MBR40H100WTG Switch-Mode Power Rectifier 100 V, 40 A

Total Page:16

File Type:pdf, Size:1020Kb

MBR40H100WTG Switch-Mode Power Rectifier 100 V, 40 A MBR40H100WTG Switch-mode Power Rectifier 100 V, 40 A Features and Benefits http://onsemi.com • Low Forward Voltage • Low Power Loss/High Efficiency SCHOTTKY BARRIER • High Surge Capacity RECTIFIER • 175°C Operating Junction Temperature 40 AMPERES • 40 A Total (20 A Per Diode Leg) • These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS 100 VOLTS Compliant 1 Applications 2, 4 • Power Supply − Output Rectification 3 • Power Management • Instrumentation Mechanical Characteristics: • Case: Epoxy, Molded • Epoxy Meets UL 94 V−0 @ 0.125 in 1 TO−247 • Weight: 4.3 Grams (Approximately) 2 CASE 340AL 3 • Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable • Lead Temperature for Soldering Purposes: MARKING DIAGRAM 260°C Max. for 10 Seconds MAXIMUM RATINGS Please See the Table on the Following Page B40H100 AYWWG B40H100 = Specific Device Code A = Assembly Location Y = Year WW = Work Week G = Pb−Free Package ORDERING INFORMATION Device Package Shipping MBR40H100WTG TO−247 30 Units/Rail (Pb−Free) © Semiconductor Components Industries, LLC, 2014 1 Publication Order Number: July, 2014 − Rev. 5 MBR40H100WT/D MBR40H100WTG MAXIMUM RATINGS (Per Diode Leg) Rating Symbol Value Unit Peak Repetitive Reverse Voltage VRRM 100 V Working Peak Reverse Voltage VRWM DC Blocking Voltage VR Average Rectified Forward Current IF(AV) A TC = 148°C, per Diode 20 TC = 150°C, per Device 40 Peak Repetitive Forward Current IFRM 40 A (Square Wave, 20 kHz) TC = 144°C Nonrepetitive Peak Surge Current IFSM 200 A (Surge applied at rated load conditions halfwave, single phase, 60 Hz) Operating Junction Temperature (Note 1) TJ +175 °C Storage Temperature Tstg *65 to +175 °C Voltage Rate of Change (Rated VR) dv/dt 10,000 V/ms Controlled Avalanche Energy (see test conditions in Figures 10 and 11) WAVAL 400 mJ ESD Ratings: Machine Model = C > 400 V Human Body Model = 3B > 8000 THERMAL CHARACTERISTICS Maximum Thermal Resistance − Junction−to−Case RqJC 0.58 °C/W − Junction−to−Ambient (Socket Mounted) RqJA 32 Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. ELECTRICAL CHARACTERISTICS Characterisitc Symbol Min Typ Max Unit Instantaneous Forward Voltage (Note 2) vF V (IF = 20 A, TJ = 25°C) − 0.74 0.80 (IF = 20 A, TJ = 125°C) − 0.61 0.67 (IF = 40 A, TJ = 25°C) − 0.85 0.90 (IF = 40 A, TJ = 125°C) − 0.72 0.76 Instantaneous Reverse Current (Note 2) iR mA (Rated dc Voltage, TJ = 125°C) − 2.0 10 (Rated dc Voltage, TJ = 25°C) − 0.0012 0.01 Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 1. The heat generated must be less than the thermal conductivity from Junction−to−Ambient: dPD/dTJ < 1/RqJA. 2. Pulse Test: Pulse Width = 300 ms, Duty Cycle ≤ 2.0%. http://onsemi.com 2 MBR40H100WTG TYPICAL CHARACTERISTICS 100 100 175°C 175°C 150°C 25°C 150°C 25°C 10 10 125°C 125°C 1.0 1.0 0.1 0.1 00.1 0.20.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 00.1 0.20.3 0.4 0.50.60.7 0.8 0.9 1.0 1.1 1.2 , INSTANTANEOUS FORWARD CURRENT (A) FORWARD , INSTANTANEOUS , INSTANTANEOUS FORWARD CURRENT (A) FORWARD , INSTANTANEOUS F F I I VF, INSTANTANEOUS FORWARD VOLTAGE (V) VF, INSTANTANEOUS FORWARD VOLTAGE (V) Figure 1. Typical Forward Voltage Figure 2. Maximum Forward Voltage 1.0E−01 1.0E−01 TJ = 150°C 1.0E−02 TJ = 150°C 1.0E−02 ° 1.0E−03 1.0E−03 TJ = 125 C TJ = 125°C 1.0E−04 1.0E−04 1.0E−05 1.0E−05 TJ = 25°C 1.0E−06 TJ = 25°C 1.0E−06 , REVERSE CURRENT (A) R I 1.0E−07 1.0E−07 , MAXIMUM REVERSE CURRENT (A) R 1.0E−08 I 1.0E−08 0 20 40 60 80 100 0 20 40 60 80 100 VR, REVERSE VOLTAGE (VOLTS) VR, REVERSE VOLTAGE (VOLTS) Figure 3. Typical Reverse Current Figure 4. Maximum Reverse Current 32 20 dc 18 RqJA = 16°C/W 28 16 24 Square Wave dc 14 20 12 Square Wave 16 10 8.0 12 6.0 8.0 4.0 dc 4.0 RqJA = 60°C/W , AVERAGE FORWARD CURRENT (A) FORWARD , AVERAGE 2.0 No Heatsink Square Wave 0 0 F(AV) 120 130140 150 160 170 180 I 0 25 50 75 100 125150 175 , AVERAGE FORWARD CURRENT (A) FORWARD , AVERAGE F I ° TC, CASE TEMPERATURE ( C) TA, AMBIENT TEMPERATURE (°C) Figure 5. Current Derating, Case, Per Leg Figure 6. Current Derating, Ambient, Per Leg http://onsemi.com 3 MBR40H100WTG TYPICAL CHARACTERISTICS 30 10000 28 TJ = 25°C TJ = 175°C 24 Square Wave 20 1000 16 dc 12 100 8.0 C, CAPACITANCE (pF) C, CAPACITANCE 4.0 , AVERAGE POWER DISSIPATION (W) POWER DISSIPATION , AVERAGE 0 10 F(AV) P 0 4.0 8.0 12 16 20 24 28 30 0 2040 60 80 100 IF(AV), AVERAGE FORWARD CURRENT (A) VR, REVERSE VOLTAGE (V) Figure 7. Forward Power Dissipation Figure 8. Capacitance 10 D = 0.5 1 0.2 0.1 0.1 0.05 0.01 P(pk) 0.01 t1 t2 SINGLE PULSE DUTY CYCLE, D = t1/t2 0.001 R(t), TRANSIENT THERMAL RESISTANCE 0.000001 0.00001 0.0001 0.001 0.010.1 1 10 100 1000 t1, TIME (sec) Figure 9. Thermal Response Junction−to−Case http://onsemi.com 4 MBR40H100WTG +VDD IL 10 mH COIL BV VD DUT MERCURY ID SWITCH I ID DUT L S1 VDD t0 t1 t2 t Figure 10. Test Circuit Figure 11. Current−Voltage Waveforms The unclamped inductive switching circuit shown in elements are small Equation (1) approximates the total Figure 10 was used to demonstrate the controlled avalanche energy transferred to the diode. It can be seen from this capability of this device. A mercury switch was used instead equation that if the VDD voltage is low compared to the of an electronic switch to simulate a noisy environment breakdown voltage of the device, the amount of energy when the switch was being opened. contributed by the supply during breakdown is small and the When S1 is closed at t0 the current in the inductor IL ramps total energy can be assumed to be nearly equal to the energy up linearly; and energy is stored in the coil. At t1 the switch stored in the coil during the time when S1 was closed, is opened and the voltage across the diode under test begins Equation (2). to rise rapidly, due to di/dt effects, when this induced voltage reaches the breakdown voltage of the diode, it is clamped at EQUATION (1): BVDUT and the diode begins to conduct the full load current 2 BV which now starts to decay linearly through the diode, and W [ 1 LI ǒ DUT Ǔ AVAL 2 LPK BV V goes to zero at t2. DUT DD By solving the loop equation at the point in time when S1 is opened; and calculating the energy that is transferred to the diode it can be shown that the total energy transferred is EQUATION (2): equal to the energy stored in the inductor plus a finite amount 1 2 of energy from the VDD power supply while the diode is in W [ LI AVAL 2 LPK breakdown (from t1 to t2) minus any losses due to finite component resistances. Assuming the component resistive http://onsemi.com 5 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS TO−247 CASE 340AL ISSUE D DATE 17 MAR 2017 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. SCALE 1:1 2. CONTROLLING DIMENSION: MILLIMETERS. SEATING 0.635 M BAM 3. SLOT REQUIRED, NOTCH MAY BE ROUNDED. NOTE 4 A B PLANE 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH. E P NOTE 6 MOLD FLASH SHALL NOT EXCEED 0.13 PER SIDE. THESE A DIMENSIONS ARE MEASURED AT THE OUTERMOST E2/2 EXTREME OF THE PLASTIC BODY. 5. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY Q S L1. E2 6. ∅P SHALL HAVE A MAXIMUM DRAFT ANGLE OF 1.5° TO THE NOTE 4 TOP OF THE PART WITH A MAXIMUM DIAMETER OF 3.91. D 7. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED NOTE 3 BY L1. 4 MILLIMETERS 123 DIM MIN MAX A 4.70 5.30 2X F L1 A1 2.20 2.60 b 1.07 1.33 b2 1.65 2.35 L NOTE 5 b4 2.60 3.40 c 0.45 0.68 D 20.80 21.34 E 15.50 16.25 E2 4.32 5.49 2X b2 c e 5.45 BSC F 2.655 --- b4 A1 L 19.80 20.80 3X b NOTE 7 L1 3.81 4.32 0.25 M BAM P 3.55 3.65 e Q 5.40 6.20 S 6.15 BSC GENERIC MARKING DIAGRAM* XXXXXXXXX AYWWG XXXXX = Specific Device Code A = Assembly Location Y = Year WW = Work Week G = Pb−Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “ G”, may or may not be present. Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Recommended publications
  • Switched-Capacitor Circuits
    Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto ([email protected]) ([email protected]) University of Toronto 1 of 60 © D. Johns, K. Martin, 1997 Basic Building Blocks Opamps • Ideal opamps usually assumed. • Important non-idealities — dc gain: sets the accuracy of charge transfer, hence, transfer-function accuracy. — unity-gain freq, phase margin & slew-rate: sets the max clocking frequency. A general rule is that unity-gain freq should be 5 times (or more) higher than the clock-freq. — dc offset: Can create dc offset at output. Circuit techniques to combat this which also reduce 1/f noise. University of Toronto 2 of 60 © D. Johns, K. Martin, 1997 Basic Building Blocks Double-Poly Capacitors metal C1 metal poly1 Cp1 thin oxide bottom plate C1 poly2 Cp2 thick oxide C p1 Cp2 (substrate - ac ground) cross-section view equivalent circuit • Substantial parasitics with large bottom plate capacitance (20 percent of C1) • Also, metal-metal capacitors are used but have even larger parasitic capacitances. University of Toronto 3 of 60 © D. Johns, K. Martin, 1997 Basic Building Blocks Switches I I Symbol n-channel v1 v2 v1 v2 I transmission I I gate v1 v p-channel v 2 1 v2 I • Mosfet switches are good switches. — off-resistance near G: range — on-resistance in 100: to 5k: range (depends on transistor sizing) • However, have non-linear parasitic capacitances. University of Toronto 4 of 60 © D. Johns, K. Martin, 1997 Basic Building Blocks Non-Overlapping Clocks I1 T Von I I1 Voff n – 2 n – 1 n n + 1 tTe delay 1 I fs { --- delay V 2 T on I Voff 2 n – 32e n – 12e n + 12e tTe • Non-overlapping clocks — both clocks are never on at same time • Needed to ensure charge is not inadvertently lost.
    [Show full text]
  • Switched Capacitor Concepts & Circuits
    Switched Capacitor Concepts & Circuits Outline • Why Switched Capacitor circuits? – Historical Perspective – Basic Building Blocks • Switched Capacitors as Resistors • Switched Capacitor Integrators – Discrete time & charge transfer concepts – Parasitic insensitive circuits • Signal Flow Graphs • Switched Capacitor Filters – Comparison to Active RC filters – Advantages of Fully Differential filters • Switched Capacitor Gain Circuits • Reducing the Effects of Charge Injection • Tradeoff between Speed and Charge Injection Why Switched Capacitor Circuits? • Historical Perspective – As MOS processes came to the forefront in the late 1970s and early 1980s, the advantages of integrating analog blocks such as active filters on the same chip with digital logic became a driving force for inovation. – Integrating active filters using resistors and capacitors to acturately set time constants has always been difficult, because of large process variations (> +/- 30%) and the fact that resistors and capacitors don’t naturally match each other. – So, analog engineers turned to the building blocks native to MOS processes to build their circuits, switches & capacitors. Since time constants can be set by the ratio of capacitors, very accurate filter responses became possible using switched capacitor techniques Æ Mixed-Signal Design was born! Switched Capacitor Building Blocks • Capacitors: poly-poly, MiM, metal sandwich & finger caps • Switches: NMOS, PMOS, T-gate • Op Amps: at first all NMOS designs, now CMOS Non-Overlapping Clocks • Non-overlapping clocks are used to insure that one set of switches turns off before the next set turns on, so that charge only flows where intended. (“break before make”) • Note the notation used to indicate time based on clock periods: ... (n-1)T, (n-½)T, nT, (n+½)T, (n+1)T ..
    [Show full text]
  • Printed Circuit Board Mount Switches Shock Proof • Waterproof • Explosion
    shock proof • waterproof • explosion proof Printed Circuit Board Mount Switches These versatile switches are a great choice for many applications due to their small size and variety of connection styles. Although these switches are built to connect to a printed circuit board, they can also be retrotted for nearly any application by connecting wire leads. These switches can sense a pressure ranging from 6 inches of water all the way up to 65 PSI. For a frame of reference, a trumpet player blows 55 inches of water (or 2 PSI) on average, so these switches have a broad range. They can also be used to sense a vacuum ranging between 6 inches of water to 65 inches of water. Therefore, these miniature single pole and double pole switches are used as pressure, vacuum, or dierential pressure switches where moderate accuracy is sucient. Presair switches deliver critical benefits: CSPSSGA - PC Mount Switch SAFE: Presair switches deliver complete electrical isolation with zero voltage at the actuator to shock the user or spark an explosion. 1”x1”x1.5” ECONOMICAL:Presair’s switching system costs are comparable or lower than digital controls meeting the needs of original equipment manufacturers. ACCURATE: All switches are 100% tested to meet 100,000+ cycle life. General Specification: RATING: 1 amp resistive 250 VAC Ratings are dependent on actuation pressure and must be derated at lower pressures. APPROVAL: UL Recognized, CUL Recognized. File #E80254 MATERIAL: Lower body: Rynite w/ pin terminals molded Upper body: Acetal Diaphram material is dependent on application. PRESSURE RANGE: When used as a pressure or vacuum switch the actuation point must be factory set.
    [Show full text]
  • A High Efficiency 0.13Μm CMOS Full Wave Active Rectifier With
    Advances in Science, Technology and Engineering Systems Journal ASTES Journal Vol. 2, No. 3, 1019-1025 (2017) ISSN: 2415-6698 www.astesj.com Special issue on Recent Advances in Engineering Systems A High Efficiency 0.13µm CMOS Full Wave Active Rectifier with Comparators for Implanted Medical Devices Joao˜ Ricardo de Castilho Louzada, Leonardo Breseghello Zoccal, Robson Luiz Moreno, Tales Cleber Pimenta Federal University of Itajuba,´ IEST, Itajuba´ - MG, Brazil ARTICLEINFO ABSTRACT Article history: This paper presents a full wave active rectifier for biomedical implanted Received: 30 April, 2017 devices using a new comparator in order to reduce the rectifier Accepted: 29 June, 2017 transistors reverse current. The rectifier was designed in 0.13µm Online: 11 July, 2017 CMOS process and it can deliver 1.2Vdc for a minimum signal of Keywords: 1.3Vac. It achieves a power conversion e ciency of 92% at the Active Rectifier ffi 13.56MHz Scientific and Medical (ISM) band. CMOS Comparator Medical Devices 1 Introduction but it is unusable for circuits running on power sup- plies of 1V or less. Alternatively to the conventional This paper is an extension of work originally pre- diodes, Schottky diodes can be used, but the manu- sented in The 15th International Symposium on In- facturing process of low forward drop voltage can be tegrated Circuits, Sigapure, 2016 [1]. It presents some more expensive than the traditional processes [4] be- details not described in the original paper. This paper cause they might not be present in some regular pro- also brings new results obtained after a new calibra- cesses and require extra fabrication steps [5].
    [Show full text]
  • Switched-Capacitor Integrator
    EE247 Lecture 10 • Switched-capacitor filters (continued) – Switched-capacitor integrators • DDI & LDI integrators – Effect of parasitic capacitance – Bottom-plate integrator topology – Switched-capacitor resonators – Bandpass filters – Lowpass filters – Switched-capacitor filter design considerations • Termination implementation • Transmission zero implementation • Limitations imposed by non-idealities EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 1 Switched-Capacitor Integrator C φ φ I φ 1 2 1 Vin - φ 2 Cs Vo + T=1/fs C C φ I φ I 1 2 Vin Vin - - C C s s Vo Vo + + φ High φ 1 2 High Æ C Charged to Vin s ÆCharge transferred from Cs to CI EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 2 Switched-Capacitor Integrator Output Sampled on φ1 φ φ 1 2 Vin CI φ - 1 Cs Vo Vo1 + φ φ φ φ φ Clock 1 2 1 2 1 Vin VCs Vo Vo1 EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 3 Switched-Capacitor Integrator ( (n-1)T n-3/2)Ts s (n-1/2)Ts nTs (n+1/2)Ts (n+1)Ts φ φ φ φ φ Clock 1 2 1 2 1 Vin Vs Vo Vo1 Φ 1 Æ Qs [(n-1)Ts]= Cs Vi [(n-1)Ts] , QI [(n-1)Ts] = QI [(n-3/2)Ts] Φ 2 Æ Qs [(n-1/2) Ts] = 0 , QI [(n-1/2) Ts] = QI [(n-1) Ts] + Qs [(n-1) Ts] Φ 1 _Æ Qs [nTs ] = Cs Vi [nTs ] , QI [nTs ] = QI[(n-1) Ts ] + Qs [(n-1) Ts] Since Vo1= - QI /CI & Vi = Qs / Cs Æ CI Vo1(nTs) = CI Vo1 [(n-1) Ts ] -Cs Vi [(n-1) Ts ] EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H.
    [Show full text]
  • Practical Issues Designing Switched-Capacitor Circuit
    Practical Issues Designing Switched-Capacitor Circuit ECEN 622 (ESS) Fall 2011 Practical Issues Designing Switched-Capacitor Circuit Material partially prepared by Sang Wook Park and Shouli Yan ELEN 622 Fall 2011 1 / 27 Switched-Capacitor practical issues Practical Issues Designing Switched-Capacitor Circuit MOS switch G G S Cov Cox Cov D S D Ron o Excellent Roff o Non-idea Effect Charge injection, Clock feed-through Finite and nonlinear Ron ELEN 622 Fall 2011 2 / 27 Switched-Capacitor practical issues Practical Issues Designing Switched-Capacitor Circuit Charge Injection G Qch1 Qch2 C VS o During TR. is turned on, Qch is formed at channel surface Qch = WLC OX (VGS −Vth ) When TR. is off, Qch1 is absorbed by Vs, but Qch2 is injected to C o Charge injected through overlap capacitor o Appeared as an offset voltage error on C ELEN 622 Fall 2011 3 / 27 Switched-Capacitor practical issues Practical Issues Designing Switched-Capacitor Circuit Charge Injection Effect CLK Ideal sw. Vout MOS sw. 0.1pF 1V CLK o When clock changes from high to low, Qch2 is injected to C o Compared to ideal sw., MOS sw. creates voltage error on Vout ELEN 622 Fall 2011 4 / 27 Switched-Capacitor practical issues Practical Issues Designing Switched-Capacitor Circuit Decrease Charge Injection Effect (1) CLK Vout W/L = 1/0.4 0.1pF 1V W/L = 10/0.4 o Decrease the effect of Qch o Use either bigger C or small TR. (small ratio of Cox/C) o Increased Ron ELEN 622 Fall 2011 5 / 27 Switched-Capacitor practical issues Practical Issues Designing Switched-Capacitor Circuit Decrease Charge Injection Effect (2) CLK CLKb 10/0.4 3.1/0.4 Vout With dummy sw.
    [Show full text]
  • Introduction How Circuit Protection Devices Work?
    Introduction Adding extra strain to any person or object can be a recipe for disaster. This is especially the case for electrical circuits. When they’re tasked with carrying more current than they were designed to handle, the added burden can lead to detrimental and dangerous circumstances. Not only could overloading your circuits damage or destroy your sensitive electronic equipment, but it could also generate extra heat in wires that weren’t meant to carry the load. If this happens, it can cause a fire in a matter of seconds. This is where an overcurrent protection device, such as a fused disconnect switch or a circuit breaker, comes in. Though they serve a similar purpose, these two components each have a unique design. Today, we’re sharing how they work and how to choose the right one for your project. Ready to learn more? Let’s dive in. How Circuit Protection Devices Work? The field of circuit protection technology is vast, designed to prevent circuits from risks associated with overvoltage, overcurrent, reverse-bias, electrostatic-discharge (ESD) and overtemperature events. Such risks include: • High-voltage transients • Capacitive coupling • Inductive kickback • Ground faults • High inrush currents From your smartphone battery to your steering wheel, these components are necessary to ensure safe and reliable electronics. While they all serve a valuable purpose, we’re delving deeper today into the specific field of overcurrent protection. Overcurrent protection devices are designed to disconnect or open a circuit quickly in the event that an overload or short-circuit occurs. This helps to mitigate any damage to the connected equipment and can also reduce the risk of electrical fires.
    [Show full text]
  • Power Sense Switch & Fan Control Thermostat
    Speed Controllers & Switches_8_DR_ref.qxd 6/11/2015 10:34 AM Page 17 POWER SENSE SWITCH & FAN CONTROL THERMOSTAT POWER SENSE SWITCH TYPE - VZ-IISNSE TECHNICAL DATA Switched Output Model Number Load Sense Range Max. Amps Enclosure Size, mm On = 2.5 - 15 amp VZ-ISNSE 5 153W x 110H x 60D Off = 0 - 1.5 amps SUGGESTED WIRING ARRANGEMENT The VZ-ISNSE is a 240V AC power sense switch that provides automatic on/off control of a fan or exhaust fan system. The unit detects the current of an appliance such as a clothes dryer, closing and opening the switched output 240V relay when the load sense range Switched Output parameters are met. Can be used with the VZ2-10TS, VZM0-28TS, VZ6-4PL or as a stand alone unit. In LED’s indicate when load is activated. 3-pin Socket Warning Not to be used with fans with EC motors Appliance or inverters. FAN CONTROL THERMOSTAT TECHNICAL DATA Model Temperature Maximum Number range Mounting Amps Dimensions, mm TFC6 5ºC to 30ºC Wall mountable 6.0 86W x 86H x 33D SELECTION TABLE The TFC6 is suitable for most 240-volt fans. The TFC6 can be set in two modes: Cool mode - will start the fan when the room temperature is higher than the set point. The Fantech Fan Control Thermostat has Heat mode - will start the fan when the room temperature is lower than the set point. been developed to control the operation of a 240-volt fan based on the setting made on the thermostat dial. It can be set to turn on a fan when the WIRING DIAGRAM room temperature is either higher or lower than the set point.
    [Show full text]
  • FSW Fuse-Switch-Disconnectors
    Motors | Automation | Energy | Transmission & Distribution | Coatings FSW Fuse-Switch-Disconnectors www.weg.net Fuse-Switch-Disconnectors The FSW Fuse-Switch-Disconnectors, developed according to International Standard IEC 60947-3 and bearing CE certification, are applied in electric circuits in general so as to provide the disconnection and protection against short circuits and overloads by means of NH blade contact fuses. In order to ensure a long lifespan, the FSW Fuse-Switch-Disconnectors are manufactured with reinforced thermoplastic materials and flame retardant. Additionaly, they feature contacts with silver coating, providing low power losses. Safety and Simplicity WEG switch-disconnector has several characteristics which aim at increasing security for operation and maintenance of the equipment, simplifying diagnoses and fuse replacement: g The switch-disconnector allows checking the state of the fuses through a transparent cover, besides featuring small openings which allow making electrical measurements without interrupting the operation. g As per IEC 60947-3, the switch-disconnector can perform the non- frequent opening under load. The FSW series has arc chambers for the extinction of the electric arc and disconnects all the phases together, ensuring full insulation between the load circuit and power supply. g In the opening of the switch-disconnector, the fuses remain fixed to the cover, preventing their drop or accidental contact between the energized parts. Furthermore, the cover is totally removable, allowing simple fuse replacement in a simple and safe area out of the electrical panel. g The switch-disconnectors also feature a built-in auxiliary contact in order to indicate when they are open or not properly closed.
    [Show full text]
  • Thermostats, Thermal Cutoffs & Fuses
    Temperature Controllers Bulb and Capillary Thermostats Thermostat Styles and Selection Construction Characteristics This type of control operates by expansion and contraction of causing the opening and closing of a snap-action switch. For heat- a liquid in response to temperature change. Liquid contained ing applications the contacts are normally closed and open on within the sensing bulb and capillary flexes a diaphragm, temperature rise. See Page 13-77 for typical wiring diagrams. Style A Style B Single-Pole Thermostat Bulb Double-Pole Thermostat ✴ General purpose ✴ Recommended for directly thermostat recommended Pilot Lamp controlling high wattage for most applications. (Optional on loads due to its Style B & ✴ Capable of controlling heavy duty contacts. C ONLY) loads from 120V/30A up ✴ Capable of controlling loads to 480V/20A Knob up to 30 Amps at 277 VAC and (Optional on 10 Amps at 480 VAC all Styles except F) Bezel Capillary (Optional on Style B & C ONLY Thermostat Electrical Ratings: Normally Closed Contacts, Open on Temperature Rise – Adjustable Stock Items Are Shown In RED Temp Ampacity at Bulb Bulb Capillary Thermostat Optional Thermostat Parts Instruction Control Range Line Voltage Dia. Length Length Part Sheet Type Style °F 120V 240V 277V 480V in in in Terminals Number Knob Bezel Pilot Lamp P/N 60–250 30 30 30 — 0.27 6.00 12 #10 screw TST-101-137 TST-104-103 n/a n/a IDP-119-102 60–250 30 30 30 — 0.38 4.63 48 #10 screw TST-101-131 TST-104-103 n/a n/a IDP-119-102 SPST A 70–245 30 30 15 15 0.25 5.50 12 #10 screw TST-101-130 Included
    [Show full text]
  • TCI-W-U Series Wall Mounted Controller IOM-525 Installation and Operation Manual Installation and Set up Overview
    TCI-W-U Series Wall Mounted Controller IOM-525 Installation and Operation Manual Installation and Set Up Overview Features......................................3 Duct Application............................4 Room Application...........................5 Wiring Schematics.....................6-12 Operation...............................13-14 Features Universal PID and/or binary control for any analog input/output signal and range. Multiple auxiliary functions: automatic enable, set point configuration Averaging, min and max functions Alarm monitoring of low and high limits Accuracy of +/- 2% RH Large Backlit display Displays Actual RH% and setpoint RH% Analog output displayed by a vertical bar Jumper selectable 0-10VDC or 4-20mA The Armstrong TCI-W-U controller can be used for either duct or room applications. 3 Duct Application The Armstrong D51772 is used in a duct application and includes the parts listed below: Armstrong Part number: D50390 (TCI-W-U Controller) Armstrong Part number: D50388 (SDC-H1 Transmitter) Please refer to your humidifiers IOM for proper placement of the D50388. (The D50388 will be referred to as a sensor in the IOM) The D50390 can be mounted in any location because the sensing of relative humidity is being done by the D50388. Max wire length from sensor to controller is 200 feet. 4 Room Application The Armstrong D51768 is a stand alone controller used in room applications, see below: Armstrong Part number: D51768 (TCI-W-U Controller) Please refer to your humidifiers IOM for mounting locations of the humidistat/controller as well as set up of the humidifier. This is only installation and set up for the controller. 5 Wiring Schematics HC6000 Series Humidifiers: Supply 2 24V Main Stat / Sensor In 6 A01 Modulating High Limit Sensor Armstrong 0-10 Vdc Stat Outdoor Temp.
    [Show full text]
  • Hexfet® Transistor Irhn9230
    Provisional Data Sheet No. PD-9.1445 REPETITIVE AVALANCHE AND dv/dt RATED IRHN9230 ® HEXFET TRANSISTOR P-CHANNEL RAD HARD -200 Volt, 0.8Ω, RAD HARD HEXFET Product Summary International Rectifier’s P-Channel RAD HARD technology Part Number BVDSS RDS(on) ID HEXFETs demonstrate excellent threshold voltage stability and breakdown voltage stability at total radiation doses as IRHN9230 -200V 0.8Ω -6.5A high as 105 Rads (Si). Under identical pre- and post-radiation test conditions, International Rectifier’s P-Channel RAD HARD HEXFETs retain identical electrical specifications up Features: to 1 x 105 Rads (Si) total dose. No compensation in gate 5 drive circuitry is required. In addition these devices are also n Radiation Hardened up to 1 x 10 Rads (Si) capable of surviving transient ionization pulses as high as n Single Event Burnout (SEB) Hardened 1 x 1012 Rads (Si)/Sec, and return to normal operation within a few microseconds. Single Event Effect (SEE) testing of n Single Event Gate Rupture (SEGR) Hardened International Rectifier P-Channel RAD HARD HEXFETs has n Gamma Dot (Flash X-Ray) Hardened demonstrated virtual immunity to SEE failure. Since the P-Channel RAD HARD process utilizes International n Neutron Tolerant Rectifier’s patented HEXFET technology, the user can expect n Identical Pre- and Post-Electrical Test Conditions the highest quality and reliability in the industry. n Repetitive Avalanche Rating P-Channel RAD HARD HEXFET transistors also feature all Dynamic dv/dt Rating of the well-established advantages of MOSFETs, such as n voltage control,very fast switching, ease of paralleling and n Simple Drive Requirements temperature stability of the electrical parameters.
    [Show full text]