Pollinators of Hoya Pottsii: Are the Strongest the Most Effective?

Total Page:16

File Type:pdf, Size:1020Kb

Pollinators of Hoya Pottsii: Are the Strongest the Most Effective? Flora 274 (2021) 151734 Contents lists available at ScienceDirect Flora journal homepage: www.elsevier.com/locate/¯ora Pollinators of Hoya pottsii: Are the strongest the most effective? Sven Landrein a,1,*, Zi-Yu Zhou a,1, Shi-Jie Song a,b a Xishuangbanna Tropical Botanical Garden, Horticulture department, Menglun, Xishuangbanna, Yunnan, 666303 China b University of the Chinese Academy of Sciences, Beijing 100049 China ARTICLE INFO ABSTRACT Keywords: Hoya floral characters are highly elaborate and associated with a complex and specialised pollination mecha­ Pollination nism. The pollination of two Hoya species has been studied previously, but little is known about the specific Arolium nature and interactions between flowermorphology, pollinators, and their environment. Here we investigate the Erebinae pollination of Hoya pottsii, where pollinaria are transferred onto several insects’ legs and arolia including moths Guide rail in the Erebidae family, ants, and a praying mantis. Hypopyra vespertilio (Erebidae, Erebinae) was the most Hoya carnosa Hoya pottsii effective at both carrying and depositing the pollinaria, Colobopsis leonardii (Formicidae) was shown to suc­ Hypopyra vespertilio cessfully insert only one pollinium whereas Hymenopus coronatus (Hymenopodidae) could only attach the pol­ linaria between its two euplantulae. Several Hoya species were used to compare the effectiveness of pollinaria removal and insertion, pollinator size which was correlated to strength, floral scent, and morphology of the guide rail. The floral scent was dominated by Linalool, Methyl benzoate and Benzaldehyde which are known to attract moth, other species displayed similar scents but also showed many different compounds. The effectiveness of a medium-sized moth in pollinating H. pottsii could be explained by the morphology of the guide rail which comprises a landing platform for the arolium. In Hoya carnosa the guide rail lacks a landing platform which could explain why stronger and larger moths were more effective in this species. The importance of the interaction between insect arolia and guide rails in the pollination of Hoya is illustrated and we suggest that their morphology corresponds with pollinator strength and how smoothly and precisely the pollinia can be inserted. 1. Introduction corona, pollinaria and guide rails, directing pollinators into a precise position within the corolla, and facilitating pollinaria removal and Hoya, with around 300 species is the largest genus in Asclepiadoi­ deposition (Endress 2016). Hoya corona lobes are folded and fused deae tribe Marsdenieae, in the family Apocynaceae. Distributed in SE basally with the anther skirt, forming a sac-like structure where nectar Asia and Australia, with some species in India and Sri Lanka, most secretion is located (Forster and Liddle, 1992; Kunze and Wanntorp, species are epiphytic, succulent vines developing extra-axillary flower 2008). The primary nectary is located inside a slit on the anther skirt; its clusters at the end of a thick persistent peduncle (Kleijn and Van Don­ base forms a tube where the nectar accumulates and its apical part be­ kelaar, 2001; Wanntorp et al., 2014). Apocynaceae are mostly pollinated comes cartilaginous on the sides and forms the guide rail. In most Hoya by insects (Hymenoptera, Diptera, Lepidoptera, Coleoptera, Hemiptera species the primary nectary in the slit has lost its nectar secretion and Neuroptera), with few records of bird pollination (Ollerton and function and is replaced by a secondary nectary formed by the corona Liede, 1997; Ollerton et al., 2009, 2017; Pauw, 1998). The majority of lobes (Wanntorp and kunze, 2009). The pollinaria are formed from the the taxa that have been studied are pollinated by a single functional thecae of adjacent stamens which become fused together, attached by pollinator group (Ollerton et al., 2019). the retinaculum and caudicle (translator arm) to the corpusculum Extreme synorganization of floralparts such as the androecium and (Fig. 1H). The corpusculum is a cartilaginous hollow structure with a gynoecium is characteristic of Apocynaceae (Endress 2016). These fu­ channel in the centre that acts like a clip, attaching to the pollinator sions may have led to the development of other features such as the (Wanntorp, 2007). The pollinia have a thick margin on the inner side * Corresponding author. E-mail addresses: [email protected], [email protected] (S. Landrein). 1 These authors contributed equally. https://doi.org/10.1016/j.flora.2020.151734 Received 5 February 2020; Received in revised form 15 November 2020; Accepted 16 November 2020 Available online 20 November 2020 0367-2530/© 2020 Elsevier GmbH. All rights reserved. S. Landrein et al. Flora 274 (2021) 151734 known as the pellucid margin, this margin gets trapped in the guide rail In this study, we investigated the pollinators of H. pottsii by capturing and pollen tubes will grow externally through the margin to reach the flower visitors during the evening and night. Pollinators were checked stigmatic surface. The guide rail morphology is of great importance in for pollinaria attachment as well as their location on the body and how the pollination process but has received little attention in previous many pollinia were missing, which is indicative of pollination effec­ studies; it is here described in more detail (Fig. 1A). tiveness. Pollinator strength was estimated by using wing length as a The abovementioned floral characters, often associated with polli­ proxy and this was correlated with their respective effectiveness. Guide nator specialisation, have been considered critical to speciation and rails were measured and observed by SEM and compared with Hoya evolutionary radiation (Grant 1949; Stebbins 1970; Crepet 1983). carnosa. Further experiments with living pollinators were performed, However, synorganization evolution in some Apocynaceae taxa has also hand pollination with severed moth legs and tools were explored to resulted in generalised plant-pollinator interactions (Waser et al., 1996). understand the finedetails of such elaborate processes. Floral scent was Although morphological features of Hoya flowers are well under­ extracted and compared with that of three other Hoya species including stood, their function have only been studied in two species, Hoya aus­ H. carnosa, H. incrassata and H. heuschkeliana, to find out if some com­ tralis (Forster, 1992) and H. carnosa (Mochizuki et al., 2017). The two pounds were specific to certain Hoya species. studied species have different pollinators and the studies suggest that Hoya pollination is species specific. Erebus esphesperis (Eribideae), a 2. Materials and methods nocturnal settling moth, was confirmedas the predominant pollinator in H. carnosa and capable of attaching the pollinaria on the aroliar pad. 2.1. Pollinator observations Ocybadistes walkeri, a diurnal skipper butterfly, was shown to be the main pollinator of H. australis, although ForsterFoster (1992) did not The research was conducted within the Xishuangbanna Tropical conduct experiments after dusk. Butterflies were capable of attaching Botanical Garden in Southern Yunnan, China. Hoya pottsii is sponta­ the pollinaria on the legs and proboscis (although no exact region of the neous and epiphytic, growing on several cultivated and subspontaneous leg was mentioned). trees in the garden. The species was selected because many fruits were Hoya species produce white flowers,strong nocturnal fragrance, and produced every year, indicating an efficientpollination system (Fig. 2D). abundant nectar, which is strongly suggestive of moth pollination Foraging insects were observed during day and night but after several (Faegri and van der Pijl, 1979; Altenburger and Matile, 1988; Matile, days’ observations, we inferred an optimal pollination time to be be­ 2006). Floral scents have been well studied in some asclepiad genera tween 2000 h and 2300 h, when pollinators were most abundant and such as Pachycarpus (Shuttleworth and Johnson, 2012), Xysmalobium seen landing on the flowers (Figs. 2A,B,F,G). The species flowered be­ (Shuttleworth and Johnson, 2009), Orbea (Shuttleworth et al., 2017) tween the 13th and 30th of April in both 2018 and 2019 (17 days each and Ceropegia (Heiduk et al., 2016). Floral odour compounds emitted by year) and was observed for 102 h. Insect visitors were caught with a net flowers may provide an insight into the ecology and evolution of polli­ and killed by crushing their abdomen or placing them in alcohol. The nation systems (Dobson, 2006), but despite the large diversity of Hoya, moths were identified using the volumes of Moths of Thailand (Pinra­ studies on Hoya pollination and floral scent are scarce (Jürgens et al., tana, 1990) and iNaturalist (iNaturalist.org, 2019). Although almost all 2010). In flowers of Hoya carnosa the scent is only produced at night the larger moths and moths carrying pollinaria could be identified to (Altenburger and Matile, 1988), although this may differ in other Hoya species, many smaller moths could not be identified accurately (Sup­ species. plementary data 1 and 2). Fig. 1. Floral morphology of Hoya pottsii and pollinaria attachment on different pollinators. (A) Scanning Electronic Microscopy (SEM) detail of the guide rail with the narrowing part shown with # and the primary guide rail shown with *. (B) Corolla section after manual insertion of a pollinium followed by pollen tube germination through the pellucid margin. See arrow for pollen tubes. (C) Hypopyra vespertilio
Recommended publications
  • 1 1 DNA Barcodes Reveal Deeply Neglected Diversity and Numerous
    Page 1 of 57 1 DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in 2 Madagascar 3 4 5 Carlos Lopez-Vaamonde1,2, Lucas Sire2, Bruno Rasmussen2, Rodolphe Rougerie3, 6 Christian Wieser4, Allaoui Ahamadi Allaoui 5, Joël Minet3, Jeremy R. deWaard6, Thibaud 7 Decaëns7, David C. Lees8 8 9 1 INRA, UR633, Zoologie Forestière, F- 45075 Orléans, France. 10 2 Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS Université de Tours, UFR 11 Sciences et Techniques, Tours, France. 12 3Institut de Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, 13 CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP 50, 75005 Paris, France. 14 4 Landesmuseum für Kärnten, Abteilung Zoologie, Museumgasse 2, 9020 Klagenfurt, Austria 15 5 Department of Entomology, University of Antananarivo, Antananarivo 101, Madagascar 16 6 Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road E., Guelph, ON 17 N1G2W1, Canada 18 7Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS–Université de Genome Downloaded from www.nrcresearchpress.com by UNIV GUELPH on 10/03/18 19 Montpellier–Université Paul-Valéry Montpellier–EPHE), 1919 Route de Mende, F-34293 20 Montpellier, France. 21 8Department of Life Sciences, Natural History Museum, Cromwell Road, SW7 5BD, UK. 22 23 24 Email for correspondence: [email protected] For personal use only. This Just-IN manuscript is the accepted prior to copy editing and page composition. It may differ from final official version of record. 1 Page 2 of 57 25 26 Abstract 27 Madagascar is a prime evolutionary hotspot globally, but its unique biodiversity is under threat, 28 essentially from anthropogenic disturbance.
    [Show full text]
  • DNA Barcodes Reveal Deeply Neglected Diversity and Numerous Invasions of Micromoths in Madagascar
    Genome DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in Madagascar Journal: Genome Manuscript ID gen-2018-0065.R2 Manuscript Type: Article Date Submitted by the 17-Jul-2018 Author: Complete List of Authors: Lopez-Vaamonde, Carlos; Institut National de la Recherche Agronomique (INRA), ; Institut de Recherche sur la Biologie de l’Insecte (IRBI), Sire, Lucas; Institut de Recherche sur la Biologie de l’Insecte Rasmussen,Draft Bruno; Institut de Recherche sur la Biologie de l’Insecte Rougerie, Rodolphe; Institut Systématique, Evolution, Biodiversité (ISYEB), Wieser, Christian; Landesmuseum für Kärnten Ahamadi, Allaoui; University of Antananarivo, Department Entomology Minet, Joël; Institut de Systematique Evolution Biodiversite deWaard, Jeremy; Biodiversity Institute of Ontario, University of Guelph, Decaëns, Thibaud; Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS–Université de Montpellier–Université Paul-Valéry Montpellier–EPHE), , CEFE UMR 5175 CNRS Lees, David; Natural History Museum London Keyword: Africa, invasive alien species, Lepidoptera, Malaise trap, plant pests Is the invited manuscript for consideration in a Special 7th International Barcode of Life Issue? : https://mc06.manuscriptcentral.com/genome-pubs Page 1 of 57 Genome 1 DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in 2 Madagascar 3 4 5 Carlos Lopez-Vaamonde1,2, Lucas Sire2, Bruno Rasmussen2, Rodolphe Rougerie3, 6 Christian Wieser4, Allaoui Ahamadi Allaoui 5, Joël Minet3, Jeremy R. deWaard6, Thibaud 7 Decaëns7, David C. Lees8 8 9 1 INRA, UR633, Zoologie Forestière, F- 45075 Orléans, France. 10 2 Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS Université de Tours, UFR 11 Sciences et Techniques, Tours, France.
    [Show full text]
  • Fung Yuen SSSI & Butterfly Reserve Moth Survey 2009
    Fung Yuen SSSI & Butterfly Reserve Moth Survey 2009 Fauna Conservation Department Kadoorie Farm & Botanic Garden 29 June 2010 Kadoorie Farm and Botanic Garden Publication Series: No 6 Fung Yuen SSSI & Butterfly Reserve moth survey 2009 Fung Yuen SSSI & Butterfly Reserve Moth Survey 2009 Executive Summary The objective of this survey was to generate a moth species list for the Butterfly Reserve and Site of Special Scientific Interest [SSSI] at Fung Yuen, Tai Po, Hong Kong. The survey came about following a request from Tai Po Environmental Association. Recording, using ultraviolet light sources and live traps in four sub-sites, took place on the evenings of 24 April and 16 October 2009. In total, 825 moths representing 352 species were recorded. Of the species recorded, 3 meet IUCN Red List criteria for threatened species in one of the three main categories “Critically Endangered” (one species), “Endangered” (one species) and “Vulnerable” (one species” and a further 13 species meet “Near Threatened” criteria. Twelve of the species recorded are currently only known from Hong Kong, all are within one of the four IUCN threatened or near threatened categories listed. Seven species are recorded from Hong Kong for the first time. The moth assemblages recorded are typical of human disturbed forest, feng shui woods and orchards, with a relatively low Geometridae component, and includes a small number of species normally associated with agriculture and open habitats that were found in the SSSI site. Comparisons showed that each sub-site had a substantially different assemblage of species, thus the site as a whole should retain the mosaic of micro-habitats in order to maintain the high moth species richness observed.
    [Show full text]
  • Floristic and Ecological Characterization of Habitat Types on an Inselberg in Minas Gerais, Southeastern Brazil
    Acta Botanica Brasilica - 31(2): 199-211. April-June 2017. doi: 10.1590/0102-33062016abb0409 Floristic and ecological characterization of habitat types on an inselberg in Minas Gerais, southeastern Brazil Luiza F. A. de Paula1*, Nara F. O. Mota2, Pedro L. Viana2 and João R. Stehmann3 Received: November 21, 2016 Accepted: March 2, 2017 . ABSTRACT Inselbergs are granitic or gneissic rock outcrops, distributed mainly in tropical and subtropical regions. Th ey are considered terrestrial islands because of their strong spatial and ecological isolation, thus harboring a set of distinct plant communities that diff er from the surrounding matrix. In Brazil, inselbergs scattered in the Atlantic Forest contain unusually high levels of plant species richness and endemism. Th is study aimed to inventory species of vascular plants and to describe the main habitat types found on an inselberg located in the state of Minas Gerais, in southeastern Brazil. A total of 89 species of vascular plants were recorded (belonging to 37 families), of which six were new to science. Th e richest family was Bromeliaceae (10 spp.), followed by Cyperaceae (seven spp.), Orchidaceae and Poaceae (six spp. each). Life forms were distributed in diff erent proportions between habitats, which suggested distinct microenvironments on the inselberg. In general, habitats under similar environmental stress shared common species and life-form proportions. We argue that fl oristic inventories are still necessary for the development of conservation strategies and management of the unique vegetation on inselbergs in Brazil. Keywords: endemism, granitic and gneissic rock outcrops, life forms, terrestrial islands, vascular plants occurring on rock outcrops within the Atlantic Forest Introduction domain, 416 are endemic to these formations (Stehmann et al.
    [Show full text]
  • Western Ghats), Idukki District, Kerala, India
    International Journal of Entomology Research International Journal of Entomology Research ISSN: 2455-4758 Impact Factor: RJIF 5.24 www.entomologyjournals.com Volume 3; Issue 2; March 2018; Page No. 114-120 The moths (Lepidoptera: Heterocera) of vagamon hills (Western Ghats), Idukki district, Kerala, India Pratheesh Mathew, Sekar Anand, Kuppusamy Sivasankaran, Savarimuthu Ignacimuthu* Entomology Research Institute, Loyola College, University of Madras, Chennai, Tamil Nadu, India Abstract The present study was conducted at Vagamon hill station to evaluate the biodiversity of moths. During the present study, a total of 675 moth specimens were collected from the study area which represented 112 species from 16 families and eight super families. Though much of the species has been reported earlier from other parts of India, 15 species were first records for the state of Kerala. The highest species richness was shown by the family Erebidae and the least by the families Lasiocampidae, Uraniidae, Notodontidae, Pyralidae, Yponomeutidae, Zygaenidae and Hepialidae with one species each. The results of this preliminary study are promising; it sheds light on the unknown biodiversity of Vagamon hills which needs to be strengthened through comprehensive future surveys. Keywords: fauna, lepidoptera, biodiversity, vagamon, Western Ghats, Kerala 1. Introduction Ghats stretches from 8° N to 22° N. Due to increasing Arthropods are considered as the most successful animal anthropogenic activities the montane grasslands and adjacent group which consists of more than two-third of all animal forests face several threats (Pramod et al. 1997) [20]. With a species on earth. Class Insecta comprise about 90% of tropical wide array of bioclimatic and topographic conditions, the forest biomass (Fatimah & Catherine 2002) [10].
    [Show full text]
  • Download Download
    Agr. Nat. Resour. 54 (2020) 499–506 AGRICULTURE AND NATURAL RESOURCES Journal homepage: http://anres.kasetsart.org Research article Checklist of the Tribe Spilomelini (Lepidoptera: Crambidae: Pyraustinae) in Thailand Sunadda Chaovalita,†, Nantasak Pinkaewb,†,* a Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand b Department of Entomology, Faculty of Agriculture at Kamphaengsaen, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom 73140, Thailand Article Info Abstract Article history: In total, 100 species in 40 genera of the tribe Spilomelini were confirmed to occur in Thailand Received 5 July 2019 based on the specimens preserved in Thailand and Japan. Of these, 47 species were new records Revised 25 July 2019 Accepted 15 August 2019 for Thailand. Conogethes tenuialata Chaovalit and Yoshiyasu, 2019 was the latest new recorded Available online 30 October 2020 species from Thailand. This information will contribute to an ongoing program to develop a pest database and subsequently to a facilitate pest management scheme in Thailand. Keywords: Crambidae, Pyraustinae, Spilomelini, Thailand, pest Introduction The tribe Spilomelini is one of the major pests in tropical and subtropical regions. Moths in this tribe have been considered as The tribe Spilomelini Guenée (1854) is one of the largest tribes and the major pests of economic crops such as rice, sugarcane, bean belongs to the subfamily Pyraustinae, family Crambidae; it consists of pods and corn (Khan et al., 1988; Hill, 2007), durian (Kuroko 55 genera and 5,929 species worldwide with approximately 86 genera and Lewvanich, 1993), citrus, peach and macadamia, (Common, and 220 species of Spilomelini being reported in North America 1990), mulberry (Sharifi et.
    [Show full text]
  • Noctuoidea: Erebidae: Others
    Staude et al. / Metamorphosis 27: S165–S188 S165 ____________________________________________________________________________________________________________________________ Noctuoidea: Erebidae: Others Reference/ Lepidoptera Host plant Locality rearing no. Taxon Subfamily Family Taxon Family M1148 Anoba angulilinea Anobinae Erebidae Dalbergia Fabaceae Tshukudu Game melanoxylon Reserve, Hoedspruit M998 Anoba atripuncta Anobinae Erebidae Ormocarpum Fabaceae Tshukudu Game trichocarpum Reserve, Hoedspruit Gv71 Baniana arvorum Anobinae Erebidae Elephantorrhiza Fabaceae Steenkoppies, farm, elephantina Magaliesburg 14HSS52 Baniana arvorum Anobinae Erebidae Elephantorrhiza Fabaceae Steenkoppies, farm, elephantina Magaliesburg 13HSS84 Plecoptera arctinotata Anobinae Erebidae Senegalia caffra Fabaceae Steenkoppies, farm, Magaliesburg M1020a Plecoptera flaviceps Anobinae Erebidae Dalbergia Fabaceae Casketts, farm, melanoxylon Hoedspruit M317 Bareia incidens Calpinae Erebidae Ficus lutea Moraceae Casketts, farm, (unplaced as to Hoedspruit tribe) 14HSS87 Egnasia vicaria Calpinae Erebidae Afrocanthium Rubiaceae Dlinsa Forest, (unplaced as to mundianum Eshowe tribe) 12HSS163 Exophyla multistriata Calpinae Erebidae Celtis africana Cannabaceae Golden Valley, (unplaced as to Magaliesburg tribe) M416 Exophyla multistriata Calpinae Erebidae Trema orientalis Cannabaceae Sekororo, Tzaneen (unplaced as to (Fed on Celtis tribe) africana) M743 Lacera alope Calpinae Erebidae Pterolobium Fabaceae Moholoholo Rehab (unplaced as to stellatum Centre, Hoedspruit tribe)
    [Show full text]
  • Identifying Priority Sites to Prevent Plant Extinctions in Brazil MILENA F
    Last of the green: identifying priority sites to prevent plant extinctions in Brazil MILENA F. DINIZ, TATIEL V. GONÇALVES and DANIEL BRITO Table S1 Priority species and sites identified for the Alliance for Zero Extinction of the Brazilian flora. Species Category* Site Family Abutilon anodoides CR Baía de Guanabara Malvaceae Achetaria latifólia CR Cabo Frio Plantaginaceae Acritopappus catolesensis EN Catolés Asteraceae Acritopappus pintoi CR Piatã Asteraceae Actinocephalus cabralensis EN Serra do Cabral Eriocaulaceae Adamantinia miltonioides CR Mucugê Orchidaceae Adenocalymma magnoalatum CR Parque Estadual do Rio Doce Bignoniaceae Aechmea amicorum EN Porto Seguro Bromeliaceae Aechmea werdermannii CR Reserva Biológica de Serra Negra Bromeliaceae Agalinis bandeirensis CR Pico da Bandeira Orobanchaceae Agalinis itambensis CR Pico do Itambé Orobanchaceae Agrianthus almasensis CR Pico das Almas Asteraceae Alternanthera decurrens CR Januária Amaranthaceae Alternanthera januarensis CR Vale do Rio Peruaçu Amaranthaceae Andreadoxa flava CR Itabuna Rutaceae Anemia mirabilis EN Brumado Schizaeaceae Anemopaegma mirabile EN São João dos Patos Bignoniaceae Anemopaegma patelliforme CR Nova Xavantina Bignoniaceae Anomochloa marantoidea CR Reserva Biológica do Mico-leão Poaceae Arrabidaea elegans EN Rio de Janeiro Bignoniaceae Arthrocereus glaziovii EN Jaboticatubas Cactaceae Asplenium castaneum CR Itatiaia Aspleniaceae Attalea brasiliensis CR Sobradinho (Brasília) Arecaceae Baccharis pseudobrevifolia CR Pico das Almas Asteraceae Barbacenia delicatula
    [Show full text]
  • "Posterior Notal Wing Process" of the Forewing in the Family Noctuidae and Its Importance for Taxonomy (Insecta, Lepidoptera)
    ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Q u a d r i f i n a Band 3 303-323 31. Mai 2000 [ The modification of the "posterior notal wing process" of the forewing in the family Noctuidae and its importance for taxonomy (Insecta, Lepidoptera) M. Lödl Abstract A comparative morphological study of the wing base sclerites in the family Noctuidae resulted in recognizing remarkable differences in the posterior notal wing process. The morphology of the wing base and its sclerites was investigated with representatives of the Noctuidae subfamilies Calpinae, Catocalinae, Cocytiinae, Hypeninae, Herminiinae and Plusiinae using light microscopic methods. The composition of the complex system of notal processes, axillary sclerites and median plates was investigated briefly. Particular attention was paid to the morphological differences in the posterior notal wing process which tumed out to be of taxonomic importance on specific as well as on higher taxonomic level. Taxonomic important features are found particularly in the lateral branch of the posterior notal wing process, its proportion within the central membrane and the proportion of the basal plate with its bending cuticle on the base of the posterior notal wing process. The variability of the posterior notal wing process is illustrated. A first step is made into the morphometric analysis of taxonmoic valuable and morphologically stable characters on the posterior notal wing process. Zusammenfassung Die vergleichende Morphologie der Flügcibascn und ihrer Sklcritc innerhalb der Familie Noctuidae ergibt merkbare Unterschiede besonders in der Ausgestaltung des "posterior notal wing process" Die vorliegende Arbeit untersucht die Flügelbasen mit ihren Skleriten innerhalb der Familie Noctuidae anhand von Arten der Unterfamilien Calpinae, Catocalinae, Cocytiinae, Hypeninae, Herminiinae und Plusiinae.
    [Show full text]
  • Issn 0972- 1800
    ISSN 0972- 1800 VOLUME 22, NO. 3 QUARTERLY JULY-SEPTEMBER, 2020 Date of Publication: 28th September, 2020 BIONOTES A Quarterly Newsletter for Research Notes and News On Any Aspect Related with Life Forms BIONOTES articles are abstracted/indexed/available in the Indian Science Abstracts, INSDOC; Zoological Record; Thomson Reuters (U.S.A); CAB International (U.K.); The Natural History Museum Library & Archives, London: Library Naturkundemuseum, Erfurt (Germany) etc. and online databases. Founder Editor Manuscripts Dr. R. K. Varshney, Aligarh, India Please E-mail to [email protected]. Board of Editors Guidelines for Authors Peter Smetacek, Bhimtal, India BIONOTES publishes short notes on any aspect of biology. Usually submissions are V.V. Ramamurthy, New Delhi, India reviewed by one or two reviewers. Jean Haxaire, Laplune, France Kindly submit a manuscript after studying the format used in this journal Vernon Antoine Brou, Jr., Abita Springs, (http://www.entosocindia.org/). Editor U.S.A. reserves the right to reject articles that do not Zdenek F. Fric, Ceske Budejovice, Czech adhere to our format. Please provide a contact Republic telephone number. Authors will be provided Stefan Naumann, Berlin, Germany with a pdf file of their publication. R.C. Kendrick, Hong Kong SAR Address for Correspondence Publication Policy Butterfly Research Centre, Bhimtal, Information, statements or findings Uttarakhand 263 136, India. Phone: +91 published are the views of its author/ source 8938896403. only. Email: [email protected] From Volume 21 Published by the Entomological Society of India (ESI), New Delhi (Nodal Officer: V.V. Ramamurthy, ESI, New Delhi) And Butterfly Research Centre, Bhimtal Executive Editor: Peter Smetacek Assistant Editor: Shristee Panthee Butterfly Research Trust, Bhimtal Published by Dr.
    [Show full text]
  • In Coonoor Forest Area from Nilgiri District Tamil Nadu, India
    International Journal of Scientific Research in ___________________________ Research Paper . Biological Sciences Vol.7, Issue.3, pp.52-61, June (2020) E-ISSN: 2347-7520 DOI: https://doi.org/10.26438/ijsrbs/v7i3.5261 Preliminary study of moth (Insecta: Lepidoptera) in Coonoor forest area from Nilgiri District Tamil Nadu, India N. Moinudheen1*, Kuppusamy Sivasankaran2 1Defense Service Staff College Wellington, Coonoor, Nilgiri District, Tamil Nadu-643231 2Entomology Research Institute, Loyola College, Chennai-600 034 Corresponding Author: [email protected], Tel.: +91-6380487062 Available online at: www.isroset.org Received: 27/Apr/2020, Accepted: 06/June/ 2020, Online: 30/June/2020 Abstract: This present study was conducted at Coonoor Forestdale area during the year 2018-2019. Through this study, a total of 212 species was observed from the study area which represented 212 species from 29 families. Most of the moth species were abundance in July to August. Moths are the most vulnerable organism, with slight environmental changes. Erebidae, Crambidae and Geometridae are the most abundant families throughout the year. The Coonoor Forestdale area was showed a number of new records and seems to supporting an interesting the monotypic moth species have been recorded. This preliminary study is useful for the periodic study of moths. Keywords: Moth, Environment, Nilgiri, Coonoor I. INTRODUCTION higher altitude [9]. Thenocturnal birds, reptiles, small mammals and rodents are important predator of moths. The Western Ghats is having a rich flora, fauna wealthy The moths are consider as a biological indicator of and one of the important biodiversity hotspot area. The environmental quality[12]. In this presentstudy moths were Western Ghats southern part is called NBR (Nilgiri collected and documented from different families at Biosphere Reserve) in the three states of Tamil Nadu, Coonoor forest area in the Nilgiri District.
    [Show full text]
  • Apocynaceae: Asclepiadoideae) ⁎ A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com South African Journal of Botany 75 (2009) 689–698 www.elsevier.com/locate/sajb New records of insect pollinators for South African asclepiads (Apocynaceae: Asclepiadoideae) ⁎ A. Shuttleworth, S.D. Johnson School of Biological and Conservation Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa Received 1 April 2009; received in revised form 21 July 2009; accepted 27 July 2009 Abstract Studies of pollination in southern African asclepiads (aside from the stapeliads and members of the genus Ceropegia) are remarkably scarce given the diversity of asclepiad species in the region. In this study, we report new observations of insect flower visitors and their pollen loads for 15 species of South African asclepiads in the genera Asclepias, Aspidoglossum, Miraglossum, Pachycarpus, Periglossum, Woodia and Xysmalobium. Nectar properties are also presented for some species. Four specialized pollination systems are suggested by these observations: (1) pollination by wasps in the genus Hemipepsis (Hymenoptera: Pompilidae) in eight species, (2) pollination by chafer beetles (Scarabaeidae: Cetoniinae) in three species, (3) pollination by honeybees, Apis mellifera (Hymenoptera: Apidae) in two species, and (4) pollination by flies from various families in one species. The pollination system of Asclepias crispa remains unclear but appears to be one of generalized insect pollination. Future research is likely to confirm the preponderance of specialized pollination systems within this group of plants in southern Africa. © 2009 SAAB. Published by Elsevier B.V. All rights reserved.
    [Show full text]