Technical Note

Total Page:16

File Type:pdf, Size:1020Kb

Technical Note Technical Note Judicious Use of Aluminum Electrolytic Capacitors Contents 1. Overview of Aluminum Electrolytic Capacitors 1 - 1 Basic Model of Aluminum Electrolytic Capacitors 1 - 2 Structure of Aluminum Electrolytic Capacitors 1 - 3 Features of Capacitor Materials 1 - 4 Manufacturing process 2. Basic Performance 2 - 1 Basic Electrical Characteristics 2 - 2 Frequency Characteristics of Impedance 3. Reliability 4. Failure Modes 5. Lifetime of Aluminum Electrolytic Capacitors 5 - 1 Ambient Temperature Effect on Lifetime 5 - 2 Applying Voltage Effect on Lifetime 5 - 3 Ripple Current Effect on Lifetime 5 - 4 Charge and Discharge Operation Effect on Lifetime 5 - 5 Inrush Current 5 - 6 Abnormal Voltage Effect on Lifetime 6. Effect of Halogens 6 - 1 Effect of Flux 6 - 2 Cleaning Agents 6 - 3 Adhesive and Coating Materials 6 - 4 Effect of Fumigation 7. Recovery Voltage 8. Storage 9. Tips for Selecting Capacitors Appropriate for Individual Applications 9 - 1 Input Filtering Capacitors for Switching Mode Power Supplies 9 - 2 Output Filtering Capacitors for Switching Mode Power Supplies 9 - 3 Filtering Capacitors for Inverter Main Circuits 9 - 4 Capacitors for Control Circuits 9 - 5 Photoflash Capacitors TECHNICAL NOTE 1.Overview of Aluminum Electrolytic Capacitors d Dielectric 1-1 Basic Model of Aluminum Electrolytic Capacitors Capacitors are passive components. Among the various kinds S of capacitors, aluminum electrolytic capacitors offer larger CV product per case size and lower cost than the others. ε In principles of capacitor, its fundamental model is shown in Fig. 1 and its capacitance (C) is expressed by Equation (1) below: εS C = 8.854×10 - 12 (F) …………………………………(1) Fig-1 Basic model of capacitor d ε : Dielectric constant Dielectric(Al2O3) S : Surface area of dielectric(m2) d : Thickness of dielectric(m) Equation (1) shows that the capacitance (C) increases as the dielectric constant (ε) and/or its surface area (S) increases and/or Separator the dielectric thickness (d) decreases. Anode foil Cathode foil An aluminum electrolytic capacitor comprises a dielectric layer of aluminum oxide (Al2O3), the dielectric constant (ε) of which is 8 to 10. This value is not significantly larger than those of other types of Electrolyte capacitors. However, by extending the surface area (S) of the aluminum foil DA DC electrode by means of etching, and by electrochemically forming a LA LC thinner but highly voltage-withstandable layer of oxide layer dielec- R CA CC tric, the aluminum electrolytic capacitor can offer a larger CV prod- uct per case size than other types of capacitors. RA RC A basic model of aluminum electrolytic capacitor is shown in Fig. 2. An aluminum electrolytic capacitor comprises: CA、CC:Capacitance due to anode and cathodes foils DA、DC:Diode effects due to oxide layer on anode and cathode foils Anode …Aluminum foil LA、LC :Inductance due to anode and cathode terminals Dielectric…Electrochemically formed oxide layer (Al O ) on 2 3 R :Resistance of electrolyte and separator the anode R 、R :Internal resistance of oxide layer on anode and cathode foils Cathode …A true cathode is electrolytic solution (electrolyte). A C Other component materials include a paper separator that Fig-2 Basic model and equivalent circuit of aluminum holds electrolyte in place and another aluminum foil that func- electrolytic capacitor tions as a draw-out electrode coming into contact with the true cathode (electrolyte). In general, an aluminum electrolytic capacitor is asymmetrical Lead Wire (Terminal) in structure and polarized. The other capacitor type known as a Aluminum Tab bi-polar (non-polar) comprises the anodic aluminum foils for Separator Paper both electrodes. Cathode Foil Anode Foil 1-2 Structure of Aluminum Electrolytic Capacitor The aluminum electrolytic capacitor has, as shown in Fig. 3, a roll of anode foil, paper separator, cathode foil and electrode terminals (internal and external terminals) with the electrolyte impregnated, which is sealed in an aluminum can case with a sealing material. Fig-3 Basic model of element The terminal draw-out structure, sealing material and structure differ depending on the type of the capacitor. Figure 4 shows typical examples. Vent Element Can Sleeve Can Coated Can Sleeve Rubber Seal Element Element Aluminum Tab Lead Wire Rubber Seal (Terminal) Aluminum Tab Aluminum Tab Terminal Plate Sealing Material Lead Wire(Terminal) (Surface Mount Type) Terminal (Radial Lead Type) (Snap-in Type) Fig-4 Construction of Aluminum Electrolytic Capacitors Product specifications in this catalog are subject to change without notice.Request our product specifications before purchase and/or use. Please use our products based on the information contained in this catalog and product specifications. CAT. No. E1001U TECHNICAL NOTE 1-3 Features of Capacitor Materials 1-4 Manufacturing Process Aluminum, which is main material in an aluminum electrolytic ① Etching (for extending the surface area) capacitor, forms an oxide layer (Al O ) on its surface when the 2 3 This etching process serves to aluminum is set as anode and charged with electricity in elec- extend the surface area of the trolyte. Aluminum base aluminum foil. This is an AC or material The aluminum foil with an oxide layer formed thereon, as DCcurrent-employed electrochem- shown in Fig. 5, is capable of rectifying electriccurrent in elec- Etching Model ical process for etching the foil trolyte. Such a metal is called a valve metal. surface in a chloride solution. Al2O3 I ② Formation (for forming a dielectric) This is a process for forming a dielectric layer (Al O ), which is V 2 3 0 normally performed on the anode aluminum foil. Forming Model ③ Slitting Blade Fig-5 V-I characteristics of aluminum oxide This is a process for slitting alumi- num foils (both the anode and <Anode aluminum foil> cathode) and paper separators to First, the foil material is electromechanically etched in a chloride the specified product size. Slitting Model solution to extend the surface area of the foil. Secondly, for the foil to form an aluminum oxide layer (Al2O3) as a Lead Wire ④ Winding (Terminal) Anode Foil dielectric, more than the rated voltage is applied to the foil in a solu- Separator Paper tion such as ammonium borate. This dielectric layer is as dense and This is a process for rolling a set of thin as 1.1 - 1.5 nm/volt and showing a high insulation resistance anode and cathode foils into a cylin- (108 - 109 Ω/m). drical form with a paper separator The thickness of the oxide layer determines the withstand voltage inserted between them. During this Cathode Foil according to their direct proportional relationship. For the etching process, an inner terminal (called a tab) is attached to each of the alumi- pits to be shaped to the intended thickness of the oxide layer, the pit Electrolyte patterns have been designed to have efficient surface area exten- num foils. The roll made at this sion depending on the intended withstand voltage (see Fig. 6) process is called a capacitor element. <Cathode aluminum foil> ⑤ Impregnation An etching process is performed to the cathode aluminum foil as This is a process for impregnating well as the anode foil. However, the formation process for oxide the element with electrolyte as a Impregnation layer is generally not performed. Therefore, the surface of the true cathode. The electrolyte also cathode foil only has an oxide layer (Al2O3) that has spontane- functions to repair the dielectric ously formed, which gives a withstand voltage of about 0.5 volt. layer. Low Voltage Foil High Voltage Foil ⑥ Sealing Aluminum Can This process seals the element using the aluminum can case and sealing materials (rubber,rubber- lined cover, etc.) for keeping the Element case airtight. ⑦ Aging (reforming) (Fracture surface of AC etched foil) (Fracture surface of DC etched foil) Replica The process of applying voltage to a post-sealed capacitor at high tem- Fig-6 Cross section of aluminum etched foil SEM) Rubber ( perature is called “aging”. This serves to repair defective dielectrics <Electrolyte> that have been made on the foil The electrolyte, an ion-conductive liquid functions as a true during the slitting or winding process. cathode coming into contact with the dielectric layer on the sur- face of the anode foil. The cathode foil serves as a collector ⑧ 100% inspection and packaging electrode to connect the true cathode with the external circuit. Electrolyte is an essential material that controls the perfor- After the aging, all products shall mance of the capacitor (temperature characteristics, frequency undergo testing for checking their characteristics, service life, etc.). electrical characteristics with chip termination, lead reforming, taping <Paper separator > etc. finished, and then be packaged. The separator maintains uniform distribution of the electrolyte and keeps the anode-to-cathode foil distance unchanged. ⑨ Outgoing inspections Outgoing inspections are per- <Can case and sealing materials> formed as per standard inspection An aluminum can case and seal materials mainly consisting of procedures. rubber are used for the purpose of keeping airtightness. ⑩ Shipment Product specifications in this catalog are subject to change without notice.Request our product specifications before purchase and/or use. Please use our products based on the information contained in this catalog and product specifications. CAT. No. E1001U TECHNICAL NOTE Ex. 35V470µF Radial Lead Type at 105℃ 2.Basic Performance 20 15 10 5 2-1 Basic Electrical Characteristics 0 -5 2-1-1 Capacitance -10 -15 The larger the surface area of an electrode is, the higher the -20 -25 capacitance (capacity for storing electricity) is. For aluminum Capacitance Change (%) -30 -35 electrolytic capacitors, the capacitance is measured under the -40 -60 -40 -20 0 20 40 60 80 100 120 standard measuring conditions of 20°C and a 120Hz AC signal Temperature(℃) of about 0.5V. Generally, as the temperature rises, the capaci- Fig-7 Temperature Characteristics of Capacitance tance increases; as the temperature decreases, the capaci- tance decreases (Fig.
Recommended publications
  • Switched-Capacitor Circuits
    Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto ([email protected]) ([email protected]) University of Toronto 1 of 60 © D. Johns, K. Martin, 1997 Basic Building Blocks Opamps • Ideal opamps usually assumed. • Important non-idealities — dc gain: sets the accuracy of charge transfer, hence, transfer-function accuracy. — unity-gain freq, phase margin & slew-rate: sets the max clocking frequency. A general rule is that unity-gain freq should be 5 times (or more) higher than the clock-freq. — dc offset: Can create dc offset at output. Circuit techniques to combat this which also reduce 1/f noise. University of Toronto 2 of 60 © D. Johns, K. Martin, 1997 Basic Building Blocks Double-Poly Capacitors metal C1 metal poly1 Cp1 thin oxide bottom plate C1 poly2 Cp2 thick oxide C p1 Cp2 (substrate - ac ground) cross-section view equivalent circuit • Substantial parasitics with large bottom plate capacitance (20 percent of C1) • Also, metal-metal capacitors are used but have even larger parasitic capacitances. University of Toronto 3 of 60 © D. Johns, K. Martin, 1997 Basic Building Blocks Switches I I Symbol n-channel v1 v2 v1 v2 I transmission I I gate v1 v p-channel v 2 1 v2 I • Mosfet switches are good switches. — off-resistance near G: range — on-resistance in 100: to 5k: range (depends on transistor sizing) • However, have non-linear parasitic capacitances. University of Toronto 4 of 60 © D. Johns, K. Martin, 1997 Basic Building Blocks Non-Overlapping Clocks I1 T Von I I1 Voff n – 2 n – 1 n n + 1 tTe delay 1 I fs { --- delay V 2 T on I Voff 2 n – 32e n – 12e n + 12e tTe • Non-overlapping clocks — both clocks are never on at same time • Needed to ensure charge is not inadvertently lost.
    [Show full text]
  • Switched Capacitor Concepts & Circuits
    Switched Capacitor Concepts & Circuits Outline • Why Switched Capacitor circuits? – Historical Perspective – Basic Building Blocks • Switched Capacitors as Resistors • Switched Capacitor Integrators – Discrete time & charge transfer concepts – Parasitic insensitive circuits • Signal Flow Graphs • Switched Capacitor Filters – Comparison to Active RC filters – Advantages of Fully Differential filters • Switched Capacitor Gain Circuits • Reducing the Effects of Charge Injection • Tradeoff between Speed and Charge Injection Why Switched Capacitor Circuits? • Historical Perspective – As MOS processes came to the forefront in the late 1970s and early 1980s, the advantages of integrating analog blocks such as active filters on the same chip with digital logic became a driving force for inovation. – Integrating active filters using resistors and capacitors to acturately set time constants has always been difficult, because of large process variations (> +/- 30%) and the fact that resistors and capacitors don’t naturally match each other. – So, analog engineers turned to the building blocks native to MOS processes to build their circuits, switches & capacitors. Since time constants can be set by the ratio of capacitors, very accurate filter responses became possible using switched capacitor techniques Æ Mixed-Signal Design was born! Switched Capacitor Building Blocks • Capacitors: poly-poly, MiM, metal sandwich & finger caps • Switches: NMOS, PMOS, T-gate • Op Amps: at first all NMOS designs, now CMOS Non-Overlapping Clocks • Non-overlapping clocks are used to insure that one set of switches turns off before the next set turns on, so that charge only flows where intended. (“break before make”) • Note the notation used to indicate time based on clock periods: ... (n-1)T, (n-½)T, nT, (n+½)T, (n+1)T ..
    [Show full text]
  • Printed Circuit Board Mount Switches Shock Proof • Waterproof • Explosion
    shock proof • waterproof • explosion proof Printed Circuit Board Mount Switches These versatile switches are a great choice for many applications due to their small size and variety of connection styles. Although these switches are built to connect to a printed circuit board, they can also be retrotted for nearly any application by connecting wire leads. These switches can sense a pressure ranging from 6 inches of water all the way up to 65 PSI. For a frame of reference, a trumpet player blows 55 inches of water (or 2 PSI) on average, so these switches have a broad range. They can also be used to sense a vacuum ranging between 6 inches of water to 65 inches of water. Therefore, these miniature single pole and double pole switches are used as pressure, vacuum, or dierential pressure switches where moderate accuracy is sucient. Presair switches deliver critical benefits: CSPSSGA - PC Mount Switch SAFE: Presair switches deliver complete electrical isolation with zero voltage at the actuator to shock the user or spark an explosion. 1”x1”x1.5” ECONOMICAL:Presair’s switching system costs are comparable or lower than digital controls meeting the needs of original equipment manufacturers. ACCURATE: All switches are 100% tested to meet 100,000+ cycle life. General Specification: RATING: 1 amp resistive 250 VAC Ratings are dependent on actuation pressure and must be derated at lower pressures. APPROVAL: UL Recognized, CUL Recognized. File #E80254 MATERIAL: Lower body: Rynite w/ pin terminals molded Upper body: Acetal Diaphram material is dependent on application. PRESSURE RANGE: When used as a pressure or vacuum switch the actuation point must be factory set.
    [Show full text]
  • Switched-Capacitor Integrator
    EE247 Lecture 10 • Switched-capacitor filters (continued) – Switched-capacitor integrators • DDI & LDI integrators – Effect of parasitic capacitance – Bottom-plate integrator topology – Switched-capacitor resonators – Bandpass filters – Lowpass filters – Switched-capacitor filter design considerations • Termination implementation • Transmission zero implementation • Limitations imposed by non-idealities EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 1 Switched-Capacitor Integrator C φ φ I φ 1 2 1 Vin - φ 2 Cs Vo + T=1/fs C C φ I φ I 1 2 Vin Vin - - C C s s Vo Vo + + φ High φ 1 2 High Æ C Charged to Vin s ÆCharge transferred from Cs to CI EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 2 Switched-Capacitor Integrator Output Sampled on φ1 φ φ 1 2 Vin CI φ - 1 Cs Vo Vo1 + φ φ φ φ φ Clock 1 2 1 2 1 Vin VCs Vo Vo1 EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 3 Switched-Capacitor Integrator ( (n-1)T n-3/2)Ts s (n-1/2)Ts nTs (n+1/2)Ts (n+1)Ts φ φ φ φ φ Clock 1 2 1 2 1 Vin Vs Vo Vo1 Φ 1 Æ Qs [(n-1)Ts]= Cs Vi [(n-1)Ts] , QI [(n-1)Ts] = QI [(n-3/2)Ts] Φ 2 Æ Qs [(n-1/2) Ts] = 0 , QI [(n-1/2) Ts] = QI [(n-1) Ts] + Qs [(n-1) Ts] Φ 1 _Æ Qs [nTs ] = Cs Vi [nTs ] , QI [nTs ] = QI[(n-1) Ts ] + Qs [(n-1) Ts] Since Vo1= - QI /CI & Vi = Qs / Cs Æ CI Vo1(nTs) = CI Vo1 [(n-1) Ts ] -Cs Vi [(n-1) Ts ] EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H.
    [Show full text]
  • Practical Issues Designing Switched-Capacitor Circuit
    Practical Issues Designing Switched-Capacitor Circuit ECEN 622 (ESS) Fall 2011 Practical Issues Designing Switched-Capacitor Circuit Material partially prepared by Sang Wook Park and Shouli Yan ELEN 622 Fall 2011 1 / 27 Switched-Capacitor practical issues Practical Issues Designing Switched-Capacitor Circuit MOS switch G G S Cov Cox Cov D S D Ron o Excellent Roff o Non-idea Effect Charge injection, Clock feed-through Finite and nonlinear Ron ELEN 622 Fall 2011 2 / 27 Switched-Capacitor practical issues Practical Issues Designing Switched-Capacitor Circuit Charge Injection G Qch1 Qch2 C VS o During TR. is turned on, Qch is formed at channel surface Qch = WLC OX (VGS −Vth ) When TR. is off, Qch1 is absorbed by Vs, but Qch2 is injected to C o Charge injected through overlap capacitor o Appeared as an offset voltage error on C ELEN 622 Fall 2011 3 / 27 Switched-Capacitor practical issues Practical Issues Designing Switched-Capacitor Circuit Charge Injection Effect CLK Ideal sw. Vout MOS sw. 0.1pF 1V CLK o When clock changes from high to low, Qch2 is injected to C o Compared to ideal sw., MOS sw. creates voltage error on Vout ELEN 622 Fall 2011 4 / 27 Switched-Capacitor practical issues Practical Issues Designing Switched-Capacitor Circuit Decrease Charge Injection Effect (1) CLK Vout W/L = 1/0.4 0.1pF 1V W/L = 10/0.4 o Decrease the effect of Qch o Use either bigger C or small TR. (small ratio of Cox/C) o Increased Ron ELEN 622 Fall 2011 5 / 27 Switched-Capacitor practical issues Practical Issues Designing Switched-Capacitor Circuit Decrease Charge Injection Effect (2) CLK CLKb 10/0.4 3.1/0.4 Vout With dummy sw.
    [Show full text]
  • Introduction How Circuit Protection Devices Work?
    Introduction Adding extra strain to any person or object can be a recipe for disaster. This is especially the case for electrical circuits. When they’re tasked with carrying more current than they were designed to handle, the added burden can lead to detrimental and dangerous circumstances. Not only could overloading your circuits damage or destroy your sensitive electronic equipment, but it could also generate extra heat in wires that weren’t meant to carry the load. If this happens, it can cause a fire in a matter of seconds. This is where an overcurrent protection device, such as a fused disconnect switch or a circuit breaker, comes in. Though they serve a similar purpose, these two components each have a unique design. Today, we’re sharing how they work and how to choose the right one for your project. Ready to learn more? Let’s dive in. How Circuit Protection Devices Work? The field of circuit protection technology is vast, designed to prevent circuits from risks associated with overvoltage, overcurrent, reverse-bias, electrostatic-discharge (ESD) and overtemperature events. Such risks include: • High-voltage transients • Capacitive coupling • Inductive kickback • Ground faults • High inrush currents From your smartphone battery to your steering wheel, these components are necessary to ensure safe and reliable electronics. While they all serve a valuable purpose, we’re delving deeper today into the specific field of overcurrent protection. Overcurrent protection devices are designed to disconnect or open a circuit quickly in the event that an overload or short-circuit occurs. This helps to mitigate any damage to the connected equipment and can also reduce the risk of electrical fires.
    [Show full text]
  • Power Sense Switch & Fan Control Thermostat
    Speed Controllers & Switches_8_DR_ref.qxd 6/11/2015 10:34 AM Page 17 POWER SENSE SWITCH & FAN CONTROL THERMOSTAT POWER SENSE SWITCH TYPE - VZ-IISNSE TECHNICAL DATA Switched Output Model Number Load Sense Range Max. Amps Enclosure Size, mm On = 2.5 - 15 amp VZ-ISNSE 5 153W x 110H x 60D Off = 0 - 1.5 amps SUGGESTED WIRING ARRANGEMENT The VZ-ISNSE is a 240V AC power sense switch that provides automatic on/off control of a fan or exhaust fan system. The unit detects the current of an appliance such as a clothes dryer, closing and opening the switched output 240V relay when the load sense range Switched Output parameters are met. Can be used with the VZ2-10TS, VZM0-28TS, VZ6-4PL or as a stand alone unit. In LED’s indicate when load is activated. 3-pin Socket Warning Not to be used with fans with EC motors Appliance or inverters. FAN CONTROL THERMOSTAT TECHNICAL DATA Model Temperature Maximum Number range Mounting Amps Dimensions, mm TFC6 5ºC to 30ºC Wall mountable 6.0 86W x 86H x 33D SELECTION TABLE The TFC6 is suitable for most 240-volt fans. The TFC6 can be set in two modes: Cool mode - will start the fan when the room temperature is higher than the set point. The Fantech Fan Control Thermostat has Heat mode - will start the fan when the room temperature is lower than the set point. been developed to control the operation of a 240-volt fan based on the setting made on the thermostat dial. It can be set to turn on a fan when the WIRING DIAGRAM room temperature is either higher or lower than the set point.
    [Show full text]
  • FSW Fuse-Switch-Disconnectors
    Motors | Automation | Energy | Transmission & Distribution | Coatings FSW Fuse-Switch-Disconnectors www.weg.net Fuse-Switch-Disconnectors The FSW Fuse-Switch-Disconnectors, developed according to International Standard IEC 60947-3 and bearing CE certification, are applied in electric circuits in general so as to provide the disconnection and protection against short circuits and overloads by means of NH blade contact fuses. In order to ensure a long lifespan, the FSW Fuse-Switch-Disconnectors are manufactured with reinforced thermoplastic materials and flame retardant. Additionaly, they feature contacts with silver coating, providing low power losses. Safety and Simplicity WEG switch-disconnector has several characteristics which aim at increasing security for operation and maintenance of the equipment, simplifying diagnoses and fuse replacement: g The switch-disconnector allows checking the state of the fuses through a transparent cover, besides featuring small openings which allow making electrical measurements without interrupting the operation. g As per IEC 60947-3, the switch-disconnector can perform the non- frequent opening under load. The FSW series has arc chambers for the extinction of the electric arc and disconnects all the phases together, ensuring full insulation between the load circuit and power supply. g In the opening of the switch-disconnector, the fuses remain fixed to the cover, preventing their drop or accidental contact between the energized parts. Furthermore, the cover is totally removable, allowing simple fuse replacement in a simple and safe area out of the electrical panel. g The switch-disconnectors also feature a built-in auxiliary contact in order to indicate when they are open or not properly closed.
    [Show full text]
  • Thermostats, Thermal Cutoffs & Fuses
    Temperature Controllers Bulb and Capillary Thermostats Thermostat Styles and Selection Construction Characteristics This type of control operates by expansion and contraction of causing the opening and closing of a snap-action switch. For heat- a liquid in response to temperature change. Liquid contained ing applications the contacts are normally closed and open on within the sensing bulb and capillary flexes a diaphragm, temperature rise. See Page 13-77 for typical wiring diagrams. Style A Style B Single-Pole Thermostat Bulb Double-Pole Thermostat ✴ General purpose ✴ Recommended for directly thermostat recommended Pilot Lamp controlling high wattage for most applications. (Optional on loads due to its Style B & ✴ Capable of controlling heavy duty contacts. C ONLY) loads from 120V/30A up ✴ Capable of controlling loads to 480V/20A Knob up to 30 Amps at 277 VAC and (Optional on 10 Amps at 480 VAC all Styles except F) Bezel Capillary (Optional on Style B & C ONLY Thermostat Electrical Ratings: Normally Closed Contacts, Open on Temperature Rise – Adjustable Stock Items Are Shown In RED Temp Ampacity at Bulb Bulb Capillary Thermostat Optional Thermostat Parts Instruction Control Range Line Voltage Dia. Length Length Part Sheet Type Style °F 120V 240V 277V 480V in in in Terminals Number Knob Bezel Pilot Lamp P/N 60–250 30 30 30 — 0.27 6.00 12 #10 screw TST-101-137 TST-104-103 n/a n/a IDP-119-102 60–250 30 30 30 — 0.38 4.63 48 #10 screw TST-101-131 TST-104-103 n/a n/a IDP-119-102 SPST A 70–245 30 30 15 15 0.25 5.50 12 #10 screw TST-101-130 Included
    [Show full text]
  • TCI-W-U Series Wall Mounted Controller IOM-525 Installation and Operation Manual Installation and Set up Overview
    TCI-W-U Series Wall Mounted Controller IOM-525 Installation and Operation Manual Installation and Set Up Overview Features......................................3 Duct Application............................4 Room Application...........................5 Wiring Schematics.....................6-12 Operation...............................13-14 Features Universal PID and/or binary control for any analog input/output signal and range. Multiple auxiliary functions: automatic enable, set point configuration Averaging, min and max functions Alarm monitoring of low and high limits Accuracy of +/- 2% RH Large Backlit display Displays Actual RH% and setpoint RH% Analog output displayed by a vertical bar Jumper selectable 0-10VDC or 4-20mA The Armstrong TCI-W-U controller can be used for either duct or room applications. 3 Duct Application The Armstrong D51772 is used in a duct application and includes the parts listed below: Armstrong Part number: D50390 (TCI-W-U Controller) Armstrong Part number: D50388 (SDC-H1 Transmitter) Please refer to your humidifiers IOM for proper placement of the D50388. (The D50388 will be referred to as a sensor in the IOM) The D50390 can be mounted in any location because the sensing of relative humidity is being done by the D50388. Max wire length from sensor to controller is 200 feet. 4 Room Application The Armstrong D51768 is a stand alone controller used in room applications, see below: Armstrong Part number: D51768 (TCI-W-U Controller) Please refer to your humidifiers IOM for mounting locations of the humidistat/controller as well as set up of the humidifier. This is only installation and set up for the controller. 5 Wiring Schematics HC6000 Series Humidifiers: Supply 2 24V Main Stat / Sensor In 6 A01 Modulating High Limit Sensor Armstrong 0-10 Vdc Stat Outdoor Temp.
    [Show full text]
  • How To: Wire a Dimmable Transformer
    How to: Wire a Dimmable Transformer Using a hardwired dimmable transformer from Inspired LED, you can create a Important Note: This driver is to be installed in accordance with Article 450 of the National Electric fully integrated LED system for your home or business. Our transformers take the 120V AC running through standard wires and convert them down to a more Code by a qualified electrician. Transformers should always be mounted in well-ventilated, LED friendly 12V DC. When done properly, this simple install will allow you to accessible area such as an attic or cabinet. Never utilize a compatible wall switch or dimmer in just a few simple steps… cover or seal transformer inside of a wall. To Install: You will need… - Hardwire dimmable transformer Tip: Route the AC wires from transformer through rigid spacer to - Compatible wall switch the open box extender. This will give you more room to tie 12VDC - 14-16 AWG Class 2 in-wall/armored cable transformer and dimmer wiring together. - 16-22 AWG thermostat/speaker wire OR Tip: To connect using Inspired LED cable, Inspired LED interconnect cable cut off one end connector, split and strip. - Junction box(es) (optional if needed) The side with white lettering is positive. - Wire nuts & cable strippers 1. Turn off power to location Use standard Inspired LED where transformer is being cables to run from transformer Standard end connectors installed, be sure switch and to standard 3.5mm jacks or Tiger Paws® LEDs are in place Use bulk cable to run from 2. Open transformer and Tip: For in-wall wiring applications, use 18-22 AWG 2-conductor cable transformer to screw terminals Screw Terminal remove knockout holes to gain Class 2 or higher (commonly sold as in-wall speaker or thermostat wire).
    [Show full text]
  • Choosing the Best Capability Switch –
    Choosing the Best Capability Switch – Capability Switches are designed for people with physical disabilities, providing them an alternative means to interact with speech generating devices, switch adapted devices including adapted therapeutic learning products, appliance controllers, and computers. Enabling Devices manufactures hundreds of switches but they operate in one of three ways: momentary, latch (i.e. on/off), and timed: Momentary – When you press a momentary switch, the device stays on as long as you maintain pressure on the switch. Latch – Turns on the device when the switch is pressed once and turns off the device when the switch is pressed again. An example of a latch switch is the On/Off Jumbo Switch (#791). Timed – When you press, it turns on a device for a preset amount of time (0 to 120 seconds). Enabling Devices also has a switch that allows you to choose either Momentary or Latched: Two Function Jumbo Switch (#7910). We also have a Switch Modifier (#605) that will change any momentary switch into a latch or timed switch. Which One Is Right For You? Enabling Devices takes pride in manufacturing hundreds of durable yet extremely sensitive capability switches at reasonable prices. However, it can be difficult to decide which switch would work best for your particular set of circumstances. In this article, we set forth important factors to consider when choosing a switch. Of course, our technical staff is available to address any additional questions or concerns you may have at [email protected]. 800-832-8697 www.enablingdevices.com When selecting a switch, there are several important factors to consider: Actions What actions can the person who will use the switch reliably perform? Activating the switch should not cause a person undue fatigue or pain, or compromise good muscle tone.
    [Show full text]