Samples. Fourteen human esophageal suppressor genes, because one copy of this chromosomal arm frequently is carcinoma cell lines [TE series: gifts from Dr. Tetsuro Nishihira, Tohoku missing in carcinomas that have arisen in a variety of tissues. We have University (Miyagi); Ref. 12], six lung cancer cell lines [LC319, a gift from isolated a novel gene encoding a 1755-amino acid polypeptide, through Dr. Takashi Takahashi, Aichi Cancer Center (Aichi); A549, NCI-H23, -H226, large-scale sequencing of genomic DNA at 3p21.3. Mutational analysis of -H460, -H522, gifts from Dr. Takao Yamori, Cancer Institute (Tokyo)], and this gene by reverse transcription-PCR revealed the lack of functional two renal cancer cell lines (RXF631L and ACHN, gifts from Dr. Takao transcripts and an increase of nonfunctional RNA transcripts in a signif- Yamori) were grown in monolayers in RPMI 1640 supplemented with 5–10% icant proportion (33%) of cancer cell lines and primary cancers (4 of 14 fetal bovine serum. esophageal cancer cell lines, 2 of 2 renal cancer cell lines, 11 of 30 primary Tumors and corresponding normal tissue samples were obtained from a total non-small cell lung cancers, and 3 of 10 primary squamous cell carcino- of 48 patients with NSCLCs and 10 patients with primary esophageal squa- mas of the esophagus). -
Regulation of BTRC by Gain-Of-Function TP53 Mutation(S) in Cancer Cells
Regulation of BTRC by gain-of-function TP53 mutation(s) in cancer cells By Peter Xu A thesis submitted in conformity with the requirements for the degree of Masters of Science (M.Sc) Graduate Department of Molecular Genetics University of Toronto © Copyright by Peter Xu (2015) Regulation of BTRC by gain-of-function TP53 mutation(s) in cancer cells Peter Xu Masters of Science Department of Molecular Genetics University of Toronto 2015 ABSTRACT Regulation of BTRC by gain-of-function TP53 mutation Peter Xu, Masters of Science (2015), Department of Molecular Genetics, University of Toronto Mutation or loss of TP53 has been detected in more than 50% of all human tumours. Gain-of-function (GOF) TP53 mutations have been linked to metastasis, altered metabolism, and drug resistance. Cancer patients carrying GOF TP53 mutations in their tumours respond poorly to standard of care treatments and have a worse prognosis. In my Master’s thesis, I have focused on understanding the relationship between a frequently observed mutation of TP53 (TP53 R248W ), and BTRC , an E3 ubiquitin ligase with functions impinging on cell cycle, morphology and metabolism. I observed a correlation between BTRC protein expression and TP53 genotype across a panel cancer cell lines. Additionally, I observed that TP53 R248W -mediated regulation of BTRC expression is dependent on a post-transcriptional mechanism, likely involving more than one micro-RNA. In conclusion, I present a model describing the regulation of BTRC by TP53 , which may have implications for targeted strategies in cancers harboring GOF TP53 mutations. ii ACKNOWLEDGEMENTS Foremost, I would like to express my sincere gratitude to my advisor Prof. -
An Integrated Genome Screen Identifies the Wnt Signaling Pathway As a Major Target of WT1
An integrated genome screen identifies the Wnt signaling pathway as a major target of WT1 Marianne K.-H. Kima,b, Thomas J. McGarryc, Pilib O´ Broind, Jared M. Flatowb, Aaron A.-J. Goldend, and Jonathan D. Lichta,b,1 aDivision of Hematology/Oncology and cFeinberg Cardiovascular Research Institute, Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; bRobert H. Lurie Cancer Center, Northwestern University, Chicago, IL 60611; and dDepartment of Information Technology, National University of Ireland, Galway, Republic of Ireland Edited by Peter K. Vogt, The Scripps Research Institute, La Jolla, CA, and approved May 18, 2009 (received for review February 12, 2009) WT1, a critical regulator of kidney development, is a tumor suppressor control. A first generation of in vitro cotransfection and DNA for nephroblastoma but in some contexts functions as an oncogene. binding assays have given way to more biologically relevant exper- A limited number of direct transcriptional targets of WT1 have been iments where manipulation of WT1 levels has been accompanied identified to explain its complex roles in tumorigenesis and organo- by examination of candidate or global gene expression. Classes of genesis. In this study we performed genome-wide screening for direct WT1 targets thus identified consist of inducers of differentiation, WT1 targets, using a combination of ChIP–ChIP and expression arrays. regulators of cell growth and modulators of cell death. WT1 target Promoter regions bound by WT1 were highly G-rich and resembled genes include CDKN1A (22), a negative regulator of the cell cycle; the sites for a number of other widely expressed transcription factors AREG (23), a facilitator of kidney differentiation; WNT4 (24), a such as SP1, MAZ, and ZNF219. -
CSNK1D Monoclonal Antibody (M09), Clone 4H8
CSNK1D monoclonal antibody (M09), clone 4H8 Catalog # : H00001453-M09 規格 : [ 100 ug ] List All Specification Application Image Product Mouse monoclonal antibody raised against a partial recombinant Western Blot (Recombinant protein) Description: CSNK1D. Immunofluorescence Immunogen: CSNK1D (AAH03558, 301 a.a. ~ 415 a.a) partial recombinant protein with GST tag. MW of the GST tag alone is 26 KDa. Sequence: ADDAERERRDREERLRHSRNPATRGLPSTASGRLRGTQEVAPPTPLTP TSHTANTSPRPVSGMERERKVSMRLHRGAPVNISSSDLTGRQDTSRMS TSQIPGRVASSGLQSVVHR enlarge Host: Mouse Immunohistochemistry Reactivity: Human (Formalin/PFA-fixed paraffin- embedded sections) Isotype: IgG2a Kappa Quality Control Antibody Reactive Against Recombinant Protein. Testing: enlarge Sandwich ELISA (Recombinant protein) enlarge Western Blot detection against Immunogen (38.28 KDa) . ELISA Storage Buffer: In 1x PBS, pH 7.4 In situ Proximity Ligation Assay Storage Store at -20°C or lower. Aliquot to avoid repeated freezing and thawing. (Cell) Instruction: MSDS: Download Interspecies Rat (99) Antigen enlarge Sequence: Datasheet: Download Applications Western Blot (Recombinant protein) Protocol Download Immunofluorescence Page 1 of 4 2021/6/19 enlarge this image Immunofluorescence of monoclonal antibody to CSNK1D on HeLa cell . [antibody concentration 10 ug/ml] Immunohistochemistry (Formalin/PFA-fixed paraffin-embedded sections) enlarge this image Immunoperoxidase of monoclonal antibody to CSNK1D on formalin-fixed paraffin- embedded human placenta. [antibody concentration 3 ug/ml] Protocol Download Sandwich ELISA (Recombinant protein) Detection limit for recombinant GST tagged CSNK1D is 0.3 ng/ml as a capture antibody. Protocol Download ELISA In situ Proximity Ligation Assay (Cell) Proximity Ligation Analysis of protein-protein interactions between TP53 and CSNK1D. HeLa cells were stained with anti-TP53 rabbit purified polyclonal 1:1200 and anti-CSNK1D mouse monoclonal antibody 1:50. -
Anti-BTRC / Beta Trcp1 Antibody (ARG57309)
Product datasheet [email protected] ARG57309 Package: 100 μl anti-BTRC / beta TrCP1 antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes BTRC / beta TrCP1 Tested Reactivity Hu Tested Application IHC-P, WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name BTRC / beta TrCP1 Antigen Species Human Immunogen Recombinant Protein of Human BTRC / beta-TrCP1. Conjugation Un-conjugated Alternate Names bTrCP1; betaTrCP; BETA-TRCP; FBW1A; Epididymis tissue protein Li 2a; F-box and WD repeats protein beta-TrCP; E3RSIkappaB; pIkappaBalpha-E3 receptor subunit; FBXW1A; FWD1; bTrCP; FBXW1; F- box/WD repeat-containing protein 1A Application Instructions Application table Application Dilution IHC-P 1:50 - 1:200 WB 1:500 - 1:2000 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Positive Control BT474 Calculated Mw 69 kDa Properties Form Liquid Purification Affinity purification with immunogen. Buffer PBS (pH 7.3), 0.02% Sodium azide and 50% Glycerol. Preservative 0.02% Sodium azide Stabilizer 50% Glycerol Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. www.arigobio.com 1/3 Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol BTRC Gene Full Name beta-transducin repeat containing E3 ubiquitin protein ligase Background This gene encodes a member of the F-box protein family which is characterized by an approximately 40 amino acid motif, the F-box. -
Gene Expression Barcode Values Reveal a Potential Link Between Parkinson's Disease and Gastric Cancer
University of Kentucky UKnowledge Internal Medicine Faculty Publications Internal Medicine 2-16-2021 Gene Expression Barcode Values Reveal a Potential Link between Parkinson's Disease and Gastric Cancer Suyan Tian First Hospital of Jilin University, China Shishun Zhao Jilin University, China Mingbo Tang First Hospital of Jilin University, China Chi Wang University of Kentucky, [email protected] Follow this and additional works at: https://uknowledge.uky.edu/internalmedicine_facpub Part of the Geriatrics Commons, Internal Medicine Commons, and the Oncology Commons Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Repository Citation Tian, Suyan; Zhao, Shishun; Tang, Mingbo; and Wang, Chi, "Gene Expression Barcode Values Reveal a Potential Link between Parkinson's Disease and Gastric Cancer" (2021). Internal Medicine Faculty Publications. 231. https://uknowledge.uky.edu/internalmedicine_facpub/231 This Article is brought to you for free and open access by the Internal Medicine at UKnowledge. It has been accepted for inclusion in Internal Medicine Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Gene Expression Barcode Values Reveal a Potential Link between Parkinson's Disease and Gastric Cancer Digital Object Identifier (DOI) https://doi.org/10.18632/aging.202623 Notes/Citation Information Published by Aging, v. 13. © 2021 Tian et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This article is available at UKnowledge: https://uknowledge.uky.edu/internalmedicine_facpub/231 www.aging-us.com AGING 2021, Vol. -
BTRC Monoclonal Antibody, Clone 3D5E6
BTRC monoclonal antibody, clone Gene Alias: BETA-TRCP, FBW1A, FBXW1, FBXW1A, 3D5E6 FWD1, MGC4643, bTrCP, bTrCP1, betaTrCP Gene Summary: This gene encodes a member of the Catalog Number: MAB17560 F-box protein family which is characterized by an Regulation Status: For research use only (RUO) approximately 40 amino acid motif, the F-box. The F-box proteins constitute one of the four subunits of ubiquitin Product Description: Mouse monoclonal antibody protein ligase complex called SCFs (SKP1-cullin-F-box), raised against recombinant human BTRC. which function in phosphorylation-dependent ubiquitination. The F-box proteins are divided into 3 Clone Name: 3D5E6 classes: Fbws containing WD-40 domains, Fbls containing leucine-rich repeats, and Fbxs containing Immunogen: Recombinant protein corresponding to either different protein-protein interaction modules or no amino acid 24-151 of human BTRC from E. coli. recognizable motifs. The protein encoded by this gene belongs to the Fbws class; in addition to an F-box, this Host: Mouse protein contains multiple WD-40 repeats. This protein is homologous to Xenopus bTrCP1, yeast Met30, Theoretical MW (kDa): 68.9 Neurospora Scon2 and Drosophila Slimb proteins. It Reactivity: Human interacts with HIV-1 Vpu and connects CD4 to the proteolytic machinery. It also associates specifically with Applications: ELISA, IHC-P, WB-Ce, WB-Tr phosphorylated IkappaBalpha and beta-catenin (See our web site product page for detailed applications destruction motifs, probably functioning in multiple information) transcriptional programs by activating the NF-kappaB pathway and inhibiting the beta-catenin pathway. Protocols: See our web site at [provided by RefSeq] http://www.abnova.com/support/protocols.asp or product page for detailed protocols Form: Liquid Isotype: IgG1 Recommend Usage: ELISA (1:10000) Western Blot (1:500-1:2000) Immunocytochemistry Flow Cytometry Immunohistochemistry (1:200-1:1000) The optimal working dilution should be determined by the end user.